Search for Author, Title, Keyword
RESEARCH PAPER
The statistical-based diagnosis with usage of acoustic sound decomposition and projected LSTM network of induction motors.
 
 
More details
Hide details
1
AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Automatic Control and Robotics, Poland
 
 
Submission date: 2025-02-24
 
 
Final revision date: 2025-05-11
 
 
Acceptance date: 2025-05-27
 
 
Online publication date: 2025-06-05
 
 
Publication date: 2025-06-05
 
 
Corresponding author
Marek Zastępa   

AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Automatic Control and Robotics, al. A. Mickiewicza 30, 30-059, Krakow, Poland
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2025;27(3):205651
 
HIGHLIGHTS
  • A novel approach of diagnosing faults of induction motors with acoustic data features.
  • The statistical parameters of IMFs are used as a features input.
  • A projected LSTM model proposed for motor diagnosis.
  • A fast and effective diagnosis of induction motor faults.
KEYWORDS
TOPICS
ABSTRACT
The use of acoustic signals in the diagnosis of electrical machines allows for non-invasive and rapid diagnostics. The author proposed the novel approach of acoustic diagnosis of single-phase induction motors, which is 98.67% accurate on the test set and allows for fault detection in circa 0.042 s, and 97.33% accurate for 0.021 s long samples similarly. The research includes five classes of faults. In this method, intrinsic mode functions (IMFs) gained from the empirical mode decomposition (EMD) of the motor sound are used to calculate the following statistical parameters: mean, mean square, root mean square, standard deviation, energy, and norm. Next, these parameters are organized from a prepared matrix to a vector of parameters one IMF by one, suitably for neural network input. Such prepared data is then passed to the proposed architecture of the projected LSTM neural network. The training processes were fast - they took only 12 and 13 seconds selectively. The presented novel method is useful for acoustic fault diagnosis of electric motors and could be used for other motors.
REFERENCES (49)
1.
Refaat SS, Al-Shemmery A, Abdulmawjood K, Kameli SM, Abuelrub A. Static Eccentricity Fault Analysis in Three-Phase Induction Motors Using Current Signal. 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE); 25-27 October 2023; Milano, Italy. IEEE; 2023 https://doi.org/10.1109/metrox....
 
2.
Wu Y, Zhang Z, Li Y, Sun Q. Open-Circuit Fault Diagnosis of Six-Phase Permanent Magnet Synchronous Motor Drive System Based on Empirical Mode Decomposition Energy Entropy. IEEE Access 2021; 9: 91137-91147, doi:10.1109/ACCESS.2021.3090814.
 
3.
Arifin MS, Wang W, Uddin MN. AModifiedEMDTechniqueforBrokenRotor Bar Fault Detection in Induction Machines. Sensors 2024; 24(16), https:// doi.org/10.3390/s24165186.
 
4.
Mazaheri-Tehrani E, Faiz J. Airgap and stray magnetic flux monitoring techniques for fault diagnosis of electrical machines: An overview. IET Electr Power Appl. 2021; 16(3) 277-299, doi: https://doi.org/10.1049/elp2.1....
 
5.
Głowacz A. Thermographic fault diagnosis of electrical faults of commutator and induction motors. Eng Appl Artif Intell. 2023; 121 105962, https://doi.org/10.1016/j.enga....
 
6.
Głowacz A, Głowacz W. Vibration-Based Fault Diagnosis of Commutator Motor. Shock and Vibration 2018; 2018: 1-10, https://doi.org/10.1155/2018/7....
 
7.
Du D, Zhang J, Fang Y, Tian J. Motor Bearing Fault Diagnosis based on Hilbert-Huang transform and Convolutional Neural Networks. 2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific); 2022; Haining, China, 1-5, IEEE; 2022, https://doi.org/10.1109/ITECAs....
 
8.
Skowron M, Frankiewicz O, Jarosz JJ, Wolkiewicz M, Dybkowski M, Weisse S et al. Detection and Classification of Rolling Bearing Defects Using Direct Signal Processing with Deep Convolutional Neural Network. Electronics 2024; 13(9), https://doi.org/10.3390/electr....
 
9.
Maraaba LS, Memon AM, Abido MA, AlHems LM. An efficient acoustic-based diagnosis of inter-turn fault in interior mount LSPMSM. Appl Acoust. 2021; 173 107661, https://doi.org/10.1016/j.apac....
 
10.
Głowacz A, Głowacz W, Głowacz Z, Kozik J. Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals. Measurement 2018; 113: 1-9, https://doi.org/10.1016/j.meas....
 
11.
Glowacz A, Tadeusiewicz R, Legutko S, Caesarendra W, Irfan M, Liu H et al. Fault diagnosis of angle grinders and electric impact drills using acoustic signals. Appl Acoust. 2021; 179 108070, https://doi.org/10.1016/j.apac....
 
12.
Hasan Md J, Islam MMM, Kim J-M. Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions. Measurement 2019; 138: 620-631, https://doi.org/10.1016/j.meas....
 
