Search for Author, Title, Keyword
RESEARCH PAPER
Innovative methods of neural reconstruction for tomographic images in maintenance of tank industrial reactors
 
More details
Hide details
1
University of Economics and Innovation ul. Projektowa 4, 20-209 Lublin, Poland Research and Development Center, Netrix S.A. ul. Związkowa 26, 20-148 Lublin, Poland
 
2
Lublin University of Technology Department of Organization of Enterprise ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
 
 
Publication date: 2019-06-30
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2019;21(2):261-267
 
KEYWORDS
ABSTRACT
The article presents an innovative concept of improving the monitoring and optimization of industrial processes. The developed method is based on a system of many separately trained neural networks, in which each network generates a single point of the output image. Thanks to the elastic net method, the implemented algorithm reduces the correlated and irrelevant variables from the input measurement vector, making it more resistant to the phenomenon of data noises. The advantage of the described solution over known non-invasive methods is to obtain a higher resolution of images dynamically appearing inside the reactor of artifacts (crystals or gas bubbles), which essentially contributes to the early detection of hazards and problems associated with the operation of industrial systems, and thus increases the efficiency of chemical process control.
 
REFERENCES (30)
1.
Babout L, Grudzień K, Wiącek J, Niedostatkiewicz M, Karpiński B, Szkodo M. Selection of Material for X-Ray Tomography Analysis and DEM Simulations: Comparison between Granular Materials of Biological and Non-Biological Origins. Granular Matter 2018; 20 (3): 38, https://doi.org/10.1007/s10035....
 
2.
Banasiak R, Wajman R, Sankowski D, Soleimani M. Three-Dimensional Nonlinear Inversion of Electrical Capacitance Tomography Data Using a Complete Sensor Model. Progress In Electromagnetics Research (PIER) 2010; 100: 219-234, https://doi.org/10.2528/ PIER09111201.
 
3.
Dusek J, Hladky D, Mikulka J. Electrical Impedance Tomography Methods and Algorithms Processed with a GPU. Progress In Electromagnetics Research Symposium - Spring (PIERS) 2017; 1710–14, https://doi.org/10.1109/PIERS.....
 
4.
Garbaa H, Jackowska-Strumiłło L, Grudzień K, Romanowski A. Application of Electrical Capacitance Tomography and Artificial Neural Networks to Rapid Estimation of Cylindrical Shape Parameters of Industrial Flow Structure. Archives of Electrical Engineering 2016; 65 (4): 657–69, https://doi.org/10.1515/aee-20....
 
5.
Grudzien K, Chaniecki Z, Romanowski A, Sankowski D, Nowakowski J, Niedostatkiewicz M. Application of Twin-Plane ECT Sensor for Identification of the Internal Imperfections inside Concrete Beams. IEEE International Instrumentation and Measurement Technology Conference Proceedings 2016; May, 1–6, https://doi.org/10.1109/I2MTC.....
 
6.
Kłosowski G, Gola A, Świć A. Application of Fuzzy Logic Controller for Machine Load Balancing in Discrete Manufacturing System. In International Conference on Intelligent Data Engineering and Automated Learning 2015; 256–63, https://doi.org/10.1007/978-3-....
 
7.
Kłosowski G, Rymarczyk T, Gola A. Increasing the Reliability of Flood Embankments with Neural Imaging Method. Applied Sciences 2018; 8 (9): 1457, https://doi.org/10.3390/app809....
 
8.
Kłosowski G, Rymarczyk T. Using neural networks and deep learning algorithms in electrical impedance tomography. Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska 2017; 7 (3): 99–102, https://doi.org/10.5604/01.300....
 
9.
Korzeniewska E, Gałązka-Czarnecka I, Czarnecki A, Piekarska A, Krawczyk A. Influence of PEF on Antocyjans in Wine. Przegląd Elektrotechniczny 2018; 1 (1): 59–62, https://doi.org/10.15199/48.20....
 
