Search for Author, Title, Keyword
RESEARCH PAPER
Predictive maintenance of belt conveyor idlers based on measurements, analytical calculations and decision-making algorithms
 
More details
Hide details
1
Silesian University of Technology, Poland
 
2
Cracow University of Technology, Poland
 
 
Submission date: 2024-11-13
 
 
Final revision date: 2024-12-30
 
 
Acceptance date: 2025-02-19
 
 
Online publication date: 2025-04-02
 
 
Publication date: 2025-04-02
 
 
Corresponding author
Przemysław Rumin   

Silesian University of Technology, Poland
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2025;27(4):202096
 
HIGHLIGHTS
  • An innovative algorithm is proposed to improve belt conveyors maintenance decisions.
  • An novel solution as part of the idea of industry 4.0 and the concept of a digital twin.
  • Conveyor geometry and measurements were used to optimize models.
  • Based on measurements and simulations the accuracy of the method was demonstrated.
KEYWORDS
TOPICS
ABSTRACT
Due to the size and complicated geometry of modern belt conveyor installations and, consequently, the number of idlers installed, preventing failures is one of the biggest challenges. The research is based on the study of a unique belt conveyor of considerable length which is located in mountainous terrain. The study proposes an innovative algorithm that supports decision-making during inspections of conveyor idlers and an innovative use of existing measurement to estimate its remaining lifetime. The biggest challenge solved in the article is the further development of existing proposals with the possibility of adapting the theoretical models while also considering the variable measurement palette and the influence of the conveyor’s operating parameters. Additionally, by utilizing the adapted models, the article provides tools for determining optimal intervals between inspections. The article presents measurements and calculations of the tested conveyor as well as simulations confirming the validity of the proposed algorithm.
REFERENCES (36)
1.
Pajer G, Kurth F. Stetigförderer. VEB Verlag Technik / Berlin; 1967. 408 p. (Fördertechnik).
 
2.
Vasić M, Stojanović B, Blagojević M. Failure analysis of idler roller bearings in belt conveyors. Eng Fail Anal. 2020;117(August):104898, https://doi.org/10.1016/j.engf....
 
3.
Bortnowski P, Król R, Ozdoba M. Roller damage detection method based on the measurement of transverse vibrations of the conveyor belt. Eksploat i Niezawodn – Maint Reliab. 2022 Jun 23;24(3):510–21, https://doi.org/10.17531/ein.2....
 
4.
Morales A, Aqueveque P, Henriquez J, Saavedra Rodriguez F, Wiechmann E. A technology review of idler condition based monitoring systems for critical overland conveyors in open-pit mining applications. In 2017. p. 1–8, https://doi.org/10.1109/IAS.20....
 
5.
Liu X, Pang Y, Lodewijks G, He D. Experimental research on condition monitoring of belt conveyor idlers. Measurement . 2018;127(May):277–82, https://doi.org/10.1016/j.meas....
 
6.
Liu Y, Miao C, Li X, Ji J, Meng D. Research on the fault analysis method of belt conveyor idlers based on sound and thermal infrared image features. Measurement . 2021;186(September):110177, https://doi.org/10.1016/j.meas....
 
7.
Faria HD, Lizarralde F, Costa RR, Andrade RHR, Silva TH, Pereira RFS, et al. ROSI: a mobile robot for inspection of belt conveyor. IFAC-PapersOnLine . 2020;53(2):10031–6, https://doi.org/10.1016/j.ifac....
 
8.
Dąbek P, Krot P, Wodecki J, Zimroz P, Szrek J, Zimroz R. Measurement of idlers rotation speed in belt conveyors based on image data analysis for diagnostic purposes. Measurement . 2022 Oct;202:111869, https://doi.org/10.1016/j.meas....
 
9.
Skoczylas A, Stefaniak P, Gryncewicz W, Rot A. The Concept of an Intelligent Decision Support System for Ore Transportation in Underground Mine. Procedia Comput Sci . 2023;225:922–31, https://doi.org/10.1016/j.proc....
 
10.
Wijaya H, Rajeev P, Gad E. Distributed optical fibre sensor for infrastructure monitoring: Field applications. Opt Fiber Technol . 2021 Jul;64:102577, https://doi.org/10.1016/j.yoft....
 
11.
Wijaya H, Rajeev P, Gad E, Vivekanantham R. Automatic fault detection system for mining conveyor using distributed acoustic sensor. Measurement . 2022;187:110330, https://doi.org/10.1016/j.meas....
 
12.
Pan C, Liu X, Zhu H, Shan X, Sun X. Distributed optical fiber vibration sensor based on Sagnac interference in conjunction with OTDR. Opt Express . 2017;25(17):20056.https://doi.org/10.1364/oe.25.....
 
13.
Schmidt B, Wang L. Cloud-enhanced predictive maintenance. Int J Adv Manuf Technol . 2018;99:5–13 ,https://doi.org/10.1007/s00170....
 
14.
Stefaniak P, Wodecki J, Zimroz R. Maintenance Management of Mining Belt Conveyor System Based on Data Fusion and Advanced Analytics. In: Applied Condition Monitoring . 2018. p. 465–76, https://doi.org/10.1007/978-3-....
 
15.
Wang H, Dai J xia. Research on the reliability of underground coal mine belt conveyor system. In: 2011 Second International Conference on Mechanic Automation and Control Engineering . 2011. p. 7636–9, https://doi.org/10.1109/MACE.2....
 
