Search for Author, Title, Keyword
RESEARCH PAPER
Maintenance of industrial reactors supported by deep learning driven ultrasound tomography
 
More details
Hide details
1
Lublin University of Technology Department of Organization of Enterprise ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
 
2
University of Economics and Innovation ul. Projektowa 4, 20-209 Lublin, Poland Research and Development Center, Netrix S.A. ul. Związkowa 26, 20-148 Lublin, Poland
 
3
Lublin University of Technology Institute of Technological Systems of Information ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
 
 
Publication date: 2020-03-31
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2020;22(1):138-147
 
KEYWORDS
ABSTRACT
Monitoring of industrial processes is an important element ensuring the proper maintenance of equipment and high level of processes reliability. The presented research concerns the application of the deep learning method in the field of ultrasound tomography (UST). A novel algorithm that uses simultaneously multiple classification convolutional neural networks (CNNs) to generate monochrome 2D images was developed. In order to meet a compromise between the number of the networks and the number of all possible outcomes of a single network, it was proposed to divide the output image into 4-pixel clusters. Therefore, the number of required CNNs has been reduced fourfold and there are 16 distinct outcomes from single network. The new algorithm was first verified using simulation data and then tested on real data. The accuracy of image reconstruction exceeded 95%. The results obtained by using the new CNN clustered algorithm were compared with five popular machine learning algorithms: shallow Artificial Neural Network, Linear Support Vector Machine, Classification Tree, Medium k-Nearest Neighbor classification and Naive Bayes. Based on this comparison, it was found that the newly developed method of multiple convolutional neural networks (MCNN) generates the highest quality images.
REFERENCES (45)
1.
Anders D, Rzasa M. The possibility of composting animal waste products. Environment Protection Engineering 2007;33(2):7-15.
 
2.
Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Guevara Lopez MA. Representation learning for mammography mass lesion classification with convolutional neural networks. Computer Methods and Programs in Biomedicine 2016;127: 248-257, https://doi.org/10.1016/j.cmpb....
 
3.
Babout L, Grudzień K, Wiącek J, Niedostatkiewicz M, Karpiński B, Szkodo M. Selection of material for X-ray tomography analysis and DEM simulations: comparison between granular materials of biological and non-biological origins. Granular Matter 2018; 20(3): 38, https://doi.org/10.1007/s10035....
 
4.
Banasiak R, Wajman R, Jaworski T, Fiderek P, Fidos H, Nowakowski J, Sankowski D. Study on two-phase flow regime visualization and identification using 3D electrical capacitance tomography and fuzzy-logic classification. International Journal of Multiphase Flow 2014; 58: 1-14, https://doi.org/10.1016/j.ijmu....
 
5.
Bartusek K, Fiala P, Mikulka J. Numerical modeling of magnetic field deformation as related to susceptibility measured with an MR system. Radioengineering 2008;17(4):113-118.
 
6.
Bishop CM. Pattern Recognition and Machine Learning. Springer-Verlag New York 2006.
 
7.
Chen H, Ni D, Qin J, Li S, Yang X, Wang T, Heng PA. Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks. IEEE Journal of Biomedical and Health Informatics 2015; 19(5): 1627-1636, https://doi.org/10.1109/JBHI.2....
 
8.
Du X, Li J, Feng H, Chen S. Image reconstruction of internal defects in wood based on segmented propagation rays of stress waves. Applied Sciences (Switzerland) 2018; 8(10): 1778, https://doi.org/10.3390/app810....
 
9.
Goetzke-Pala A, Hoła A, Sadowski Ł. A non-destructive method of the evaluation of the moisture in saline brick walls using artificial neural networks. Archives of Civil and Mechanical Engineering 2018; 18(4): 1729-1742, https://doi.org/10.1016/j.acme....
 
10.
Gola A, Kłosowski G. Application of Fuzzy Logic and Genetic Algorithms in Automated Works Transport Organization. In: Advances in Intelligent Systems and Computing. Vol 620. Springer, Cham 2018: 29-36, https://doi.org/10.1007/978-3-....
 
