Search for Author, Title, Keyword
RESEARCH PAPER
Reliability of Unmanned Aerial Vehicles in the Context of Selected Factors
,
 
 
 
More details
Hide details
1
Poznan University of Technology, Poland
 
2
MILITARY UNIVERSITY OF TECHNOLOGY, Poland
 
These authors had equal contribution to this work
 
 
Submission date: 2025-05-08
 
 
Final revision date: 2025-05-20
 
 
Acceptance date: 2025-09-04
 
 
Online publication date: 2025-10-19
 
 
Publication date: 2025-10-19
 
 
Corresponding author
Piotr Gładysz   

Poznan University of Technology, Poland
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2026;28(1):210312
 
HIGHLIGHTS
  • There is a relationship between the type of failure and the time of its occurrence.
  • Bad weather conditions affect the time of UAV failure.
  • Type of failure and the time of its occurrence is information useful in operating the UAV.
KEYWORDS
TOPICS
ABSTRACT
This article focuses on the study of the reliability of unmanned aerial vehicles (UAVs), whose role in various sectors, including the rescue sector, is dynamically increasing. The aim of the study was to analyze the key factors affecting UAV failure rate and determine their impact on the time to failure. Statistical analysis and simulations were conducted within the study, based on collected data, to investigate the relationship between the type of failure and the system's time to failure. The results of the analyses showed that the time to failure differs significantly depending on the cause, particularly for battery-related failures. It was also found that unfavorable atmospheric conditions, such as strong wind, high temperature, and high humidity, significantly shorten the system's time to failure compared to normal conditions, with this effect being similar for different types of unfavorable weather.
REFERENCES (46)
1.
Al-Haddad, L. A., Giernacki, W., Shandookh, A. A., Jaber, A. A., Puchalski, R. Vibration Signal Processing for Multirotor UAVs Fault Diagnosis: Filtering or Multiresolution Analysis?. Eksploatacja i Niezawodność – Maintenance and Reliability 2024; 26(1), https://doi.org/10.17531/ein/1....
 
2.
Szczupak, P., Kossowski, T., Szostek, K., Szczupak, M. Tests of pulse interference from lightning discharges occurring in unmanned aerial vehicle housings made of carbon fibers. Eksploatacja i Niezawodność – Maintenance and Reliability 2025; 27(1), https://doi.org/10.17531/ein/1....
 
3.
Kozłowski, E., Borucka, A., Oleszczuk, P., Leszczyński, N. Evaluation of readiness of the technical system using the semi-Markov model with selected sojourn time distributions. Eksploatacja i Niezawodność – Maintenance and Reliability 2024; 26(4), https://doi.org/10.17531/ein/1....
 
4.
Jaroń A, Borucka A, Deliś P, Sekrecka A. An Assessment of the Possibility of Using Unmanned Aerial Vehicles to Identify and Map Air Pollution from Infrastructure Emissions. Energies 2024; 17(3): 577, https://doi.org/10.3390/en1703....
 
5.
Mohsan, S. A. H., Othman, N. Q. H., Li, Y., Alsharif, M. H., & Khan, M. A. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intelligent service robotics 2023; 16(1): 109-137,.
 
7.
Manning, S. D., Rash, C. E., Leduc, P. A., Noback, R. K., & McKeon, J. The role of human causal factors in US Army unmanned aerial vehicle accidents. US Army 2004; 20040409, 013, https://doi.org/10.21236/ADA42....
 
8.
Oncu, M., & Yildiz, S. An analysis of human causal factors in unmanned aerial vehicle (uav) accidents. Doctoral dissertation, Monterey, California: Naval Postgraduate School: 2014, https://doi.org/10.21236/ADA62....
 
9.
Ghasri, M., & Maghrebi, M. Factors affecting unmanned aerial vehicles' safety: A post-occurrence exploratory data analysis of drones' accidents and incidents in Australia. Safety science 2021; 139: 105273, https://doi.org/10.1016/j.ssci....
 
10.
Shafiee, M., Zhou, Z., Mei, L., Dinmohammadi, F., Karama, J., & Flynn, D. Unmanned Aerial Drones for Inspection of Offshore Wind Turbines: A Mission-Critical Failure Analysis. Robotics 2021; 10(1): 26, https://doi.org/10.3390/roboti....
 
11.
Grindley, B., Phillips, K., Parnell, K. J., Cherrett, T., Scanlan, J., & Plant, K. L. Over a decade of UAV incidents: A human factors analysis of causal factors. Applied Ergonomics 2024; 121: 104355, https://doi.org/10.1016/j.aper....
 