16.
Kiangala KS, Wang Z. An Effective Predictive Maintenance Framework for Conveyor Motors Using Dual Time-Series Imaging and Convolutional Neural Network in an Industry 4.0 Environment. IEEE Access . 2020;8:121033–49, https://doi.org/10.1109/ACCESS....
 
17.
Wang S, Guo W, Wen W, Chen R, Li T, Fang F. Research on belt conveyor monitoring and control system. Commun Comput Inf Sci . 2010;105 CCIS(PART 1):334–9, https://doi.org/10.1007/978-3-....
 
18.
Kiangala S, Wang Z. Initiating predictive maintenance for a conveyor motor in a bottling plant using industry 4.0 concepts. Int J Adv Manuf Technol . 2018;97:1–21, https://doi.org/10.1007/s00170....
 
19.
Yang C, Bu L, Chen B. Energy modeling and online parameter identification for permanent magnet synchronous motor driven belt conveyors. Measurement . 2021;178:109342, https://doi.org/10.1016/j.meas....
 
20.
Yuan C, Ee J, Heng C, Kumar K, Hong W. Long-term predictive maintenance system with application and commercialization to industrial conveyors. In 2024. p. 179–91, https://doi.org/10.1016/B978-0....
 
21.
Molnár V, Fedorko G, Andrejiová M, Grinc A. Online monitoring of a pipe conveyor . Part I : Measurement and analysis of selected operational parameters. 2016;94:364–71, https://doi.org/10.1016/j.meas....
 
22.
Molnár V, Fedorko G, Andrejiová M, Grinc A. Online monitoring of pipe conveyors part II : Evaluation of selected operational parameters for the design of expert system. 2017;104:1–11, https://doi.org/10.1016/j.meas....
 
23.
Jurdziak L, Błażej R, Kirjanów-Błażej A, Rzeszowska A, Kostrzewa P. Improving the effectiveness of the DiagBelt+ diagnostic system - analysis of the impact of measurement parameters on the quality of signals. Eksploat i Niezawodn – Maint Reliab . 2024;26(3), https://doi.org/10.17531/ein/1....
 
24.
Liu J, Fu S, Liu F, Cheng X A. Intelligent fault diagnosis of belt conveyor rollers using a polarKNN algorithm with audio features. Engineering Failure Analysis. 2025;168:109101, https://doi.org/10.1016/j.engf....
 
25.
Dinh DH, Do P, Iung B. Multi-level opportunistic predictive maintenance for multi-component systems with economic dependence and assembly/disassembly impacts. Reliab Eng Syst Saf . 2022;217(September 2021):108055.https://doi.org/10.1016/j.ress....
 
26.
Levitin G, Xing L, Dai Y. Minimizing mission cost for production system with unreliable storage. Reliab Eng Syst Saf . 2022;227(July):108724, https://doi.org/10.1016/j.ress....
 
27.
Benkedjouh T, Medjaher K, Zerhouni N, Rechak S. Remaining useful life estimation based on nonlinear feature reduction and support vector regression. Eng Appl Artif Intell . 2013;26(7):1751–60, http://doi.org/10.1016/j.engap....
 
28.
Liu X, He D, Lodewijks G, Pang Y, Mei J. Integrated decision making for predictive maintenance of belt conveyor systems. Reliab Eng Syst Saf . 2019;188(March):347–51, https://doi.org/10.1016/j.ress....
 
29.
Hettler W. Beitrag zur Berechnung der Bewegungswiderstände von Gurtbandförderern mit dreiteiligen Tragrollenstationen.Dissertation Technische Hochschule Otto von Guericke Magdeburg. Technische Hochschule Otto von Guericke Magdeburg; 1975.
 
30.
Grimmer K. Zwei Ausgewählte Probleme der Bandfördertechnik (Teil 2): Über den Sturzwiderstand bei Bandförderanlagen, habilitationsschrift Universität Hannover. Universität Hannover; 1967.
 
31.
Gładysiewicz L. Przenośniki taśmowe: teoria i obliczenia . Oficyna Wydawnicza Politechniki Wrocławskiej; 2003, https://books.google.pl/books?....
 
32.
Limberg H. Untersuchung der trumbezogenen Bewegungswiderstände von Gurtförderanlagen. Dissertation Universität Hannover. Universität Hannover; 1988.
 
33.
Greune A. Energiesparende Auslegung von Gurtförderanlagen. Dissertation Universität Hannover. Universität Hannover; 1989.
 
34.
Molnar V, Fedorko G, Stehlíková B, Michalik P, Kopas M. Influence of tension and release in piped conveyor belt on change of normal contact forces in hexagonal idler housing for pipe conveyor loaded with material. Measurement . 2016;84, https://doi.org/10.1016/j.meas....
 
35.
Fedorko G, Ivanco V. Analysis of Force Ratios in Conveyor Belt of Classic Belt Conveyor. Procedia Eng . 2012;48:123–128, https://doi.org/10.1016/j.proe....
 
36.
Fedorko G, Molnár V, Vasiľ M, Salai R. Proposal of digital twin for testing and measuring of transport belts for pipe conveyors within the concept Industry 4.0. Meas J Int Meas Confed . 2021;174(January), https://doi.org/10.1016/j.meas....
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top