11.
Khairi MTM, Ibrahim S, Yunus MAM, Faramarzi M, Sean GP, Pusppanathan J, Abid A. Ultrasound computed tomography for material inspection: Principles, design and applications. Measurement 2019; 146: 490-523, https://doi.org/10.1016/j.meas....
 
12.
Kłosowski G, Kozłowski E, Gola A. Integer Linear Programming in Optimization of Waste After Cutting in the Furniture Manufacturing. In: Burduk A., Mazurkiewicz D. (Eds) Intelligent Systems in Production Engineering and Maintenance - ISPEM 2017, vol 637, 2018: 260-270, https://doi.org/10.1007/978-3-....
 
13.
Kłosowski G, Rymarczyk T, Gola A. Increasing the reliability of flood embankments with neural imaging method. Applied Sciences 2018; 8(9): 1457, https://doi.org/10.3390/app809....
 
14.
Kozłowski E., Mazurkiewicz D., Kowalska B., Kowalski D. – Binary Linear Programming as a Decision-Making Aid for Water Intake Operators. In book: Intelligent Systems in Production Engineering and Maintenance – ISPEM 2017, Edition: Advances in Intelligent Systems and Computing vol. 637. Publisher: Springer International Publishing, Editors: Anna Burduk, Dariusz Mazurkiewicz, pp.199-208, DOI: 10.1007/978-3-319-64465-3_20.
 
15.
Krawczyk A, Korzeniewska E. Magnetophosphenes - history and contemporary implications. Przegląd Elektrotechniczny 2018; 1(1): 63-66, https://doi.org/10.15199/48.20....
 
16.
Kryszyn J, Smolik W. Toolbox for 3D modelling and image reconstruction in electrical capacitance tomography. Informatics Control Measurement in Economy and Environment Protection 2017; 7(1): 137-145, https://doi.org/10.5604/01.300....
 
17.
Kryszyn J, Wanta DM, Smolik WT. Gain Adjustment for Signal-to-Noise Ratio Improvement in Electrical Capacitance Tomography System EVT4. IEEE Sensors Journal 2017; 17(24): 8107-8116, https://doi.org/10.1109/JSEN.2....
 
18.
Lei J, Liu Q, Wang X. Deep Learning-Based Inversion Method for Imaging Problems in Electrical Capacitance Tomography. IEEE Transactions on Instrumentation and Measurement 2018; 67(9): 2107-2118, https://doi.org/10.1109/TIM.20....
 
19.
Li X, Li J, He D, Qu Y. Gear pitting fault diagnosis using raw acoustic emission signal based on deep learning. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(3): 403-410, https://doi.org/10.17531/ein.2....
 
20.
Lopato P, Chady T, Sikora R, Gratkowski S, Ziolkowski M. Full wave numerical modelling of terahertz systems for nondestructive evaluation of dielectric structures. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 2013; 32(3): 736-749, https://doi.org/10.1108/033216....
 
21.
Ma J, Wu F, Zhu J, Xu D, Kong D. A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 2017; 73: 221-230, https://doi.org/10.1016/j.ultr....
 
22.
Majchrowicz M, Kapusta P, Jackowska-Strumiłło L, Sankowski D. Acceleration of image reconstruction process in the electrical capacitance tomography 3D in heterogeneous, multi-GPU system. Informatics Control Measurement in Economy and Environment Protection 2017; 7(1): 37-41, https://doi.org/10.5604/01.300....
 
23.
Mikulka J. GPU-Accelerated Reconstruction of T2 Maps in Magnetic Resonance Imaging. Measurement Science Review 2015; 15(4): 210-218, https://doi.org/10.1515/msr-20....
 
24.
Podgórni E, Rząsa M. Investigation of the effects of salinity and temperature on the removal of iron from water by aeration, filtration, and coagulation. Polish Journal of Environmental Studies 2014; 23(6): 2157-2161, https://doi.org/10.15244/pjoes....
 
