Search for Author, Title, Keyword
RESEARCH PAPER
Improving the reliability of industrial reactors by using differential neural network architecture in ultrasonic tomography
 
More details
Hide details
1
WSEI University, Poland
 
2
Research and Development Center, Netrix S.A., Poland
 
3
Lublin University of Technology, Poland
 
 
Submission date: 2025-06-29
 
 
Final revision date: 2025-07-18
 
 
Acceptance date: 2025-08-01
 
 
Online publication date: 2025-08-02
 
 
Publication date: 2025-08-02
 
 
Corresponding author
Tomasz Rymarczyk   

WSEI University, Poland
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2026;28(1):208883
 
HIGHLIGHTS
  • Innovative neural network structure with a differential layer.
  • A universal method suitable for various types of neural networks.
  • Achieved sharper reconstructions with enhanced structural detail and fidelity.
  • Validated on real-world reactor data using a 16-transducer UST system.
  • Suitable for industrial monitoring under limited and noisy measurement conditions.
KEYWORDS
TOPICS
ABSTRACT
Ultrasonic tomography (UST) represents a powerful non-invasive diagnostic technique for monitoring and analyzing internal processes within industrial reactors. Despite its potential, UST-based reconstructions are often challenged by the ill-posed nature of the inverse problem, limited measurements, and the presence of noise. To address these limitations, this study introduces a novel differential neural network architecture that enhances conventional deep learning models by incorporating a specialized differential layer. This layer processes two parallel input streams and operates on their residuals, thereby amplifying subtle variations in the data critical for accurate tomographic reconstructions. This study aims to empirically validate the concept of the efficacy of differentiated architecture. Reconstruction performance was evaluated using established quantitative metrics. Results demonstrate that models incorporating the differential layer consistently outperform their standard counterparts, delivering higher resolution, and superior noise robustness.
REFERENCES (47)
1.
Aghajanian S, Koulountzios P, Soleimani M et al. Insights into the Application of Ultrasound Tomography in the Precipitation of Calcium Carbonate. Chemical Engineering & Technology 2023; 46(11): 2273–2278, https://doi.org/10.1002/CEAT.2....
 
2.
Amrutha T. Industrial Monitoring System. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 2024. doi:10.48175/IJARSCT-19147, https://doi.org/10.48175/IJARS....
 
3.
Arnold W, Goebbels K, Kumar A. Ultrasonic Non-destructive Materials Characterization. Springer Series in Materials Science 2023; 329: 1–134, https://doi.org/10.1007/978-3-....
 
4.
Dorval V, Leymarie N, Imperiale A, Demaldent E. Multi-modal characterization of ultrasonic bulk wave properties in heterogeneous textured media through finite element computations. Journal of Physics: Conference Series 2024; 2904(1): 012005, https://doi.org/10.1088/1742-6....
 
5.
El-Abd M, Khanafer M, Darwiche A et al. A Machine Learning and IoT-Enabled Robot Swarm System for Pipeline Crack Detection. IoT 2024; (5): 951970, https://doi.org/10.20944/PREPR....
 
6.
Emerson J N, Marrero-Jackson E H, Nemets G A et al. Nuclear Reactor Pressure Vessel Welds: A Critical and Historical Review of Microstructures, Mechanical Properties, Irradiation Effects, and Future Opportunities. Materials & Design 2024; 244: 113134, https://doi.org/10.1016/J.MATD....
 
7.
Goncharsky A V., Romanov S Y, Seryozhnikov S Y. Artifacts of Reconstructed Images in Inverse Problems of Ultrasound Tomography in Models with Absorption. Lobachevskii Journal of Mathematics 2024; 45(7): 3051–3062, https://doi.org/10.1134/S19950....
 
8.
Graziano F, Coppola S, Vespini V et al. Exploring the Frontiers of Non-Destructive Techniques: Shearography, Ultrasound Laser and Thermography. EPJ Web of Conferences 2024; 309: 02008, https://doi.org/10.1051/EPJCON....
 
9.
Habib M K, Mohamed K. Machine Learning-Based Predictive Maintenance: Using CNN - LSTM network. 2023 IEEE International Conference on Mechatronics and Automation, ICMA 2023 2023: 2224–2229, https://doi.org/10.1109/ICMA57....
 
10.
Hu J, Li N, Wang L et al. Direct estimation of gas holdup in gas-liquid bubble column reactors using ultrasonic transmission tomography and artificial neural processing. Measurement Science and Technology 2022. doi:10.1088/1361-6501/AC5D78, https://doi.org/10.1088/1361-6....
 
11.
Ji Y, Yang S, Zhou K et al. Deep-learning approach for automated thickness measurement of epithelial tissue and scab using optical coherence tomography. Journal of Biomedical Optics 2022. doi:10.1117/1.JBO.27.1.015002, https://doi.org/10.1117/1.JBO.....
 