13.
Afia A, Gougam F, Touzout W, Rahmoune C, Ouelmokhtar H, Benazzouz D. Spectral proper orthogonal decomposition and machine learning algorithms for bearing fault diagnosis. J Braz Soc Mech Sci Eng. 2023; 45 550, https://doi.org/10.1007/s40430....
 
14.
Rajabioun R, Afshar M, Atan Ö, Mete M, Akin B. Classification of Distributed Bearing Faults Using a Novel Sensory Board and Deep Learning Networks With Hybrid Inputs. IEEE Transactions on Energy Conversion 2024; 39(2): 963-973, doi: 10.1109/TEC.2023.3338447.
 
15.
Lee C-Y, Le T-A, Hung C-L. A Feature Selection Approach Based on Memory Space Computation Genetic Algorithm Applied in Bearing Fault Diagnosis Model. IEEE Access 2023; 11: 51282-51295, doi: 10.1109/ACCESS.2023.3274696.
 
16.
Bórnea YP, Vitor ALO, Goedtel A, Castoldi MF, Souza WA, Barbara GV. A novel method for detecting bearing faults in induction motors using acoustic sensors and feature engineering. Appl Acoust 2025, 234, https://doi.org/10.1016/j.apac....
 
17.
Xu B, Li H, Ding R, Zhou F. Fault diagnosis in electric motors using multi-mode time series and ensemble transformers network. Sci Rep 2025, 15 7834, https://doi.org/10.1038/s41598....
 
18.
Yang C, Cai B, Wu Q, Wang C, Ge W, Hu Z et al. Digital twin-driven fault diagnosis method for composite faults by combining virtual and real data. J of Ind Inf Integr 2023, 33, https://doi.org/10.1016/j.jii.....
 
19.
Yang C, Cai B, Kong X, Zhang R, Gao C, Liu X et al. Fast and stable fault diagnosis method for composite fault of subsea production system. Mech Syst And Sign Proc 2025, 226, https://doi.org/10.1016/j.ymss....
 
20.
Yang C, Cai B, Zhang R, Zou Z, Kong X, Shao X et al. Cross-validation enhanced digital twin driven fault diagnosis methodology for minor faults of subsea production control system. Mech Syst And Sign Proc 2023, 204, https://doi.org/10.1016/j.ymss....
 
21.
Faysal A, Ngui WK, Lim MH, Leong MS. Noise Eliminated Ensemble Empirical Mode Decomposition Scalogram Analysis for Rotating Machinery Fault Diagnosis. Sensors 2021; 21(8) 8114, https://doi.org/10.3390/s21238....
 
22.
Zhang J, Kong X, Cheng L, Qi H, Yu M. Intelligent fault diagnosis of rolling bearings based on continuous wavelet transform-multiscale feature fusion and improved channel attention mechanism. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2023; 25(1), https://doi.org/10.17531/ein.2....
 
23.
Chandra DG, Reddy US, Uma G, Umapathy M. Group normalization-based 2D-convolutional neural network for intelligent bearing fault diagnosis. J Braz Soc Mech Sci Eng. 2023; 45 584, https://doi.org/10.1007/s40430....
 
24.
Lu X, Xiao Y. Fault diagnosis method of automobile rolling bearing based on transfer learning and improved DenseNet. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2025; 25(2), https://doi.org/10.17531/ein/1....
 
25.
Gao Y, Li X. Fault Diagnosis of Centrifugal fan Bearings Based on I-CNN and JMMD in the Context of Sample Imbalance. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2024; 26(4), https://doi.org/10.17531/ein/1....
 
26.
Głowacz A, Sulowicz M, Zielonka J, Li Z, Głowacz W, Kumar A. Acoustic fault diagnosis of three-phase induction motors using smartphone and deep learning. Exp Syst with Appl 2025, 262, https://doi.org/10.1016/j.eswa....
 
27.
Tang M, Liang L, Zheng H, Chen J, Chen D. Anomaly Detection of Permanent Magnet Synchronous Motor Based on Improved DWT-CNN Multi-Current Fusion. Sensors 2024; 24 2553, https://doi.org/10.3390/s24082....
 
28.
Chu KSK, Chew KW, Chang YC, Morris S. An Open-Circuit Fault Diagnosis System Based on Neural Networks in the Inverter of Three-Phase Permanent Magnet Synchronous Motor (PMSM). World Electr Veh J. 2024; 15(2), https://doi.org/10.3390/wevj15....
 
29.
Ertargin M, Yildirim O, Orhan A. Mechanical and electrical faults detection in induction motor across multiple sensors with CNN-LSTM deep learning model. Electr Eng. 2024; https://doi.org/10.1007/s00202....
 
30.
Bharatheedasan K, Maity T, Kumaraswamidhas LA, Durairaj M. An intelligent of fault diagnosis and predicting remaining useful life of rolling bearings based on convolutional neural network with bidirectional LSTM. Sādhanā 2023; 48(131), https://doi.org/10.1007/s12046....
 
