Search for Author, Title, Keyword
RESEARCH PAPER
A model of an adaptive strategy of preventive maintenance of complex technical objects
 
More details
Hide details
1
Cracow University of Technology Institute of Rail Vehicles Jana Pawla II 37, 31-864 Cracow, Poland
 
2
AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics Al. A. Mickiewicza 30, 30-059 Cracow, Poland
 
 
Publication date: 2020-03-31
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2020;22(1):35-41
 
KEYWORDS
ABSTRACT
The paper presents results of the analysis of the developed models for complex technical objects preventive maintenance scheduling. Models based on two different sets of assumptions were developed. The general problem solved was to determine the joint time of preventive renewal for a group of parts or subassemblies. The purpose of the first model (the model of scheduled preventive maintenance strategy) is to determine the profitability of constant application of a previously developed preventive maintenance schedule for a part undergoing post-failure renewal. The second model (the model of adaptive strategy of a system’s preventive maintenance) allows one to determine a new joint time of preventive renewal for a group of parts each time when one of them is undergoing a post-failure renewal. The initial preventive maintenance strategy for each part or subassembly was obtained using typical tools for maintenance planning (decision-random models based on dynamic programming and Bellman’s principle of optimality). Exemplary simulation calculations with the use of both models were made and their results presented as the total maintenance costs estimated for the renewal strategies developed. The object of the analysis were the chosen geometrical features of a rail vehicle wheel changing due to its wear during operation. Based on this kind of analysis, one can choose a better preventive maintenance model for a specific application area.
 
REFERENCES (21)
1.
Andrzejczak K, Młyńczak M, Selech J. Assessment model of operational effectiveness related to newly operated public means of transport. Proceedings of the 27th European Safety and Reliability Conference ESREL 2017: 3455-3461, https://doi.org/10.1201/978131....
 
2.
Badia F G, Berrade M D, Campos C A. Optimal inspection and preventive maintenance of units with revealed and unrevealed failures. Reliability Engineering and System Safety 2002; 78: 157-163, https://doi.org/10.1016/S0951-....
 
3.
Berrade M D, Scarf P A, Cavalcante C A V, Dwight R A. Imperfect inspection and replacement of a system with a defective state: A cost and reliability analysis. Reliability Engineering and System Safety 2013; 120: 80-87, https://doi.org/10.1016/j.ress....
 
4.
Bradley E. Reliability engineering a Life Cycle Approach. Boca Raton: CRC Press Taylor & Francis Group, 2017, https://doi.org/10.1201/978131....
 
5.
Faulin J, Juan Perez A A, Martorell Alsina S S, Ramirez-Marquez J E (Eds.). Simulation Methods for Reliability and Availability of Complex Systems. London, New York: Springer, 2010, https://doi.org/10.1007/978-1-....
 
6.
Macchi M, Garetti M, Centrone D, et al. Maintenance management of railway infrastructures based on reliability analysis. Reliability Engineering & System Safety 2012; 104: 71-83, https://doi.org/10.1016/j.ress....
 
7.
Młynarski S, Pilch R, Smolnik M, Szybka J, Wiązania G. A concept of reliability assessment simulation model using systems structural decomposition. Journal of KONBiN 2018; 46: 51-74, https://doi.org/10.2478/jok-20....
 
8.
Młynarski S, Pilch R, Smolnik M, Szybka J, Wiązania G. Formation of koon Systems Reliability Estimated with Analytical and Simulation Calculation Methods. Journal of KONBiN 2017; 42: 255-272, https://doi.org/10.1515/jok-20....
 
9.
Młyńczak M. Failure models of mechanical objects. Zagadnienia Eksploatacji Maszyn 2010; 45: 29-43.
 
10.
Nachlas J A. Reliability engineering. Probabilistic models and maintenance methods. Boca Raton: CRC Press Taylor & Francis Group, 2017, https://doi.org/10.1201/978131....
 
11.
O'Connor P. Practical reliability engineering. Chichester: John Wiley & Sons Ltd., 2012.
 
12.
Peng W, Huang H Z, Zhang X, Liu Y, Li Y. Reliability based optimal preventive maintenance policy of series-parallel systems. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2009; 2: 4-7.
 
13.
Pilch R. Determination of preventive maintenance time for milling assemblies used in coal mills. Journal of Machine Construction and Maintenance - Problemy Eksploatacji 2017; 1: 81-86.
 
14.
Saranga H, Kumar U D. Optimization of aircraft maintenance/support infrastructure using genetic algorithms ¬level of repair analysis. Annals of Operations Research 2006; 143: 91-106, https://doi.org/10.1007/s10479....
 
15.
Serkan E, Yilser D. Reliability and optimal replacement policy for a k-out-of-n system subject to shocks. Reliability Engineering & System Safety 2019; 188: 393-397, https://doi.org/10.1016/j.ress....
 
16.
Song H, Schnieder E. Modeling of railway system maintenance and availability by means of colored Petri nets. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 2: 236-243, https://doi.org/10.17531/ein.2....
 
17.
Sowa A. Formal models of generating checkup sets for the technical condition evaluation of compound objects. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2014; 16(1): 150-157.
 
18.
Smolnik M. Projektowanie procesu obsługiwania obiektów technicznych na przykładzie wybranych wagonów tramwajowych [PhD thesis].Kraków: AGH w Krakowie, 2018.
 
19.
Świderski A, Jóźwiak A, Jachimowski R. Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 2: 292-299, https://doi.org/10.17531/ein.2....
 
20.
Werbińska-Wojciechowska S. Preventive Maintenance Models for Technical Systems. In: Technical System Maintenance. Springer Series in Reliability Engineering. Springer, Cham, 2019, https://doi.org/10.1007/978-3-....
 
21.
Zhao Y X. On preventive maintenance policy of a critical reliability level for system subject to degradation. Reliability Engineering and System Safety 2003; 79: 301-308, https://doi.org/10.1016/S0951-....
 
 
CITATIONS (14):
1.
 
2.
 
3.
 
4.
 
5.
 
6.
 
7.
 
8.
 
9.
 
10.
 
11.
 
12.
 
13.
 
14.
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top