25.
Psuj G. Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements. Sensors 2018; 18(2): 292. https://doi.org/10.3390/s18010....
 
26.
Qayyum A, Anwar SM, Awais M, Majid M. Medical image retrieval using deep convolutional neural network. Neurocomputing 2017; 266: 8-20, https://doi.org/10.1016/j.neuc....
 
27.
Romanowski A. Big Data-Driven Contextual Processing Methods for Electrical Capacitance Tomography. IEEE Transactions on Industrial Informatics 2019; 15(3): 1609-1618, https://doi.org/10.1109/TII.20....
 
28.
Romanowski A. Contextual Processing of Electrical Capacitance Tomography Measurement Data for Temporal Modeling of Pneumatic Conveying Process. In: 2018 Federated Conference on Computer Science and Information Systems (FedCSIS) 2018: 283-286, https://doi.org/10.15439/2018F....
 
29.
Romanowski A, Łuczak P, Grudzień K. X-ray Imaging Analysis of Silo Flow Parameters Based on Trace Particles Using Targeted Crowdsourcing. Sensors 2019; 19(15): 3317, https://doi.org/10.3390/s19153....
 
30.
Rymarczyk T. New methods to determine moisture areas by electrical impedance tomography. Kojima F, Kobayashi F, Nakamoto H, eds. International Journal of Applied Electromagnetics and Mechanics 2016; 52(1-2): 79-87, https://doi.org/10.3233/JAE-16....
 
31.
Rymarczyk T. Using electrical impedance tomography to monitoring flood banks. In: International Journal of Applied Electromagnetics and Mechanics 2014; 45: 489-494, https://doi.org/10.3233/JAE-14....
 
32.
Rymarczyk T, Adamkiewicz P, Duda K, Szumowski J, Sikora J. New electrical tomographic method to determine dampness in historical buildings. Archives of Electrical Engineering 2016; 65(2): 273-283, https://doi.org/10.1515/aee-20....
 
33.
Rymarczyk T, Kłosowski G, Cieplak T, Kozłowski E, Kania K. Application of a regressive neural network with autoencoder for monochromatic images in ultrasound tomography. In: Institute of Electrical and Electronics Engineers (IEEE) 2019: 156-160, https://doi.org/10.23919/PTZE.....
 
34.
Rząsa MR. A new transducer of double processing for capacitive tomography. Metrology and Measurement Systems 2007; 14(2): 291-305.
 
35.
Rząsa MR, Dobrowolski B. The prototype capacitance tomography sensor with increased sensitivity near the wall. Journal of Energy Science 2010; 1(1):133-145.
 
36.
Sezer A, Basri Sezer H. Convolutional neural network based diagnosis of bone pathologies of proximal humerus. Neurocomputing 2019, https://doi.org/10.1016/j.neuc....
 
37.
Shahdoosti HR, Rahemi Z. Edge-preserving image denoising using a deep convolutional neural network. Signal Processing 2019; 159: 20-32, https://doi.org/10.1016/j.sigp....
 
38.
Świderski A, Jóźwiak A, Jachimowski R. Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20(2): 292-299, https://doi.org/10.17531/ein.2....
 
39.
Szczesny A, Korzeniewska E. Selection of the method for the earthing resistance measurement. Przegląd Elektrotechniczny 2018; 94(12):178-181.
 
40.
Vališ D, Forbelská M, Vintr Z, Hasilová K, Leuchter J. Platinum thermometer failure estimation based on dynamic linear models. Engineering Failure Analysis 2019; 101: 418-435, https://doi.org/10.1016/j.engf....
 
41.
Vališ D, Mazurkiewicz D. Application of selected Levy processes for degradation modelling of long range mine belt using real-time data. Archives of Civil and Mechanical Engineering 2018; 18(4): 1430-1440, https://doi.org/10.1016/j.acme....
 