12.
Duffy, J. P., Cunliffe, A. M., DeBell, L., Sandbrook, C., Wich, S. A., Shutler, J. D., ... & Anderson, K. Location, location, location: considerations when using lightweight drones in challenging environments. Remote Sensing in Ecology and Conservation 2018; 4(1): 7-19, https://doi.org/10.1002/rse2.5....
 
13.
Haugse, S. Investigation of UAV related incidents and accidents. Master's thesis, UiT The Arctic University of Norway: 2022.
 
14.
Cabahug, J., & Eslamiat, H. Failure Detection in Quadcopter UAVs Using K-Means Clustering 2022; 22(16): 6037, https://doi.org/10.3390/s22166....
 
15.
Tian, H., & Wang, F. Research on Fault-Tolerant Control Technology for Large UAV with Full Engine Failure. Proceedings of 4th 2024 International Conference on Autonomous Unmanned Systems (4th ICAUS 2024): Volume IV. Vol. 1377. Springer Nature: 2025, http://dx.doi.org/10.1007/978-....
 
16.
Wanner, D., Hashim, H. A., Srivastava, S., & Steinhauer, A. UAV avionics safety, certification, accidents, redundancy, integrity, and reliability: a comprehensive review and future trends. Drone Systems and Applications 2024; 12: 1-23, https://doi.org/10.1139/dsa-20....
 
17.
Xing, L., & Johnson, B. W. Reliability theory and practice for unmanned aerial vehicles. IEEE Internet of Things Journal 2022; 10(4): 3548-3566, https://doi.org/10.1109/JIOT.2....
 
18.
Shafiee, M., Zhou, Z., Mei, L., Dinmohammadi, F., Karama, J., & Flynn, D. (2021). Unmanned Aerial Drones for Inspection of Offshore Wind Turbines: A Mission-Critical Failure Analysis. Robotics 2021; 10(1): 26, https://doi.org/10.3390/roboti....
 
19.
Hedayati, M., Barzegar, A., & Rahimi, A. Fault Diagnosis and Prognosis of Satellites and Unmanned Aerial Vehicles: A Review. Applied Sciences 2024; 14(20): 9487, https://doi.org/10.3390/app142....
 
20.
Wang, D., Li, S., Xiao, G., Liu, Y., & Sui, Y. An exploratory study of autopilot software bugs in unmanned aerial vehicles. In Proceedings of the 29th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering: 2021: 20-31, https://doi.org/10.1145/346826....
 
21.
Di Sorbo, A., Zampetti, F., Visaggio, A., Di Penta, M., & Panichella, S. Automated identification and qualitative characterization of safety concerns reported in uav software platforms. ACM Transactions on Software Engineering and Methodology 2023; 32(3): 1-37, https://dl.acm.org/doi/10.1145....
 
22.
Sziroczak, D., Rohacs, D., & Rohacs, J. Review of using small UAV based meteorological measurements for road weather management. Progress in Aerospace Sciences 2022; 134: 100859, https://doi.org/10.1016/j.paer....
 
23.
Averyanova Y., Znakovskaja E. Weather Hazards Analysis for small UASs Durability Enhancement, 2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development (APUAVD), Kyiv, Ukraine: 2021: 41-44, doi: 10.1109/APUAVD53804.2021.9615440.
 
24.
Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones 2022; 6(6): 147, https://doi.org/10.3390/drones....
 
25.
López, B., Muñoz, J., Quevedo, F., Monje, C. A., Garrido, S., & Moreno, L. E. Path Planning and Collision Risk Management Strategy for Multi-UAV Systems in 3D Environments. Sensor 2021; 21(13): 4414, https://doi.org/10.3390/s21134....
 
26.
Li, Y., Ding, Q., Li, K., Valtchev, S., Li, S., & Yin, L. A survey of electromagnetic influence on UAVs from an EHV power converter stations and possible countermeasures. Electronics 2021; 10(6): 701, https://doi.org/10.3390/electr....
 
27.
Li, Y., Hu, M., Liang, M., Chen, S., Zhou, T., & Yuan, X. Study on the Effects of Ultra-Wideband Electromagnetic Pulses on Unmanned Aerial Vehicles. IEEE Transactions on Electromagnetic Compatibility 2024, http://dx.doi.org/10.1109/TEMC....
 
28.
Perz, R. Wielowymiarowe zagrożenia związane z bezzałogowymi systemami powietrznymi: badanie biomechanicznych, technicznych, operacyjnych i prawnych rozwiązań zapewniających bezpieczeństwo i ochronę. Archiwum Transportu 2024; 69(1): 91-111,.
 
29.
Nisser, T., & Westin, C. Human factors challenges in unmanned aerial vehicles (uavs): A literature review. School of Aviation of the Lund University, Ljungbyhed: 2006.
 
