Search for Author, Title, Keyword
RESEARCH PAPER
A fatigue lifetime prediction model applicable to porous sintered Ag nanoparticles
,
 
,
 
Bo Wan 1
,
 
 
 
 
More details
Hide details
1
School of Reliability and Systems Engineering, Beihang University, China
 
2
QianYuan National Laboratory, China
 
3
Chongqing Innovation Center, Northwestern Polytechnical University, China
 
 
Submission date: 2024-10-31
 
 
Final revision date: 2024-12-10
 
 
Acceptance date: 2025-02-14
 
 
Online publication date: 2025-02-22
 
 
Publication date: 2025-02-22
 
 
Corresponding author
Bo Wan   

School of Reliability and Systems Engineering, Beihang University, Haidian, 100191, Beijing, China
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2025;27(3):201429
 
HIGHLIGHTS
  • A new fatigue lifetime prediction model is developed for sintered Ag nanoparticles.
  • This model considers damage slip accumulation, stiffness and strength fatigue degradation.
  • A low-cost method for estimating key model parameters of prediction model is proposed.
  • This model provides a solution that balances model complexity and engineering convenience.
  • This paper provides a novel perspective for the reliability analysis of porous structures.
KEYWORDS
TOPICS
ABSTRACT
Sintered silver nanoparticles (AgNPs) are widely used in the electronic packaging of high-power chips, yet their random internal porous structure is prone to fatigue degradation. In this study, a new cyclic cohesive zone model (CCZM) is proposed for predicting the fatigue lifetime of sintered AgNPs. This model not only considers the cumulative effect of damage slip during cyclic loading but also realizes simultaneous stiffness and strength fatigue degradation under low-stress loading. In addition, to improve the usability of the model, a low-cost estimation method of the model’s key parameters and the corresponding VUMAT user subroutines are proposed. Based on this, cyclic tensile tests on Sintered specimens confirm the occurrence of damage slip within the porous AgNPs structure. The predictive performance of the model and the sensitivity of its characteristic parameters are also thoroughly analyzed and discussed. The new CCZM provides a solution that balances modeling complexity and engineering convenience for the reliability assessment of porous structures.
REFERENCES (50)
1.
S. A. Paknejad and S. H. Mannan, “Review of silver nanoparticle based die attach materials for high power/temperature applications,” Microelectronics Reliability, vol. 70, pp. 1–11, Mar. 2017, doi: 10.1016/j.microrel.2017.01.010.
 
2.
J. Wang, S. Chen, L. Zhang, X. Zhao, F. Duan, and H. Chen, “Brief Review of Nanosilver Sintering: Manufacturing and Reliability,” J. Electron. Mater., vol. 50, no. 10, pp. 5483–5498, Oct. 2021, doi: 10.1007/s11664-021-09078-1.
 
3.
Y. Su, G. Fu, C. Liu, C. Liu, and X. Long, “Fatigue crack evolution and effect analysis of Ag sintering die-attachment in SiC power devices under power cycling based on phase-field simulation,” Microelectronics Reliability, vol. 126, p. 114244, Nov. 2021, doi: 10.1016/j.microrel.2021.114244.
 
4.
J. H. Lau, “Recent Advances and Trends in Chiplet Design and Heterogeneous Integration Packaging,” Journal of Electronic Packaging, vol. 146, no. 010801, Jun. 2023, doi: 10.1115/1.4062529.
 
5.
Y. Wang et al., “Research on the Reliability of Advanced Packaging under Multi-Field Coupling: A Review,” Micromachines, vol. 15, no. 4, Art. no. 4, Apr. 2024, doi: 10.3390/mi15040422.
 
6.
X. Zhan, Z. Liu, H. Yan, Z. Wu, C. Guo, and X. Jia, “A novel method of health indicator construction and remaining useful life prediction based on deep learning,” Eksploatacja i Niezawodność – Maintenance and Reliability, vol. 25, no. 4, Aug. 2023, doi: 10.17531/ein/171374.
 
7.
D. Liu and S. Wang, “Reliability estimation from lifetime testing data and degradation testing data with measurement error based on evidential variable and Wiener process,” Reliability Engineering & System Safety, vol. 205, p. 107231, Jan. 2021, doi: 10.1016/j.ress.2020.107231.
 