10.
Korzeniewska E, Walczak M, Rymaszewski J. Elements of Elastic Electronics Created on Textile Substrate, Proceedings of the 24th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2017; 2017, 447-45, https://doi.org/10.23919/ MIXDES.2017.8005250.
 
11.
Kosicka E, Kozłowski E, Mazurkiewicz D. Intelligent Systems of Forecasting the Failure of Machinery Park and Supporting Fulfilment of Orders of Spare Parts. In: Burduk A., Mazurkiewicz D. (eds) Intelligent Systems in Production Engineering and Maintenance – ISPEM 2017. ISPEM 2017. Advances in Intelligent Systems and Computing, vol 637. Springer, Cham, 2018, https://doi.org/10.1007/978-3-....
 
12.
Kozłowski E., Mazurkiewicz D., Kowalska B., Kowalski, D. Binary Linear Programming as a Decision-Making Aid for Water Intake Operators. In: Burduk A., Mazurkiewicz D. (eds) Intelligent Systems in Production Engineering and Maintenance – ISPEM 2017. ISPEM 2017. Advances in Intelligent Systems and Computing, vol 637. Springer, Cham, 2018, https://doi.org/10.1007/978-3-....
 
13.
Kryszyn J, Smolik W T, Radzik B, Olszewski T, Szabatin R. Switchless Charge-Discharge Circuit for Electrical Capacitance Tomography. Measurement Science and Technology 2014; 25 (11): 115009, https://doi.org/10.1088/0957-0....
 
14.
Kryszyn J, Waldemar S. Toolbox for 3d Modelling and Image Reconstruction in Electrical Capacitance Tomography. Informatics Control Measurement in Economy and Environment Protection 2017; 7 (1).
 
15.
Lopato P, Tomasz C, Sikora R, Gratkowski S, Ziolkowski M. Full Wave Numerical Modelling of Terahertz Systems for Nondestructive Evaluation of Dielectric Structures. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 2013; 32 (3): 736–49, https://doi.org/10.1108/033216....
 
16.
Majchrowicz M, Kapusta P, Jackowska-Strumiłło L, Sankowski D. Acceleration of image reconstruction process in the electrical capacitance tomography 3d in heterogeneous, multi-GPU system. Informatics Control Measurement in Economy and Environment Protection 2017; 7 (1): 37–41, https://doi.org/10.5604/01.300....
 
17.
Mikulka J. Accelerated Reconstruction of T2 Maps in Magnetic Resonance Imaging. Measurement Science Review 2015; 4: 210–18, https://doi.org/10.1515/msr-20....
 
18.
Park S, Na J, Kim M, Lee J M. Multi-Objective Bayesian Optimization of Chemical Reactor Design Using Computational Fluid Dynamics. Computers & Chemical Engineering 2018; 119 : 25–37, https://doi.org/10.1016/j.comp....
 
19.
Psuj G. Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements. Sensors 18 (2): 292, https://doi.org/10.3390/s18010....
 
20.
Romanowski A. Big Data-Driven Contextual Processing Methods for Electrical Capacitance Tomography. IEEE Transactions on Industrial Informatics 2018; 1–1, https://doi.org/10.1109/TII.20....
 
21.
Rymarczyk T, Adamkiewicz P, Polakowski K, Sikora J. Effective Ultrasound and Radio Tomography Imaging Algorithm for Two-Dimensional Problems. Przegląd Elektrotechniczny 2018; 94 (6): 62–69.
 
22.
Rymarczyk T, Kłosowski G, Kozłowski E. A Non-Destructive System Based on Electrical Tomography and Machine Learning to Analyze the Moisture of Buildings. Sensors 2018; 18 (7): 2285.
 
23.
Rymarczyk T, Kłosowski G. Application of Neural Reconstruction of Tomographic Images in the Problem of Reliability of Flood Protection Facilities. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (3): 425–34, https://doi.org/10.17531/ein.2....
 