30.
Kasprzyk, P. J., & Konert, A. Reporting and investigation of Unmanned Aircraft Systems (UAS) accidents and serious incidents. Regulatory perspective. Journal of Intelligent & Robotic Systems 2021;103(1): 3, https://doi.org/10.1007/s10846....
 
31.
Clothier, R. A., Williams, B. P., & Hayhurst, K. J. Modelling the risks remotely piloted aircraft pose to people on the ground. Safety science 2018; 101: 33-47, https://doi.org/10.1016/j.ssci....
 
32.
Ghazali, M. H. M., & Rahiman, W. Vibration-based fault detection in drone using artificial intelligence. IEEE Sensors Journal 2022; 22(9): 8439-8448, https://doi.org/10.1109/JSEN.2....
 
33.
Iannace, G., Ciaburro, G., & Trematerra, A. Fault diagnosis for UAV blades using artificial neural network. Robotics 2019; 8(3): 59, https://doi.org/10.3390/roboti....
 
34.
Hentati, A. I., Fourati, L. C., Elgharbi, E., & Tayeb, S. Simulation tools, environments and frameworks for UAVs and multi-UAV-based systems performance analysis (version 2.0). International Journal of Modelling and Simulation 2023; 43(4): 474-490, http://dx.doi.org/10.1080/0228....
 
35.
Mishra, A., Pal, S., Malhi, G. S., & Singh, P. R. A. B. H. A. T. Structural analysis of UAV airframe by using FEM techniques: A review. International Journal of Advanced Science and Technology 2020; 29: 195-204.
 
36.
Salazar, J. C., Sanjuan Gómez, A., Nejjari Akhi-Elarab, F., & Sarrate Estruch, R. Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability. International journal of applied mathematics and computer science 2020; 30(1): 47-59, http://dx.doi.org/https://doi.....
 
37.
Salazar, S., Flores, J., González-Hernández, I., Rosales-Luengas, Y., & Lozano, R. Robust Control for a Slung-Mass Quadcopter Under Abrupt Velocity Changes. Applied Sciences 2024; 14(24): 11592, https://doi.org/10.3390/app142....
 
38.
Kruskal, W. H., & Wallis, W. A. Use of ranks in One-Criterion Variance Analysis. Journal of the American statistical Association 1952; 47(260): 583-621, https://doi.org/10.2307/228077....
 
39.
Kolmogorov A. Sulla determinazione empirica di una legge di distribuzione. Giorn Dell'inst Ital Degli Att 1993; 4: 89-91.
 
40.
Smirnov N. Table for estimating the goodness of fit of empirical distributions. Annals of Mathematical Statistics 1948; 19 (2): 279–281, https://doi.org/10.1214/aoms/1....
 
41.
Zakaria, S., Mahadi, M. R., Abdullah, A. F., & Abdan, K. (2019). Aerial platform reliability for flood monitoring under various weather conditions: A review 2019; 295-314, http://dx.doi.org/10.5194/ispr....
 
42.
Gao, M., Hugenholtz, C. H., Fox, T. A., Kucharczyk, M., Barchyn, T. E., & Nesbit, P. R. Weather constraints on global drone flyability. Scientific reports 2021; 11(1): 12092, http://dx.doi.org/10.5194/ispr....
 
43.
Omolara, A. E., Alawida, M., & Abiodun, O. I. (2023). Drone cybersecurity issues, solutions, trend insights and future perspectives: a survey. Neural computing and applications 2023; 35(31): 23063-23101, http://dx.doi.org/10.1007/s005....
 
44.
Jakubowski R., Orkisz M., Wołoszyn T.: Identification of the electric brushless motor characteristics, in Scientific aspects of unmanned mobile vehicle, Kielce University of Technology, Kielce: 2010.
 
45.
Budziłowicz, A. Zastosowanie Silników BLDC (ang. BrushLess Direct-Current motor) we współczesnych napędach elektrycznych i w motoryzacji. Autobusy: technika, eksploatacja, systemy transportowe 2015; 16(6): 49-52.
 
46.
Maciejewska, M., Kardach, M., Galant, M., & Fuć, P. Analiza ryzyka zagrożeń w locie bezzałogowych statków powietrznych. Journal of KONBiN 2019; 49, http://dx.doi.org/10.2478/jok-....
 
 
CITATIONS (1):
1.
Modeling of Instantaneous CO₂ Concentration under Real-World Operating Conditions of Passenger Vehicles Using RDE Data and Standard Onboard Engine Parameters
Jerzy Merkisz, Patrycja Guzanek, Anna Borucka, Tadas Žvirblis, Jonas Matijosius
Eksploatacja i Niezawodność – Maintenance and Reliability
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top