8.
C. Mi, Y. Xiao, Y. Deng, and Y. Li, “Fatigue Life Prediction of LF6 Aluminum Alloy Laser-Arc Hybrid Welded Joints Based on Energy Dissipation Method,” Fatigue & Fracture of Engineering Materials & Structures, vol. 2024, no. 0, pp. 1–13, Nov. 2024, doi: 10.1111/ffe.14517.
 
9.
C. Mi, W. Liu, C. Wen, Y. Tang, J. Wu, and G. Risitano, “Fatigue failure analysis and lifetime prediction of self-piercing riveted dissimilar aluminum alloy joint based on energy method,” Engineering Failure Analysis, vol. 165, p. 108746, Nov. 2024, doi: 10.1016/j.engfailanal.2024.108746.
 
10.
M. Modarres, “Probabilistic Physics of Failure Concept and Its Application in Reliability Engineering,” IEEE Transactions on Reliability, vol. 73, no. 1, pp. 19–20, Mar. 2024, doi: 10.1109/TR.2024.3357811.
 
11.
Y. Murakami, T. Takagi, K. Wada, and H. Matsunaga, “Essential structure of S-N curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter,” International Journal of Fatigue, vol. 146, p. 106138, May 2021, doi: 10.1016/j.ijfatigue.2020.106138.
 
12.
T. Amla and N. Chawla, “Finite Element Method Analysis of Fatigue and Damage in Low-Temperature-Sintered Nano-silver Soldered Joints,” J. Electron. Mater., vol. 52, no. 2, pp. 760–772, Feb. 2023, doi: 10.1007/s11664-022-10097-9.
 
13.
J. Heilmann, B. Wunderle, U. Zschenderlein, C. Wille, and K. Pressel, “Physics of failure based lifetime modelling for sintered silver die attach in power electronics: Accelerated stress testing by isothermal bending and thermal shock in comparison,” Microelectronics Reliability, vol. 145, p. 114973, Jun. 2023, doi: 10.1016/j.microrel.2023.114973.
 
14.
S. M. Zaharia, “The methodology of fatigue lifetime prediction and validation based on accelerated reliability testing of the rotor pitch links,” Eksploatacja i Niezawodnosc-Maintenance and Reliability, vol. 21, no. 4, pp. 638–644, Dec. 2019, doi: 10.17531/ein.2019.4.13.
 
15.
Y. Liu, Y. Wang, Z. Fan, Z. Hou, S. Zhang, and X. Chen, “Lifetime prediction method for MEMS gyroscope based on accelerated degradation test and acceleration factor model,” Eksploatacja i Niezawodność – Maintenance and Reliability, vol. 22, no. 2, pp. 221–231, Jun. 2020, doi: 10.17531/ein.2020.2.5.
 
16.
A. Chudzik and B. Warda, “Fatigue life prediction of a radial cylindrical roller bearing subjected to a combined load using FEM,” Eksploatacja i Niezawodność – Maintenance and Reliability, vol. 22, no. 2, pp. 212–220, Jun. 2020, doi: 10.17531/ein.2020.2.4.
 
17.
M. Kuna and S. Roth, “General remarks on cyclic cohesive zone models,” Int J Fract, vol. 196, no. 1, pp. 147–167, Nov. 2015, doi: 10.1007/s10704-015-0053-y.
 
18.
H. Yuan and X. Li, “Critical remarks to cohesive zone modeling for three-dimensional elastoplastic fatigue crack propagation,” Engineering Fracture Mechanics, vol. 202, pp. 311–331, Oct. 2018, doi: 10.1016/j.engfracmech.2018.03.018.
 
19.
Y.-H. Choi and H.-G. Kim, “Development of a Cohesive Zone Model for Fatigue Crack Growth,” Multiscale Sci. Eng., vol. 2, no. 1, pp. 42–53, Mar. 2020, doi: 10.1007/s42493-020-00034-5.
 
20.
X. Xi, S. Yang, C. I. McDermott, Z. K. Shipton, A. Fraser-Harris, and K. Edlmann, “Modelling Rock Fracture Induced By Hydraulic Pulses,” Rock Mech Rock Eng, vol. 54, no. 8, pp. 3977–3994, Aug. 2021, doi: 10.1007/s00603-021-02477-0.
 
21.
K. L. Roe and T. Siegmund, “An irreversible cohesive zone model for interface fatigue crack growth simulation,” Engineering Fracture Mechanics, vol. 70, no. 2, pp. 209–232, Jan. 2003, doi: 10.1016/S0013-7944(02)00034-6.
 
