The complexity of control algorithms and their vulnerability to disturbances and failures are the main problems that restrict the
operations of multi-legged mobile robots in more complex environments. In this paper, a multiple extended state observer (ESO)
based control strategy is proposed to achieve stable tilt angle control for quadruped robots under the influence of disturbances
and actuator failures. By treating the multiple legs as parallel control objects, more ESOs were added to improve the disturbance
rejection ability of the linear active disturbance rejection control (LADRC). Correlation of interactive information about the legs
is realized by the synthesis of multiple ESO information. Based on LADRC, this method has the advantages of easy parameter
tuning, good robustness, and strong ability to cope with interference and fault conditions. A control system reliability evaluation
method was proposed. The reliability and control performance of the multi-ESO based control system under leg stuck failure conditions were systematically analyzed. Simulation and experimental results for the level adjustment control system of a quadruped
robot are provided to verify the disturbance rejection ability, feasibility and practicability of the proposed multi-ESO based control
method
REFERENCES(34)
1.
Castaneda L, Luviano-Juarez A, Chairez I. Robust Trajectory Tracking of a Delta Robot Through Adaptive Active Disturbance Rejection Control. IEEE Transactions on Control Systems Technology 2015; 23(4): 1387-1398, https://doi.org/10.1109/TCST.2....
Christensen D, Schultz U, Stoy K. A distributed and morphology-independent strategy for adaptive locomotion in self-reconfigurable modular robots. Robotics & Autonomous Systems 2013; 61(9): 1021-1035, https://doi.org/10.1016/j.robo....
Cong Z. Distributed ESO based cooperative tracking control for high-order nonlinear multi-agent systems with lumped disturbance and application in multi flight simulators systems. Isa Transactions 2018; 74: 217-228, https://doi.org/10.1016/j.isat....
Cui J, Zeng S, Ren Y, Chen X, Gao Z. On the robustness and reliability in the pose deformation system of mobile robots. IEEE Access 2018, https://doi.org/10.1109/ACCESS....
Du B, Wu S, Han S, Cui S. Application of Linear Active Disturbance Rejection Controller for Sensorless Control of Internal Permanent-Magnet Synchronous Motor. IEEE Transactions on Industrial Electronics 2016; 63(5): 3019-3027, https://doi.org/10.1109/TIE.20....
Falconi G, Heise C, Holzapfel F. Fault-tolerant position tracking of a hexacopter using an Extended State Observer. International Conference on Automation, Robotics and Applications. IEEE 2015; 550-556, https://doi.org/10.1109/ICARA.....
Gonzalez-Prieto I, Duran M, Barrero F. Fault-Tolerant Control of Six-Phase Induction Motor Drives With Variable Current Injection. IEEE Transactions on Power Electronics 2017; 32(10): 7894-7903, https://doi.org/10.1109/TPEL.2....
Han J. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics 2009; 56(3): 900-906, https://doi.org/10.1109/TIE.20....
Huang Y, Xue W. Active disturbance rejection control: Methodology and theoretical analysis. ISA Transactions 2014; 53(4): 963-976, https://doi.org/10.1016/j.isat....
Kommuri S, Defoort M, Karimi H, Veluvolu K. A Robust Observer-Based Sensor Fault-Tolerant Control for PMSM in Electric Vehicles. IEEE Transactions on Industrial Electronics 2016; 63(12): 7671-7681, https://doi.org/10.1109/TIE.20....
Li D, Li C, Gao Z, Jin Q. On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells. Journal of Power Sources 2015; 283: 452-463, https://doi.org/10.1016/j.jpow....
Li J, Xia Y, Qi X, Gao Z. On the Necessity, Scheme and Basis of the Linear-Nonlinear Switching in Active Disturbance Rejection Control. IEEE Transactions on Industrial Electronics 2017; 64(2): 1425-1435, https://doi.org/10.1109/TIE.20....
Liu F, Li Y, Cao Y, She J, Wu M. A Two-Layer Active Disturbance Rejection Controller Design for Load Frequency Control of Interconnected Power System. IEEE Transactions on Power Systems 2016; 31(4): 3320-3321, https://doi.org/10.1109/TPWRS.....
Ma X, Sun F, Li H, He B. Neural-network-based integral sliding-mode tracking control of second-order multi-agent systems with unmatched disturbances and completely unknown dynamics. International Journal of Control, Automation and Systems 2017; 15(4): 1925-1935, https://doi.org/10.1007/s12555....
