Search for Author, Title, Keyword
RESEARCH PAPER
Visualization and Monitoring Algorithms for Multi-device Parallel Overhaul Progress at Substation Bases
,
 
,
 
,
 
 
 
 
More details
Hide details
1
Guangdong Power Grid Co., Ltd, China
 
 
Submission date: 2025-04-11
 
 
Final revision date: 2025-06-10
 
 
Acceptance date: 2025-07-21
 
 
Online publication date: 2025-09-20
 
 
Publication date: 2025-09-20
 
 
Corresponding author
Fangfang Zhou   

Guangdong Power Grid Co., Ltd, China
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2026;28(1):208485
 
HIGHLIGHTS
  • Lightweight BIM model conversion via triangle folding & QEM error reduction.
  • Real-time 3D point cloud/depth image fusion for equipment progress tracking.
  • Parallelized BIM modeling accelerates multi-equipment monitoring efficiency.
  • Dynamo-based visual programming enables intuitive progress visualization.
  • High-accuracy maintenance progress identification through BIM model comparison.
KEYWORDS
TOPICS
ABSTRACT
This study proposes a dual verification monitoring method integrating BIM lightweight modeling and real-time matching of laser point clouds.Based on the construction drawings of the substation base,a BIM model of the equipment maintenance schedule plan within the substation base is constructed.The fault-tolerant BIM lightweight process of the QEM (Quadratic Error Measurement) algorithm and the triangulation folding method is adopted to perform lightweight conversion on the established BIM model to reduce the error after lightweight conversion.The experimental results show that under the application of this method, when the simplification rate is 55%, it can effectively achieve lightweight while ensuring the accuracy, completeness of the model and no information loss. It can accurately monitor the maintenance progress of different equipment in the substation, realize the visualization of multi-equipment parallel maintenance data, significantly increase the overall maintenance time, and verify the reliability of this method.
REFERENCES (20)
1.
Shan, R., Abdulla, A., & Li, M. (2021). Deleterious effects of strategic, profit-seeking energy storage operation on electric power system costs. Applied Energy, 292(9), 116833.1-116833.9.
 
2.
Sasikala, R., & Meenakumari, R. (2021). Synchrophasor data transfer tool ieee c37.118.2—implementation and study of measurement standard for a futuristic substation automation. International Journal of Communication Systems, 35(16), 4759.1-4759.19.
 
3.
Toro-Cardenas, M., Moreira, I., Morais, H., Carvalho, P. M. S., & Ferreira, L. A. F. M. (2023). Net load disaggregation at secondary substation level. Renewable Energy, 207(5), 765-771. https://doi.org/10.1016/j.rene....
 
4.
Almeida, F. A. D., Romo, E. L., Gomes, G. F., Joslho, P. M. S., & Ferreira, L. A. F. M. (2023). Net load disaggregation at secondary substation level. Renewable energy, 207(5), 765-771. https://doi.org/10.1016/j.rene....
 
5.
Morsy, B., Hinneck, A., Pozo, D., & Bialek, J. (2022). Security constrained OPF utilizing substation reconfiguration and busbar splitting. Electric Power Systems Research, 212(11), 1-6. https://doi.org/10.1016/j.epsr....
 
6.
Nweke, J. N., Salau, A. O., & Eya, C. U. (2022). Headroom-based optimization for placement of distributed generation in a distribution substation. Engineering Review, 42(1), 109-120. https://doi.org/10.30765/er.17....
 
7.
Mir, A. M., Hassan, A., Khalid, A., Hassan, Z. R., Kamiran, F., & Raza, A. A., et al. (2022). Data driven smart policing: a novel road distance-based k-median model for optimal substation placement. Computers in Human Behavior, 127(2), https://doi.org/10.1016/j.chb.....
 
8.
Betti, A., Crisostomi, E., Paolinelli, G., Piazzi, A., & Tucci, M. (2021). Condition monitoring and predictive maintenance methodologies for hydropower plants equipment. Renewable Energy, 171(3), 246-253. https://doi.org/10.1016/j.rene....
 
9.
Malhotra, R., Mcleod, E., & Alzahawi, T. (2021). Management and maintenance of electrical equipment in industrial facilities: procedures for improving safety while saving money. IEEE Industry Applications Magazine, 27(1), 48-54. https://doi.org/10.1109/MIAS.2....
 
10.
Rodriguez, A. A., Miller, C. M., & Monty, C. N. (2021). Field testing and cost–benefit evaluation of corrosion-protective coatings on winter maintenance equipment in the state of ohio. Journal of Cold Regions Engineering, 35(1). https://doi.org/10.1061/(ASCE)....
 
11.
Shamsollahi, D., Moselhi, O., & Khorasani, K. (2024). Data integration using deep learning and real-time locating system (rtls) for automated construction progress monitoring and reporting. Automation in Construction, 168(Dec. Pt.A), https://doi.org/10.1016/j.autc....
 
12.
Pradeep, M. S., Reja, V. K., & Varghese, K. (2024). Conxr: a comparative participatory platform for construction progress monitoring. Journal of The Institution of Engineers (India): Series A, 105(2), 249-259. https://doi.org/10.1007/s40030....
 
13.
Melatti, I., Mari, F., Mancini, T., Prodanovic, M., & Tronci, E. (2022). A two-layer near-optimal strategy for substation constraint management via home batteries. IEEE Transactions on Industrial Electronics, 69(8), 8566-8578. https://doi.org/10.1109/TIE.20....
 
14.
Adrian Jimenez, V., & Will, A. (2021). A new data-driven method based on niching genetic algorithms for phase and substation identification. Electric Power Systems Research, 199(10), https://doi.org/10.1016/j.epsr....
 
15.
Woelke, P. B. (2020). Simplification of the gurson model for large-scale plane stress problems -sciencedirect. International Journal of Plasticity, 125(6), 331-347. https://doi.org/10.1016/j.ijpl....
 
16.
Reja, V. K., Varghese, K., & Ha, Q. P. (2022). Computer vision-based construction progress monitoring. Automation in Construction, 138(6), https://doi.org/10.1016/j.autc....
 
17.
Meyer, T., Brunn, A., & Stilla, U. (2022). Change detection for indoor construction progress monitoring based on bim, point clouds and uncertainties. Automation in Construction, 141(9), https://doi.org/10.1016/j.autc....
 
18.
Puri, N., & Turkan, Y. (2020). Bridge construction progress monitoring using lidar and 4d design models. Automation in Construction, 109(1), https://doi.org/10.1016/j.autc....
 
19.
Liu, Z., Ran, H. (2022). Parallel generation of gene sequencing data in cloud computing.Computer Simulation, 39(2), 246-250.
 
20.
Sanchez-Morales, J., Rodriguez-Tovar, F. J., & Pardo-Iguzquiza, E. (2023). Terrain methods on spectral analysis for paleoclimate interpretations: a novel visualization technique using python. Computers & Geosciences, 175(6), https://doi.org/10.1016/j.cage....
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top