22.
S. Maiti and P. H. Geubelle, “A cohesive model for fatigue failure of polymers,” Engineering Fracture Mechanics, vol. 72, no. 5, pp. 691–708, Mar. 2005, doi: 10.1016/j.engfracmech.2004.06.005.
 
23.
R. Wang, Y. Liu, J. Mao, Z. Liu, and D. Hu, “Cyclic cohesive zone model damage parameter acquisition for fatigue crack growth considering crack closure effect,” International Journal of Fatigue, vol. 163, p. 107021, Oct. 2022, doi: 10.1016/j.ijfatigue.2022.107021.
 
24.
S. Roth, G. Hütter, and M. Kuna, “Simulation of fatigue crack growth with a cyclic cohesive zone model,” Int J Fract, vol. 188, no. 1, pp. 23–45, Jul. 2014, doi: 10.1007/s10704-014-9942-8.
 
25.
S. Roth and M. Kuna, “Prediction of size-dependent fatigue failure modes by means of a cyclic cohesive zone model,” International Journal of Fatigue, vol. 100, pp. 58–67, Jul. 2017, doi: 10.1016/j.ijfatigue.2017.01.044.
 
26.
A. Skar, P. N. Poulsen, and J. F. Olesen, “General cracked-hinge model for simulation of low-cycle damage in cemented beams on soil,” Engineering Fracture Mechanics, vol. 175, pp. 324–338, Apr. 2017, doi: 10.1016/j.engfracmech.2017.01.016.
 
27.
X. Xi and S. Yang, “A non-linear cohesive zone model for low-cycle fatigue of quasi-brittle materials,” Theoretical and Applied Fracture Mechanics, vol. 122, p. 103641, Dec. 2022, doi: 10.1016/j.tafmec.2022.103641.
 
28.
F. Hosseinabadi, S. Chakraborty, S. K. Bhoi, G. Prochart, D. Hrvanovic, and O. Hegazy, “A Comprehensive Overview of Reliability Assessment Strategies and Testing of Power Electronics Converters,” IEEE Open Journal of Power Electronics, vol. 5, pp. 473–512, 2024, doi: 10.1109/OJPEL.2024.3379294.
 
29.
Z. Zhang et al., “Impact Analysis of Microscopic Defect Types on the Macroscopic Crack Propagation in Sintered Silver Nanoparticles,” CMES, vol. 139, no. 1, pp. 441–458, 2023, doi: 10.32604/cmes.2023.043616.
 
30.
H. Mughrabi, “Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage,” Metall Mater Trans B, vol. 40, no. 4, pp. 431–453, Aug. 2009, doi: 10.1007/s11663-009-9240-4.
 
31.
C. Chen et al., “Self-healing of cracks in Ag joining layer for die-attachment in power devices,” Applied Physics Letters, vol. 109, no. 9, p. 093503, Sep. 2016, doi: 10.1063/1.4962333.
 
32.
Y. Su, Z. Shen, X. Long, C. Chen, L. Qi, and X. Chao, “Gaussian filtering method of evaluating the elastic/elasto-plastic properties of sintered nanocomposites with quasi-continuous volume distribution,” Materials Science and Engineering: A, vol. 872, p. 145001, May 2023, doi: 10.1016/j.msea.2023.145001.
 
33.
R. Hill, “Elastic properties of reinforced solids: Some theoretical principles,” Journal of the Mechanics and Physics of Solids, vol. 11, no. 5, pp. 357–372, Sep. 1963, doi: 10.1016/0022-5096(63)90036-X.
 
34.
Z. Xia, Y. Zhang, and F. Ellyin, “A unified periodical boundary conditions for representative volume elements of composites and applications,” International Journal of Solids and Structures, vol. 40, no. 8, pp. 1907–1921, Apr. 2003, doi: 10.1016/S0020-7683(03)00024-6.
 
35.
S. L. Omairey, P. D. Dunning, and S. Sriramula, “Development of an ABAQUS plugin tool for periodic RVE homogenisation,” Engineering with Computers, vol. 35, no. 2, pp. 567–577, Apr. 2019, doi: 10.1007/s00366-018-0616-4.
 
36.
Y. J. Wang and C. Q. Ru, “Determination of two key parameters of a cohesive zone model for pipeline steels based on uniaxial stress-strain curve,” Engineering Fracture Mechanics, vol. 163, pp. 55–65, Sep. 2016, doi: 10.1016/j.engfracmech.2016.06.017.
 