Madonski R, Kordasz M, Sauer P. Application of a disturbance-rejection controller for robotic-enhanced limb rehabilitation trainings. ISA Transactions 2014; 53(4): 899-908, https://doi.org/10.1016/j.isat....
Marina S, Franc N, Gregor P. Sensors in proactive maintenance - a case of LTCC pressure sensors. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20(2): 267-272, https://doi.org/10.17531/ein.2....
Ramos G, Cortes-Romero J, Coral-Enriquez H. Spatial observer-based repetitive controller: An active disturbance rejection approach. Control Engineering Practice 2015; 42: 1-11, https://doi.org/10.1016/j.cone....
Ran M, Wang Q, Dong C. Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control. Automatica 2016; 63: 302-310, https://doi.org/10.1016/j.auto....
Rymarczyk T, Klosowski G. Innovative methods of neural reconstruction for tomographic images in maintenance of tank industrial reactors. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(2): 261-267, https://doi.org/10.17531/ein.2....
Song Y, Guo J. Neuro-Adaptive Fault-Tolerant Tracking Control of Lagrange Systems Pursuing Targets With Unknown Trajectory. IEEE Transactions on Industrial Electronics 2017; 64(5): 3913-3920, https://doi.org/10.1109/TIE.20....
Su X, Liu X, Song Y. Fault-Tolerant Control of Multi-area Power Systems via a Sliding-Mode Observer Technique. IEEE/ASME Transactions on Mechatronics 2018; 23(1): 38-47, https://doi.org/10.1109/TMECH.....
Shen Q, Wang D, Zhu S, Poh E. Robust Control Allocation for Spacecraft Attitude Tracking Under Actuator Faults. IEEE Transactions on Control Systems Technology 2017; 25(3): 1068-1075, https://doi.org/10.1109/TCST.2....
Wu D, Chen K. Limit cycle analysis of active disturbance rejection control system with two nonlinearities. ISA Transactions 2014; 53(4):947-954, https://doi.org/10.1016/j.isat....
Xiao B, Yin S. Velocity-Free Fault-Tolerant and Uncertainty Attenuation Control for a Class of Nonlinear Systems. IEEE Transactions on Industrial Electronics 2016; 63(7): 4400-4411, https://doi.org/10.1109/TIE.20....
Xu C, Li J, Zhang P, Mu L, Si X. ESO-based fault diagnosis and fault-tolerant for incipient actuator faults. Control and Decision Conference. IEEE 2013; 4359-4363.
Xue W, Bai W, Yang S, Song K, Huang Y, Xie H. ADRC With Adaptive Extended State Observer and its Application to Air-Fuel Ratio Control in Gasoline Engines. IEEE Transactions on Industrial Electronics 2015; 62(9): 5847-5857, https://doi.org/10.1109/TIE.20....
Xue W, Huang Y. On performance analysis of ADRC for a class of MIMO lower-triangular nonlinear uncertain systems. ISA Transactions 2014; 53(4): 955-962, https://doi.org/10.1016/j.isat....
Yang X, Cui J, Lao D, Li D, Chen J. Input Shaping enhanced Active Disturbance Rejection Control for a twin rotor multi-input multi-output system (TRMS). ISA Transactions 2016; 62: 287-298, https://doi.org/10.1016/j.isat....
Yang Y, Huang H, Liu Y, Zhu S, Peng W. Reliability analysis of electrohydraulic servo valve suffering common cause failures. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2014; 16(3): 354-359.
Yu B, Paassen A. Simulink and bond graph modeling of an air-conditioned room. Simulation Modelling Practice & Theory 2004; 12(1): 61-76, https://doi.org/10.1016/j.simp....
Zhou Y, Huang Z, Liu W, Li H, Liao H. A distributed ESO based cooperative current-sharing strategy for parallel charging systems under disturbances. IEEE Energy Conversion Congress & Exposition 2016, https://doi.org/10.1109/ECCE.2....
Research on D-STATCOM Double Closed-Loop Control Method Based on Improved First-Order Linear Active Disturbance Rejection Technology Youjie Ma, Xiaotong Sun, Xuesong Zhou Energies
Preventive maintenance of multiple components for hydraulic tension systems Hongyan Dui, Xiaoqian Zheng, Qian Zhao, Yining Fang Eksploatacja i Niezawodnosc - Maintenance and Reliability
Fault-tolerant design for increasing the reliability of an autonomous driving gear shifting system Ralf Stetter, Richy Göser, Sebastian Gresser, Markus Till, Marcin Witczak Eksploatacja i Niezawodność – Maintenance and Reliability
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.