12.
Joshua N R, Aravind Raj S. Quality control in additive manufacturing: a review of traditional and advanced techniques. Engineering Research Express 2025. doi:10.1088/2631-8695/ADBC47, https://doi.org/10.1088/2631-8....
 
13.
Karapanagiotis C, Heimann J, Duffner E et al. Towards predictive maintenance of hydrogen pressure vessels based on multi-sensor data. e-Journal of Nondestructive Testing 2024. doi:10.58286/30513, https://doi.org/10.58286/30513.
 
14.
Kleman C, Anwar S, Liu Z et al. Full Waveform Inversion-Based Ultrasound Computed Tomography Acceleration Using Two-Dimensional Convolutional Neural Networks. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems 2023. doi:10.1115/1.4062092, https://doi.org/10.1115/1.4062....
 
15.
Kłosowski G, Rymarczyk T, Niderla K et al. Using an LSTM network to monitor industrial reactors using electrical capacitance and impedance tomography – a hybrid approach. Eksploatacja i Niezawodnosc 2023. doi:10.17531/EIN.2023.1.11, https://doi.org/10.17531/EIN.2....
 
16.
Korzeniewska E, Sekulska-Nalewajko J, Gocławski J et al. Evaluation of self-repair efficiency of polymers containing microcapsules using optical coherence tomography. Composite Structures 2025. doi:10.1016/J.COMPSTRUCT.2024.118525, https://doi.org/10.1016/J.COMP....
 
17.
Koulountzios P, Rymarczyk T, Soleimani M. A 4-D Ultrasound Tomography for Industrial Process Reactors Investigation. IEEE Transactions on Instrumentation and Measurement 2022. doi:10.1109/TIM.2022.3164166, https://doi.org/10.1109/TIM.20....
 
18.
Kozłowski E, Borucka A, Oleszczuk P, Jałowiec T. Evaluation of the maintenance system readiness using the semi-Markov model taking into account hidden factors. Eksploatacja i Niezawodnosc 2023. doi:10.17531/EIN/172857, https://doi.org/10.17531/EIN/1....
 
19.
Lei M, Zhang W, Zhang T et al. Improvement of low-frequency ultrasonic image quality using a enhanced convolutional neural network. Sensors and Actuators A: Physical 2024; 365: 114878, https://doi.org/10.1016/J.SNA.....
 
20.
Levin A I, Pecherskaya E A, Shepeleva J V. et al. Problems in the Implementation of Electrical Impedance Tomography. International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM 2023; 2023-June: 1360–1363, https://doi.org/10.1109/EDM583....
 
21.
Li Z, Zhang S, Dong F. Dynamic Behavior Analysis Based Process State Monitoring for Gas-liquid Two Phase Flow in Horizontal Pipe. Conference Record - IEEE Instrumentation and Measurement Technology Conference 2022. doi:10.1109/I2MTC48687.2022.9806630, https://doi.org/10.1109/I2MTC4....
 
22.
Lin Z, Zhang X, Nandi P et al. Correlative single-cell hard X-ray computed tomography and X-ray fluorescence imaging. Communications Biology 2024. doi:10.1038/S42003-024-05950-Y, https://doi.org/10.1038/S42003....
 
23.
Liu H, Tan C, Dong F. Absolute reconstruction of Ultrasonic Tomography for oil-water biphasic medium imaging using modified ray-tracing technique. Measurement: Sensors 2020; 7–9: 100023, https://doi.org/10.1016/J.MEAS....
 
24.
Liu H, Tan C, Dong F. Multi-frequency fusion ultrasonic tomography for gas-liquid two-phase distribution imaging. Measurement Science and Technology 2020. doi:10.1088/1361-6501/ABBEBD, https://doi.org/10.1088/1361-6....
 
25.
Ma Y ;, Jiang Y ;, Li C A et al. A Universal Model for Ultrasonic Energy Transmission in Various Media. Sensors 2024; 24(19): 6230, https://doi.org/10.3390/S24196....
 
26.
Meher S S, Kakran V. Predictive Maintenance of Industrial Equipments combining IoT and Data Science Techniques using Feed Forward Neural Network. 2024 Control Instrumentation System Conference: Guiding Tomorrow: Emerging Trends in Control, Instrumentation, and Systems Engineering, CISCON 2024 2024. doi:10.1109/CISCON62171.2024.10696859, https://doi.org/10.1109/CISCON....
 
27.
Pennati F, Angelucci A, Morelli L et al. Electrical Impedance Tomography: From the Traditional Design to the Novel Frontier of Wearables. Sensors 2023; 23(3): 1182, https://doi.org/10.3390/S23031....
 
28.
Rajpoot A K, Awasthi S, Naruka M S et al. Time Sequence Data Monitoring Method Based on Auto-Aligning Bidirectional Long and Short-Term Memory Network. A Practitioner’s Approach to Problem-Solving using AI 2024: 158–170, https://doi.org/10.2174/978981....
 