37.
K. Kendall, “New theory explaining Griffith strength results on nano-cracked glass fibres,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 380, no. 2232, p. 20210348, Aug. 2022, doi: 10.1098/rsta.2021.0348.
 
38.
Y. Dai, Y. Li, Z. Zan, and F. Qin, “Bondline thickness effect on fracture and cohesive zone model of sintered nano silver adhesive joints under end notched flexure tests,” Fatigue & Fracture of Engineering Materials & Structures, vol. 46, no. 6, pp. 2062–2079, 2023, doi: 10.1111/ffe.13981.
 
39.
Y. Huo and C. C. Lee, “The growth and stress vs. strain characterization of the silver solid solution phase with indium,” Journal of Alloys and Compounds, vol. 661, pp. 372–379, Mar. 2016, doi: 10.1016/j.jallcom.2015.11.212.
 
40.
X. Long, Q. P. Jia, Z. Li, and S. X. Wen, “Reverse analysis of constitutive properties of sintered silver particles from nanoindentations,” International Journal of Solids and Structures, vol. 191–192, pp. 351–362, May 2020, doi: 10.1016/j.ijsolstr.2020.01.014.
 
41.
X. Long, Q. Jia, Z. Shen, M. Liu, and C. Guan, “Strain rate shift for constitutive behaviour of sintered silver nanoparticles under nanoindentation,” Mechanics of Materials, vol. 158, p. 103881, Jul. 2021, doi: 10.1016/j.mechmat.2021.103881.
 
42.
X. Long et al., “Mechanical behaviour of sintered silver nanoparticles reinforced by SiC microparticles,” Materials Science and Engineering: A, vol. 744, pp. 406–414, Jan. 2019, doi: 10.1016/j.msea.2018.12.015.
 
43.
D. Yu, X. Chen, G. Chen, G. Lu, and Z. Wang, “Applying Anand model to low-temperature sintered nanoscale silver paste chip attachment,” Materials & Design, vol. 30, no. 10, pp. 4574–4579, Dec. 2009, doi: 10.1016/j.matdes.2009.04.006.
 
44.
C. Chen, C. Choe, D. Kim, and K. Suganuma, “Lifetime Prediction of a SiC Power Module by Micron/Submicron Ag Sinter Joining Based on Fatigue, Creep and Thermal Properties from Room Temperature to High Temperature,” J. Electron. Mater., vol. 50, no. 3, pp. 687–698, Mar. 2021, doi: 10.1007/s11664-020-08410-5.
 
45.
X. Chen, R. Li, K. Qi, and G.-Q. Lu, “Tensile Behaviors and Ratcheting Effects of Partially Sintered Chip-Attachment Films of a Nanoscale Silver Paste,” J. Electron. Mater., vol. 37, no. 10, pp. 1574–1579, Oct. 2008, doi: 10.1007/s11664-008-0516-2.
 
46.
G. Chen and X. Zhao, “Constitutive modelling on the whole-life uniaxial ratcheting behavior of sintered nano-scale silver paste at room and high temperatures,” Microelectronics Reliability, vol. 80, pp. 47–54, Jan. 2018, doi: 10.1016/j.microrel.2017.11.010.
 
47.
A. Turon, C. G. Dávila, P. P. Camanho, and J. Costa, “An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models,” Engineering Fracture Mechanics, vol. 74, no. 10, pp. 1665–1682, Jul. 2007, doi: 10.1016/j.engfracmech.2006.08.025.
 
48.
N. Moës and T. Belytschko, “Extended finite element method for cohesive crack growth,” Engineering Fracture Mechanics, vol. 69, no. 7, pp. 813–833, May 2002, doi: 10.1016/S0013-7944(01)00128-X.
 
49.
A. Carpinteri, P. Cornetti, F. Barpi, and S. Valente, “Cohesive crack model description of ductile to brittle size-scale transition: dimensional analysis vs. renormalization group theory,” Engineering Fracture Mechanics, vol. 70, no. 14, pp. 1809–1839, Sep. 2003, doi: 10.1016/S0013-7944(03)00126-7.
 
50.
C.-Y. Hui, J. A, S. J. Bennison, and J. D. Londono, “Crack blunting and the strength of soft elastic solids,” Proc. R. Soc. Lond. A, vol. 495, pp. 1489–1516, Jun. 2003, doi: 10.1098/rspa.2002.1057.
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top