42.
Wajman R, Fiderek P, Fidos H, Jaworski T, Nowakowski J, Sankowski D, Banasiak R. Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination. Measurement Science and Technology 2013; 24(6): 065302, https://doi.org/10.1088/0957-0....
 
43.
Zhang Q, Xiao Y, Dai W, Suo J, Wang C, Shi J, Zheng H. Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 2016; 72: 150-157, https://doi.org/10.1016/j.ultr....
 
44.
Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX. Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing 2019; 115: 213-237, https://doi.org/10.1016/j.ymss....
 
45.
Ziolkowski M, Gratkowski S, Zywica AR. Analytical and numerical models of the magnetoacoustic tomography with magnetic induction. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 2018; 37(2): 538-548, https://doi.org/10.1108/COMPEL....
 
 
CITATIONS (45):
1.
The Concept of Using LSTM to Detect Moisture in Brick Walls by Means of Electrical Impedance Tomography
Grzegorz Kłosowski, Anna Hoła, Tomasz Rymarczyk, Łukasz Skowron, Tomasz Wołowiec, Marcin Kowalski
Energies
 
2.
Investigation of flood embankment seepage using logistic regression with ICA
E Kozłowski, K Król, K Niderla, T Rymarczyk
Journal of Physics: Conference Series
 
3.
Degradation process and failure estimation of drilling system based on real data and diffusion process supported by state space models
David Vališ, Marie Forbelská, Zdeněk Vintr, Jakub Gajewski
Measurement
 
4.
The Use of Time-Frequency Moments as Inputs of LSTM Network for ECG Signal Classification
Grzegorz Kłosowski, Tomasz Rymarczyk, Dariusz Wójcik, Stanisław Skowron, Tomasz Cieplak, Przemysław Adamkiewicz
Electronics
 
5.
Interactive Timeline Approach for Contextual Spatio-Temporal ECT Data Investigation
Andrzej Romanowski, Zbigniew Chaniecki, Aleksandra Koralczyk, Mikołaj Woźniak, Adam Nowak, Przemysław Kucharski, Tomasz Jaworski, Maja Malaya, Paweł Rózga, Krzysztof Grudzień
Sensors
 
6.
Scalability analysis of selected structures of a reconfigurable manufacturing system taking into account a reduction in machine tools reliability
Arkadiusz Gola, Zbigniew Pastuszak, Marcin Relich, Łukasz Sobaszek, Eryk Szwarc
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
7.
Optimisation of Technological Processes by Solving Inverse Problem through Block-Wise-Transform-Reduction Method Using Open Architecture Sensor Platform
Konrad Kania, Tomasz Rymarczyk, Mariusz Mazurek, Sylwia Skrzypek-Ahmed, Mirosław Guzik, Piotr Oleszczuk
Energies
 
8.
Application of classification trees to identify embankment seepage
K Król, T Rymarczyk, K Niderla, M Oleszek, P Bożek, P Tchórzewski, E Kozłowski
Journal of Physics: Conference Series
 
9.
PDE-solved by boundary element method for electrical impedance tomography
T Rymarczyk, K Polakowski, J Sikora
Journal of Physics: Conference Series
 
10.
Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
Dariusz Majerek, Tomasz Rymarczyk, Dariusz Wójcik, Edward Kozłowski, Magda Rzemieniak, Janusz Gudowski, Konrad Gauda
Energies
 
11.
Identification of Grain Oriented SiFe Steels Based on Imaging the Instantaneous Dynamics of Magnetic Barkhausen Noise Using Short-Time Fourier Transform and Deep Convolutional Neural Network
Michal Maciusowicz, Grzegorz Psuj, Paweł Kochmański
Materials
 
12.
Principal component analysis of measured data for ultrasound transmission tomography
T Rymarczyk, K Polakowski, J Sikora
Journal of Physics: Conference Series
 
13.
Experimental validation of differential evolution indicators for ultrasonic imaging in unknown backgrounds
Fatemeh Pourahmadian
Mechanical Systems and Signal Processing
 
