RESEARCH PAPER
Research and Reliability Analysis on the Impact of Biomimetic Groove Group Arrangement Structures on the Sealing Performance of Sealing Rings
More details
Hide details
1
School of Metrology Measurement and Instrument, Jiliang University, Hangzhou 310018, China.
2
School of Energy Engineering, Zhejiang University, Hangzhou 310027, China
3
Zhijiang College, Zhejiang University of Technology, Shaoxing 312030, China
Submission date: 2024-12-23
Final revision date: 2025-02-21
Acceptance date: 2025-03-30
Online publication date: 2025-04-02
Publication date: 2025-04-02
Eksploatacja i Niezawodność – Maintenance and Reliability 2025;27(4):203544
HIGHLIGHTS
- The exploration and analysis of the reliability of sealing performance of biomimetic non-smooth surface structures applied to sealing rings.
- A Comparative Study of Biomimetic Grooved Seal Rings and Smooth Surface Seal Rings.
- A Comparative Study on the Internal Flow Field of Centrifugal Pumps with Sealing Rings of Different Biomimetic Arrangement Structures.
KEYWORDS
TOPICS
ABSTRACT
By analyzing the surface structures of biological organisms and extracting various biomimetic circular groove non-smooth surface structures, the sealing ring in the centrifugal pump is used as a carrier to explore the reliability of the application of biomimetic non-smooth surface structures in sealing performance. A computational model is established to numerically simulate centrifugal pumps equipped with different biomimetic circular groove structures for sealing rings. By comparing and analyzing the pump characteristic curves, internal flow fields, and leakage characteristics of biomimetic circular groove structures with different groove group arrangements,The study found that when the groove group radius is 1°, the changes in the head and efficiency of the centrifugal pump are relatively minor. At this time, the centrifugal pump with a biomimetic circular groove structure sealing ring applied under this circular groove structure can achieve the minimum leakage and maximum volumetric efficiency, demonstrating good sealing performance reliability.
FUNDING
This study was supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY22E050015), and the Fundamental Research Funds for the Provincial Universities of Zhejiang (2023YW88).
REFERENCES (31)
1.
Barthlott W, Rafiqpoor M D, Erdelen W R. Bionics and biodiversity-bio-inspired technical innovation for a sustainable future. SFB-TRR 141 Public Conference on Biological Design and Integrative Structures - Analysis, Simulation and Implementation in Architecture, Stuttgart, Germany. Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures 2016; 9: 11-55, DOI:10.1007/978-3-319-46374-2_3.
2.
Wang D F, Chen D D, Chen Z Y. Recent progress in 3D printing of bioinspired structures. Frontiers in Materials 2023; 7: 286, DOI:10.3389/fmats.2020.00286.
3.
Ren L Q, Yang Z J, Han Z W. Non-smooth wearable surfaces of living creatures and their bionic application. Transactions of the Chinese Society for Agricultural Machinery 2005; 36(7): 144-147.
4.
Gu Y Q, Qiu Q F, Ren Y, Ma L B, Ding H X, Hu C X, Wu D H, Mou J G. Cavitation flow of hydrofoil surface and turbulence model applicability analysis. International Journal of Mechanical Sciences 2024; 277: 109515, DOI:10.1016/j.ijmecsci.2024.109515.
5.
Qiu Q F, Gu Y Q, Ma L B, Hu C X, Ding H X, Wu D H, Mou J G, Wu Z X. Study of non-constant local cavitation suppression in micro-wedge structure. Physics of Fluids 2024; 36(1): 015150, DOI:10.1063/5.0191165.
6.
Gu Y Q, Yin Z F, Yu S W, He C D, Wang W T, Zhang J J, Wu D H, Mou J G, Ren Y. Suppression of unsteady partial cavitation by a bionic jet. International Journal of Multiphase Flow 2023; 164: 104466, DOI:10.1016/j.ijmultiphaseflow.2023.104466.
7.
Zhang X, Jiang J B, Peng X D, Ni Z J. Experimental and numerical simulation study on the influence of structural factors on the leakage characteristics of clearance seals. Flow Measurement and Instrumentation 2023; 94: 102465, DOI:10.1016/j.flowmeasinst.2023.102465.
8.
Zhang H G, Aa K, Wu Y H, Chu W L, Tan F. Mechanism of affecting ability of casing treatment to improve stall margin with varying axial position of circumferential grooves. Journal of Propulsion Technology 2016; 37(12): 2296-2302, DOI:10.13675/j.cnki.tjjs.2016.12.012.
9.
Zhou G W, Mi X W, Wang J X, Hu R K. Experimental comparison between the Stribeck curves of water lubricated rubber bearing with straight and spiral grooves. Industrial Lubrication and Tribology 2018; 70(7): 1326-1330, DOI:10.1108/ILT-10-2017-0296.
10.
Zhang S D. Effect of groove structure on lubrication performance of water-lubricated stern tube bearings. Lubricants 2023;11(9): 374, DOI:10.3390/lubricants11090374.
11.
He T, Zhang Q Q, Yan Y, Dong J T, Zhou P. Numerical simulation of a new designed mechanical seals with spiral groove structures. Lubricants 2023; 11(2): 70, DOI:10.3390/lubricants11020070.
