Search for Author, Title, Keyword
RESEARCH PAPER
Experimental determination of lateral forces caused by bridge crane skewing during travelling
,
 
,
 
 
 
More details
Hide details
1
Faculty of Technical Sciences University of Novi Sad Trg Dositeja Obradovića 6, Novi Sad, Serbia
 
 
Publication date: 2018-03-31
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2018;20(1):90-99
 
KEYWORDS
ABSTRACT
Crane condition depends on the large number of variables randomly changing in time. Due to the large number of parameters, skewing forces have stochastic character. Though in standards treated as occasional loads, their dynamic action in certain cases can cause fatigue damage of the crane travelling mechanisms, structure and runway components. Current European Norms have left the question of skewing forces influence upon the fatigue damage occurrence unresolved. The paper presents an experimental determination of lateral forces acting on the vertical wheels of a bridge crane using two different solutions of transducers for the direct measurement on the wheels of the cranes in operation, without changing the way of lateral guiding. As an illustration, few records of the measured wheel lateral force vs. time are shown. Presentation of such records in the form of a loading spectrum (e.g. using the software nCode), obtained during long-lasting or continuous monitoring of cranes in operation, is the first step in finding the relevant answer to the previously unresolved question
REFERENCES (25)
1.
Crane Rail Inspection, Gantrex Technical Bulletin No. TB47; https://www.yumpu.com/en/docum... (access: April 08, 2016).
 
2.
Demag Laser-Mess-System zum präzisen Vermessen von Kranbahnen und Bodenschienen; https://wn.com/demag_laser-mes..._ und_bodenschienen (access: April 09, 2016).
 
3.
EN 13001-2:2014. Crane safety - General design - Load actions. Brussels: CEN, 2014.
 
4.
EN 13001-3-1:2012+A1:2013. Cranes - General Design - Limit States and proof competence of steel structure. Brussels: CEN, 2013.
 
5.
EN 13001-3-3:2014. Cranes - General design - Limit states and proof of competence of wheel/rail contacts. Brussels: CEN, 2014.
 
6.
EN 15011:2011+A1:2014. Cranes - Bridge and gantry cranes. CEN, 2014.
 
7.
FEM 1.001. Rules for the design of hoisting appliances - Booklet 2: Classification and loading on structures and mechanisms. Courbevoie: Fédération Européenne de la Manutention.
 
8.
Hannover H.-O. Untersuchung des Fahrverhaltens der Brückenkrane unter Berücksichtigung von Störgrößen. PhD thesis. Braunschweig:Fakultät für Maschinenbau und Elektrotechnik, 1970.
 
9.
Котельников В С, Шишков Н А. Аварийность и травматизм при эксплуатации грузоподъемных кранов. Москва: Федеральное государственное унитарное предприятие Научно технический центр по безопасности в промышленности Госгортехнадзора России, 2004.
 
10.
Kulka J, Mantic M, Fedorko G, Molnar V. Failure analysis of increased rail wear of 200 tons foundry crane truck. Engineering Failure Analysis 2016; 67: 1-14, https://doi.org/10.1016/j.engf....
 
11.
Кузнецов Е С. Oбоснование необходимости рихтовки рельсовых путей кранов мостового типа. Журнал ВСЕ КРАНЫ 2010; 3/33:22-25.
 
12.
Lee Y-L, Barkey M., Kang H-T. Metal Fatigue Analysis Handbook. London: Elsevier, 2012.
 
13.
Mitrović N, Kostić V, Petronijević M, Jeftenić B. Practical Implementation of Load Sharing and Anti Skew Controllers for Wide Span Gantry Crane Drives. Strojniški vestnik - Journal of Mechanical Engineering 2010; 56(3): 207-216.
 
14.
Musílek J. Příčné horizontální síly mezi mostovým jeřábem a jeřábovou drahou. PhD thesis. Praha: České vysoké učení technické v Praze - Fakulta stavební, 2008.
 
15.
Reducing crane wheel failures; http://www.hoistmagazine.com/f... (access: 09. 04. 2016.).
 
16.
Sanders D. Rechnerisches Modell und vergleichende experimentelle Untersuchung zur spurgeregelten Fahrt des Brückenkranes. PhD thesis. Darmstadt: Technische Hochschule, 1991.
 
17.
Scheffler M, Feyrer K, Matthias K. Fördermaschinen - Hebezeuge, Aufzüge, Flurförderzeuge. Braunschweig/Wiesbaden: Vieweg, 1998.
 
18.
Seeßelberg C. Kranbahnen - Bemessung und konstruktive Gestaltung. Berlin: Bauwerk Verlag, 2009.
 
19.
Seeßelberg C. Zum Entwurf von Kranbahnträgern für Laufkrane. FRILO - Magazin 2005; 20-30.
 
20.
Stevanov B, Zuber N, Šostakov R, Tešić Z, Bojić S, Georgijević M, Zelić A. Reengineering the Port Equipment Maintenance Process. International Journal of Industrial Engineering and Management 2016; 7(3): 103-109.
 
21.
Zuber N, Bajrić R. Application of artificial neural networks and principal component analysis on vibration signals for automated fault classification of roller element bearings. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18 (2): 299-306, https://doi.org/10.17531/ein.2....
 
22.
Tanasković D. Otpornost prema habanju i lomu reparaturno navarenih točkova kranskih dizalica. PhD thesis. Belgrade: Faculty of mechanical engineering, 2016.
 
23.
Thoß R. Steuerbare Einwirkungen auf Kranbahnen. Stahlbau 2011; 80(1): 39-45.
 
24.
Viiala O. Development of the guide roller system of portal gantry crane. Lappeenranta: Faculty of Technology, 2008.
 
25.
Żmuda J. Konstrukcje wsporcze dźwignic. Warszawa: Wydawnictwo Naukowe PWN, 2013.
 
 
CITATIONS (6):
1.
Detection of mechanical stress in the steel structure of a bridge crane
Leopold Hrabovský, Daniel Čepica, Karel Frydrýšek
Theoretical and Applied Mechanics Letters
 
2.
INCREASE OF OPERATING RELIABILITY OF THE TRAVEL WHEEL USING THE USE OF THE ELASTIC INSERTS
Nataliia Fidrovska, Evgen Slepuzhnikov, Oleksiy Larin, Ivan Varchenko, Voloymyr Lipovyi, Kostiantyn Afanasenko, Serhii Harbuz
EUREKA: Physics and Engineering
 
3.
Energy consumption and energy efficiency improvement of overhead crane’s mechanisms
Andrzej Kosucki, Łukasz Stawiński, Piotr Malenta, Jakub Zaczyński, Justyna Skowrońska
Eksploatacja i Niezawodność – Maintenance and Reliability
 
4.
Monte‐Carlo simulation‐based analysis for structural reliability of the crane rail beam under stochastic crane movements and irradiation conditions
Cheng Qian, Wenjuan Li, Yi Ren, Ziyang Hu, Lei Yang, Xiaolong Zhao, Xiaoli Wang
Quality and Reliability Engineering International
 
5.
Application of Sensors for Incorrect Behavior Identification in a Transport System
Martin Mantič, Jozef Kuľka, Robert Grega, Matúš Virostko, Melichar Kopas
Sensors
 
6.
Features of construction of truck cranes on the special wheeled platforms
Roman Zinko, Mykhailo Burian, Vitalii Faryma
Avtomatizacìâ virobničih procesìv u mašinobuduvannì ta priladobuduvannì
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top