14.
Applying the logistic regression in electrical impedance tomography to analyze conductivity of the examined objects
Tomasz Rymarczyk, Edward Kozłowski, Paweł Tchórzewski, Grzegorz Kłosowski, Przemysław Adamkiewicz, Barba Di, Maria Mognaschi, Sławomir Wiak
International Journal of Applied Electromagnetics and Mechanics
 
15.
A robotic respiration phantom with patient data synchronization for medical tomography
T Szabała, T Rymarczyk, A Vejar
Journal of Physics: Conference Series
 
16.
Examination of the impact of tank material on ultrasonic measurements
T Rymarczyk, M Gołąbek, P Rymarczyk, P Adamkiewicz, K Niderla
Journal of Physics: Conference Series
 
17.
Historical Buildings Dampness Analysis Using Electrical Tomography and Machine Learning Algorithms
Tomasz Rymarczyk, Grzegorz Kłosowski, Anna Hoła, Jerzy Hoła, Jan Sikora, Paweł Tchórzewski, Łukasz Skowron
Energies
 
18.
A Smart Building Resource Prediction, Navigation and Management System Supported by Radio Tomography and Computational Intelligence
Michał Styła, Przemysław Adamkiewicz, Tomasz Cieplak, Stanisław Skowron, Artur Dmowski, Józef Stokłosa
Energies
 
19.
Using principal component analysis and elastic net in logistic regression to identify the location of objects in EIT
K Król, T Rymarczyk, E Kozłowski, K Niderla
Journal of Physics: Conference Series
 
20.
The Use of Deep Learning Methods in Diagnosing Rotating Machines Operating in Variable Conditions
Paweł Pawlik, Konrad Kania, Bartosz Przysucha
Energies
 
21.
Identification of surface defects using deep and transfer learning
G Kłosowski, M Kulisz
Journal of Physics: Conference Series
 
22.
Indoor navigation system using radio tomography
M Styła, P Adamkiewicz, K Niderla, T Rymarczyk
Journal of Physics: Conference Series
 
23.
Comparison of Machine Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography
Grzegorz Kłosowski, Tomasz Rymarczyk, Konrad Niderla, Magdalena Rzemieniak, Artur Dmowski, Michał Maj
Energies
 
24.
Logistic regression application into leak identification of embankment in-depth probe
E Kozłowski, K Król, T Rymarczyk
Journal of Physics: Conference Series
 
25.
Quality Assessment of the Neural Algorithms on the Example of EIT-UST Hybrid Tomography
Grzegorz Kłosowski, Tomasz Rymarczyk, Tomasz Cieplak, Konrad Niderla, Łukasz Skowron
Sensors
 
26.
Comparison second order versus zero order boundary element method for tomography imaging
T Rymarczyk, J Sikora
Journal of Physics: Conference Series
 
27.
Electrical Tomography Reconstruction Using Reconfigurable Waveforms in a FPGA
Andres Vejar, Tomasz Rymarczyk
Sensors
 
28.
System construction based on a wire-mesh sensor for flow analysis
J Szumowski, T Rymarczyk, P Rymarczyk, P Adamkiewicz, M Kowalski, P Bednarczuk
Journal of Physics: Conference Series
 
29.
Nonstationary Image Reconstruction in Ultrasonic Transmission Tomography Using Kalman Filter and Dimension Reduction
Guanghui Liang, Feng Dong, Ville Kolehmainen, Marko Vauhkonen, Shangjie Ren
IEEE Transactions on Instrumentation and Measurement
 
30.
Energy Reduction with Super-Resolution Convolutional Neural Network for Ultrasound Tomography
Dariusz Wójcik, Tomasz Rymarczyk, Bartosz Przysucha, Michał Gołąbek, Dariusz Majerek, Tomasz Warowny, Manuchehr Soleimani
Energies
 
31.
Framework of machine criticality assessment with criteria interactions
Małgorzata Jasiulewicz–Kaczmarek, Katarzyna Antosz, Patryk Żywica, Dariusz Mazurkiewicz, Bo Sun, Yi Ren
Eksploatacja i Niezawodność – Maintenance and Reliability
 