12.
Wang S Q, Li L, Sun W G, Wainwright D, Wang H, Zhao W, Chen B H, Chen Y F, Wen L. Detachment of the remora suckerfish disc: kinematics and a bio-inspired robotic model. Bioinspiration & Biomimetics 2020, 15(5), 056018, DOI:10.1088/1748-3190/ab9418.
13.
Cohen K E , Tobalske B W, Crandell K E and Shadwick R E. Sucker with a fat lip: the soft tissues underlying the viscoelastic grip of remora adhesion. Journal of Anatomy. 2020; 237(4): 643-654, DOI:10.1111/joa.13227.
14.
Xi P, Cong Q, Xu J, Sun L. Surface movement mechanism of abalone and underwater adsorbability of its abdominal foot. Bioinspired Biomimetic and Nanobiomaterials 2019; 8(4): 1800044, DOI:10.1680/jbibn.18.00044.
15.
Xi P, Ye S B, Cong Q. Abalone adhesion: the role of various adhesion forces and their proportion to total adhesion force. PLOS One 2023; 18(6): e0286567, DOI:10.1371/journal.pone.0286567.
16.
Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: an inspiration for biomimetics. Progress in Materials Science 2009; 54(2): 137-178, DOI:10.1016/j.pmatsci.2008.07.003.
17.
Solga A, Cerman Z, Striffle B F, Spaeth M, Barthlott W. The dream of staying clean: Lotus and biomimetic surfaces. Bioinspiration & Biomimetics 2007; 2(4): S126, DOI:10.1088/1748-3182/2/4/s02.
18.
Cremaldi J C, Bhushan B. Bioinspired self-healing materials: lessons from nature. Beilstein Journal of Nanotechnology 2018; 9: 907- 935, DOI:10.3762/bjnano.9.85.
19.
Gu Y Q, Ma L B, Yan M H, He C D, Zhang J J, Mou J G, Wu D H, Ren Y. Strategies for improving friction behavior based on carbon nanotube additive materials. Tribology International 2022; 176: 107875, DOI:10.1016/j.triboint.2022.108165.
20.
Hao M M, Zhou R, Sun P T, Wang Z M, Ma T, Ren B J. Experimental study on friction characteristics of contact mechanical seal in start-up and stop stages. Lubrication Engineering 2023; 48(9): 41-46, DOI:10.3969/j.issn.0254-0150.2023.09.005.
21.
Yan N, Wang X H, Wu X D, Zhu J W. Study on the form of sealing ring and its sealing characteristics of centrifugal pump. 4th IAHR Asian Working Group Symposium on Hydraulic Machinery and Systems, Kashgar, China. Journal of Physics: Conference Series 2024, 2752(1): 012117, DOI:10.1088/1742-6596/2752/1/012117.
22.
Wang Y, Zhang X. Effect of clearance of impeller wear-rings on efficiency of low specific speed centrifugal pump. Drainage and Irrigation Machinery 2008; 26(6): 27-30.
23.
Wang Y. Study on the leakage loss of volume of the wear-ring of the centrifugal pump. Hangzhou: Zhejiang University of Technology 2015.
24.
Fan J X. The adhesion structure of sinogastromyzon and its high-performance adhesion mechanism. Changchun: Jilin University 2020.
25.
Qin L G, Sun H J, Yang H, Zeng Q F, Dong G N. Numerical simulation on drag reduction performance of shark skin with denticle structures. China Sciencepaper 2019; 14(12): 1271-1277. DOI: 10.3969/j.issn.2095-2783.2019.12.001.
26.
Barrio R, Fernández J, Blanco E, Parrondo J. Estimation of radial load in centrifugal pumps using computational fluid dynamics. European Journal of Mechanics-B/Fluids 2011; 30(3): 316-324, DOI: 10.1016/j.euromechflu.2011.01.002.
27.
Song X G, Park J H, Kim S G, Park Y C. Performance comparison and erosion prediction of jet pumps by using a numerical method. Mathematical and Computer Modelling 2013; 57(1-2): 245-253, DOI: 10.1016/j.mcm.2011.06.040.
28.
Shaheed R, Mohammadian A, Gildeh H K. A comparison of standard k-ε and realizable k-ε turbulence models in curved and confluent channels. Environmental Fluid Mechanics 2019, 19(2): 543-568, DOI:10.1007/s10652-018-9637-1.
29.
Jia X Q, Zhang Y, Lv H, Zhu Z C. Study on external performance and internal flow characteristics in a centrifugal pump under different degrees of cavitation. Physics of Fluids 2023; 35(1): 014104, DOI:10.1063/5.0133377.
30.
Stawiński Ł, Kosucki A, Cebulak M, Górski A G V, Grala M. Investigation of the influence of hydraulic oil temperature on the variable-speed pump performance. Eksploatacja i Niezawodność - Maintenance and Reliability 2022; 24(2): 289-296. DOI:10.17531/ein.2022.2.10.
31.
Chew J W, Gao F, Palermo D M. Flow mechanisms in axial turbine rim sealing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2019; 233(23-24): 7637-7657, DOI:10.1177/0954406218784612.