29.
Ren J, Li J, Liu C et al. Deep Learning With Physics-Embedded Neural Network for Full Waveform Ultrasonic Brain Imaging. IEEE Transactions on Medical Imaging 2024; 43(6): 2332–2346, https://doi.org/10.1109/TMI.20....
 
30.
Rza̧sa M R. Selection of optical tomography parameters for gas bubble shape analysis. Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa 2014; 35(1): 19–33, https://doi.org/10.2478/CPE-20....
 
31.
Rza̧sa M R. Measurement of parameters of the moving gas bubbles with the image tomograph. 11th IMEKO TC14 Symposium on Laser Metrology for Precision Measurement and Inspection in Industry, LMPMI 2014 2014: 247–252.
 
32.
Shin Y, Na K Y, Kim S E et al. LSTM-Autoencoder Based Detection of Time-Series Noise Signals for Water Supply and Sewer Pipe Leakages. Water 2024; 16(18): 2631, https://doi.org/10.3390/W16182....
 
33.
Sierra S, Wong J, Dawson K et al. Real Time Mechanical Integrity for Pressure Vessels and Other Critical Assets. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP 2022. doi:10.1115/PVP2022-84348, https://doi.org/10.1115/PVP202....
 
34.
Słoński M, Schabowicz K, Krawczyk E. Detection of flaws in concrete using ultrasonic tomography and convolutional neural networks. Materials 2020. doi:10.3390/MA13071557, https://doi.org/10.3390/MA1307....
 
35.
Song J, Yan R, Lu J et al. Research on oil and gas pipeline leak detection method based on 1DCNN-DBO-LSTM. Measurement Science and Technology 2024; 36(1): 016024, https://doi.org/10.1088/1361-6....
 
36.
Sunetcioglu S, Arsan T. Predictive Maintenance Analysis for Industries. 2024 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2024 2024: 344–347, https://doi.org/10.1109/BLACKS....
 
37.
Takiguchi T. Ultrasonic Tomographic Technique and Its Applications. Applied Sciences 2019; 9(5): 1005, https://doi.org/10.3390/APP905....
 
38.
Tan C, Li X, Liu H, Dong F. An ultrasonic transmission/reflection tomography system for industrial multiphase flow imaging. IEEE Transactions on Industrial Electronics 2019; 66(12): 9539–9548, https://doi.org/10.1109/TIE.20....
 
39.
Wajman R. The concept of 3D ECT system with increased border area sensitivity for crystallization processes diagnosis. Sensor Review 2021; 41(1): 35–45, https://doi.org/10.1108/SR-10-....
 
40.
Wajman R, Nowakowski J, Łukiański M, Banasiak R. Machine learning for two-phase gas-liquid flow regime evaluation based on raw 3D ECT measurement data. Bulletin of the Polish Academy of Sciences: Technical Sciences 2024. doi:10.24425/BPASTS.2024.148842, https://doi.org/10.24425/BPAST....
 
41.
Wang T, Yu C. Research on ultrasonic echo signal denoising via integration of adaptive variational mode decomposition algorithm and convolutional neural network. Insight: Non-Destructive Testing and Condition Monitoring 2024; 66(9): 567–575, https://doi.org/10.1784/INSI.2....
 
42.
Yang F, Mao Q, Shi M et al. Enhancing Ultrasound Imaging through Convolutional Neural Networks: A Health Informatics Approach. Health Informatics and Biomedical Engineering Applications 2024. doi:10.54941/AHFE1005073, https://doi.org/10.54941/AHFE1....
 
43.
Yang J, Wang F, Ren J. Noise Robust edge detection based on wavelet transform and convolutional neural networks. ACM International Conference Proceeding Series 2023: 691–697, https://doi.org/10.1145/364158....
 
44.
Zamiela C, Jiang Z, Stokes R et al. Deep Multi-Modal U-Net Fusion Methodology of Thermal and Ultrasonic Images for Porosity Detection in Additive Manufacturing. Journal of Manufacturing Science and Engineering 2023. doi:10.1115/1.4056873/1156667, https://doi.org/10.1115/1.4056....
 
45.
Zhang K, Entezari A. Convolutional Forward Models for X-Ray Computed Tomography. SIAM Journal on Imaging Sciences 2023; 16(4): 1953–1977, https://doi.org/10.1137/21M146....
 
46.
Zhang Y, Dai X, Tian Z et al. Liver motion tracking in ultrasound images using attention guided mask R-CNN with long-short-term-memory network. Proceedings of the SPIE 2022; 12038: 120380O, https://doi.org/10.1117/12.261....
 
47.
Chapter 7: Mixing. In Gurugubelli S, Marabathuni V J, Sarella PNK et al. (eds): A Text Book of Pharmaceutics for I Year Diploma in Pharmacy, ThinkPlus Pharma Publications: 2024. doi:10.69613/R2T3QC44, https://doi.org/10.69613/R2T3Q....
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top