32.
Worm gear condition monitoring and fault detection from thermal images via deep learning method
Yunus Karabacak, Özmen Gürsel, Levent Gümüşel
Eksploatacja i Niezawodność – Maintenance and Reliability
 
33.
Machine Learning-Enhanced Radio Tomographic Device for Energy Optimization in Smart Buildings
Michał Styła, Bartłomiej Kiczek, Grzegorz Kłosowski, Tomasz Rymarczyk, Przemysław Adamkiewicz, Dariusz Wójcik, Tomasz Cieplak
Energies
 
34.
SENSOR PLATFORM OF INDUSTRIAL TOMOGRAPHY FOR DIAGNOSTICS AND CONTROL OF TECHNOLOGICAL PROCESSES
Krzysztof Król, Tomasz Rymarczyk, Konrad Niderla, Edward Kozłowski
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
 
35.
Phase Distribution Measurement of Liquid–Solid Media Using Multimode Ultrasound
Wenxiu Hou, Chao Tan, Hao Wu, Feng Dong
IEEE Sensors Journal
 
36.
Applying Logistic Regression with Elastic Net and PCA to Determine the Objects Location in EIT
Krzysztof Król, Tomasz Rymarczyk, Edward Kozłowski, Konrad Niderla
2023 International Interdisciplinary PhD Workshop (IIPhDW)
 
37.
Time Series Recognition with Convolutional and Recursive Neural Networks in BSPM
Dariusz Wójcik, Tomasz Rymarczyk, Łukasz Maciura, Michał Oleszek, Przemysław Adamkiewicz
2023 International Interdisciplinary PhD Workshop (IIPhDW)
 
38.
Effect of Measurement Noise on Reconstruction using Machine Learning with Electrical Tomography in the Case of the Abdominal Cavity
Bartłomiej Baran, Bartosz Przysucha, Tomasz Rymarczyk, Dariusz Wójcik
2023 International Interdisciplinary PhD Workshop (IIPhDW)
 
39.
NOVEL HYBRID ALGORITHM USING CONVOLUTIONAL AUTOENCODER WITH SVM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY AND ULTRASOUND COMPUTED TOMOGRAPHY
Łukasz Maciura, Dariusz Wójcik, Tomasz Rymarczyk, Krzysztof Król
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
 
40.
Interaction between maintenance variables of medical ultrasound scanners through multifactor dimensionality reduction
Alejandro Prieto-Fernández, Gonzalo Sánchez-Barroso, Jaime González-Domínguez, Justo García-Sanz-Calcedo
Expert Review of Medical Devices
 
41.
Image reconstruction by solving the inverse problem in ultrasonic transmission tomography system
Tomasz Rymarczyk, Konrad Kania, Michał Gołąbek, Jan Sikora, Michał Maj, Przemysław Adamkiewicz
COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
 
42.
Use of the two-stage neural system in industrial electrical tomography - hybrid approach
Grzegorz Kłosowski, Tomasz Rymarczyk, Konrad Niderla
Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing
 
43.
Complex system for analysis and monitoring of technological processes based on tomography
Cezary Figura, Krzysztof Król, Grzegorz Bartnik, Mariusz Kowalczuk, Ewa Golec, Piotr Czarnecki
Journal of Modern Science
 
44.
Tomographic examination of the head model through image reconstruction from measurement data
Grzegorz Bartnik, Magdalena Głowacka, Michał Gołąbek, Paweł Tchórzewski
Journal of Modern Science
 
45.
Poster Abstract: Improving Image Reconstruction Quality in Ultrasonic Tomography Using Deep Neural Networks
Monika Kulisz, Grzegorz Kłosowski, Tomasz Rymarczyk, Konrad Niderla, Piotr Bednarczuk
Proceedings of the 21st ACM Conference on Embedded Networked Sensor Systems
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top