31.
Mohammad-Alikhani A, Nahid-Mobarakeh B, Hsieh M-F. One-Dimensional LSTM-Regulated Deep Residual Network for Data-Driven Fault Detection in Electric Machines. IEEE Transactions on Industrial Electronics 2024; 71(3): 3083-3092, doi: 10.1109/TIE.2023.3265054.
 
32.
Khawaja AU, Shaf A, Thobiani FA, Ali T, Irfan M, Pirzada AR et al. Optimizing Bearing Fault Detection: CNN-LSTM with Attentive TabNet for Electric Motor Systems. Comput Model Eng Sci. 2024; 141(3): 2399–2420, https://doi.org/10.32604/cmes.....
 
33.
Tang S, Jiang Y, Su H, Zhu Y. A fault identification method of hydraulic pump fusing long short-term memory and synchronous compression wavelet transform. Appl Acoust 2025, 232, https://doi.org/10.1016/j.apac....
 
34.
Li X, Su K, He Q, Wang X, Xie Z. Research on Fault Diagnosis of Highway Bi-LSTM Based on Attention Mechanism. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2023; 25(2), https://doi.org/10.17531/ein/1....
 
35.
Xu B, Li H, Liu Y, Zhou F, Yan B. Fault diagnosis in asynchronous motors based on an optimal deep bidirectional long short-term memory networks. Meas Sci Technol. 2023; 34(12), https://doi.org/10.1088/1361-6....
 
36.
Lale T, Yüksek G. Identification and classification of turn short-circuit and demagnetization failures in PMSM using LSTM and GRU methods. Bulletin of the Polish Academy of Sciences Technical Sciences 2025; 73(1), DOI: 10.24425/bpasts.2024.151958.
 
37.
Yun E, Jeong M. Acoustic Feature Extraction and Classification Techniques for Anomaly Sound Detection in the Electronic Motor of Automotive EPS. IEEE Access 2024; 12: 149288-149307, doi: 10.1109/ACCESS.2024.3471169.
 
38.
Samanta S, Bera JN, Biswas A. Induction Motor Inter-turn Short Circuit Fault Classification by Extracting Auto Features Using LSTM Neural Network. 2024 IEEE 3rd International Conference on Control, Instrumentation, Energy and Communication, CIEC 2024 – Proceedings 2024; 180-185, DOI: 10.1109/CIEC59440.2024.10468522.
 
39.
Benbouzid MEH. A review of induction motors signature analysis as a medium for faults detection. IEEE Transactions on Industrial Electronics 2000; 47(5): 984-993, doi: 10.1109/41.873206.
 
40.
Zeiler A, Faltermeier R, Keck IR, Tome AM, Puntonet CG, Lang EW. Empirical Mode Decomposition - an introduction. The 2010 International Joint Conference on Neural Networks (IJCNN) 2010; Barcelona, Spain, 1-8, doi: 10.1109/IJCNN.2010.5596829.
 
41.
Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A 1998; 454: 903-995, http://doi.org/10.1098/rspa.19....
 
42.
Wharton AM, Sekar Iyengar AN, Janaki MS. Study of nonlinear oscillations in a glow discharge plasma using empirical mode decomposition and Hilbert Huang transform. Phys. Plasmas 2013; 20(2), 022301. https://doi.org/10.1063/1.4789....
 
43.
Viney TJ, Sarkany B, Ozdemir AT, Hartwich K, Schweimer J, Bannerman D et al. Spread of pathological human Tau from neurons to oligodendrocytes and loss of high-firing pyramidal neurons in aging mice. Cell Rep. 2022; 41(7), doi: 10.1016/j.celrep.2022.111646.
 
44.
Zhang Q, Ma W, Li G, Ding J, Xie M. Fault diagnosis of power grid based on variational mode decomposition and convolutional neural network. Electric Power Systems Research 2022; 208 107871, https://doi.org/10.1016/j.epsr....
 
45.
Chen Y, Zhou C, Yuan J, Jin Z. Applications of empirical mode decomposition in random noise attenuation of seismic data. Journal of Seismic exploration 2014; 23: 481-495,.
 
46.
Song J-G, Zhao C-X, Lin S-H, Liu H-J. Decomposition of seismic signal based on Hilbert-Huang transform. 2011 International Conference on Business Management and Electronic Information 2011; Guangzhou, 813-816, doi: 10.1109/ICBMEI.2011.5917060.
 
47.
Goodfellow I, Bengio Y, Courville A. “Sequence Modeling: Recurrent and Recursive Nets” in Deep Learning, MIT Press, 2016, 404-411, [Online], https://www.deeplearningbook.o..., accessed February 2025.
 
48.
Olickal SJ, Jose R. LSTM projected layer neural network-based signal estimation and channel state estimator for OFDM wireless communication systems. AIMS Electronics and Electrical Engineering 2023; 7(2): 187-195, doi: 10.3934/electreng.2023011.
 
49.
Jia Y, Wu Z, Xu Y, Ke D, Su K. Long Short-Term Memory Projection Recurrent Neural Network Architectures for Piano’s Continuous Note Recognition. Journal of Robotics 2017; 2017 2061827, 2017. https://doi.org/10.1155/2017/2....
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top