24.
Rymarczyk T, Sikora J. Applying Industrial Tomography to Control and Optimization Flow Systems. Open Physics 2018; 16 (1): 332–45, https://doi.org/10.1515/phys-2....
 
25.
Sobaszek Ł, Gola A, Świć A. Predictive Scheduling as a Part of Intelligent Job Scheduling System: in, 358–67. Springer, Cham 2018, https://doi.org/10.1007/978-3-....
 
26.
Soleimani M, Mitchell C N, Banasiak R, Wajman R, Adler A. Four-dimensional electrical capacitance tomography imaging using experimental data. Progress In Electromagnetics Research 2009; 90: 171–86, https://doi.org/10.2528/PIER09....
 
27.
Tian G, Yang B, Dong M, Zhu R, Yin F, Zhao X, Wang Y, Xiao W, Wang Q, Zhang W. The Effect of Temperature on the Microbial Communities of Peak Biogas Production in Batch Biogas Reactors. Renewable Energy 2018; 123: 15–25,https://doi.org/10.1016/j.rene....
 
28.
Voutilainen A, Lehikoinen A, Vauhkonen M, Kaipio J P. Three-Dimensional Nonstationary Electrical Impedance Tomography with a Single Electrode Layer. Measurement Science and Technology 2010; 21 (3): 035107, https://doi.org/10.1088/0957-0....
 
29.
Wang Mi. Industrial Tomography: Systems and Applications. Edited by Elsevier Ltd. Woodhead Publishing 2015.
 
30.
Ziolkowski M, Gratkowski S, Zywica A R. Analytical and Numerical Models of the Magnetoacoustic Tomography with Magnetic Induction. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 2018; 37 (2): 538–48, https://doi.org/10.1108/COMPEL....
 
 
CITATIONS (25):
1.
CONSTRUCTION OF AN ULTRASONIC TOMOGRAPH FOR ANALYSIS OF TECHNOLOGICAL PROCESSES IN THE FIELD OF REFLECTION AND TRANSMISSION WAVES
Tomasz Rymarczyk, Michał Gołąbek, Piotr Lesiak, Andrzej Marciniak, Mirosław Guzik
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
 
2.
Ensemble learning for monitoring process in electrical impedance tomography
Grzegorz Kłosowski, Tomasz Rymarczyk, Sławomir Wiak, Barba Di, Evelina Mognaschi
International Journal of Applied Electromagnetics and Mechanics
 
3.
Rehabilitation of Post-Stroke Swallowing Dysfunction with Repeated Transcranial Magnetic Stimulation RTMS Based on Tomographic Images
Jin Liu, Hengye Zhuo, Mingliang Sun, Sandip Mishra
Contrast Media & Molecular Imaging
 
4.
DESIGN OF INNOVATIVE MEASUREMENT SYSTEMS IN ULTRASONIC TOMOGRAPHY
Michał Gołąbek, Tomasz Rymarczyk
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
 
5.
Implementation of Block-Wise-Transform-Reduction Method for Image Reconstruction in Ultrasound Transmission Tomography
Mariusz Mazurek, Konrad Kania, Tomasz Rymarczyk, Dariusz Wojcik, Tomasz Cieplak, Piotr Golabek
IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)
 
6.
Degradation process and failure estimation of drilling system based on real data and diffusion process supported by state space models
David Vališ, Marie Forbelská, Zdeněk Vintr, Jakub Gajewski
Measurement
 
7.
Prediction of Municipal Waste Generation in Poland Using Neural Network Modeling
Monika Kulisz, Justyna Kujawska
Sustainability
 
8.
An Ultrasound Tomography Method for Monitoring CO2 Capture Process Involving Stirring and CaCO3 Precipitation
Panagiotis Koulountzios, Soheil Aghajanian, Tomasz Rymarczyk, Tuomas Koiranen, Manuchehr Soleimani
Sensors
 
9.
ANALYSIS OF DATA FROM MEASURING SENSORS FOR PREDICTION IN PRODUCTION PROCESS CONTROL SYSTEMS
Tomasz Rymarczyk, Bartek Przysucha, Marcin Kowalski, Piotr Bednarczuk
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
 
10.
Applying the logistic regression in electrical impedance tomography to analyze conductivity of the examined objects
Tomasz Rymarczyk, Edward Kozłowski, Paweł Tchórzewski, Grzegorz Kłosowski, Przemysław Adamkiewicz, Barba Di, Maria Mognaschi, Sławomir Wiak
International Journal of Applied Electromagnetics and Mechanics
 
11.
A Quantitative Ultrasonic Travel-Time Tomography to Investigate Liquid Elaborations in Industrial Processes
Panagiotis Koulountzios, Tomasz Rymarczyk, Manuchehr Soleimani
Sensors
 
12.
The Use of Time-Frequency Moments as Inputs of LSTM Network for ECG Signal Classification
Grzegorz Kłosowski, Tomasz Rymarczyk, Dariusz Wójcik, Stanisław Skowron, Tomasz Cieplak, Przemysław Adamkiewicz
Electronics
 
13.
Quality Assessment of the Neural Algorithms on the Example of EIT-UST Hybrid Tomography
Grzegorz Kłosowski, Tomasz Rymarczyk, Tomasz Cieplak, Konrad Niderla, Łukasz Skowron
Sensors
 
14.
Implementation of a commercial PAN network in the tracking system using the techniques of radio tomographic imaging
M Styła, P Adamkiewicz
Journal of Physics: Conference Series
 
15.
A Smart Building Resource Prediction, Navigation and Management System Supported by Radio Tomography and Computational Intelligence
Michał Styła, Przemysław Adamkiewicz, Tomasz Cieplak, Stanisław Skowron, Artur Dmowski, Józef Stokłosa
Energies
 
16.
Perspectives and Trends in Education and Technology
Manuel Quispe, Martha Molina, Franklin Castillo, Víctor Andaluz
 
17.
Optimisation of Technological Processes by Solving Inverse Problem through Block-Wise-Transform-Reduction Method Using Open Architecture Sensor Platform
Konrad Kania, Tomasz Rymarczyk, Mariusz Mazurek, Sylwia Skrzypek-Ahmed, Mirosław Guzik, Piotr Oleszczuk
Energies
 
18.
Energy Reduction with Super-Resolution Convolutional Neural Network for Ultrasound Tomography
Dariusz Wójcik, Tomasz Rymarczyk, Bartosz Przysucha, Michał Gołąbek, Dariusz Majerek, Tomasz Warowny, Manuchehr Soleimani
Energies
 
19.
Analysis of Reconstruction Energy Efficiency in EIT and ECT 3D Tomography Based on Elastic Net
Bartosz Przysucha, Dariusz Wójcik, Tomasz Rymarczyk, Krzysztof Król, Edward Kozłowski, Marcin Gąsior
Energies
 
20.
Forecasting study of mains reliability based on sparse field data and perspective state space models
David Valis, Marie Forbelská, Zdeněk Vintr
Eksploatacja i Niezawodność – Maintenance and Reliability
 
21.
Reliability analysis of a multi-eso based control strategy for level adjustment control system of quadruped robot under disturbances and failures
Jingjing Cui, Yi Ren, Binghui Xu, Dezhen Yang, Shengkui Zeng
Eksploatacja i Niezawodność – Maintenance and Reliability
 
22.
Optimizing the Neural Network Loss Function in Electrical Tomography to Increase Energy Efficiency in Industrial Reactors
Monika Kulisz, Grzegorz Kłosowski, Tomasz Rymarczyk, Jolanta Słoniec, Konrad Gauda, Wiktor Cwynar
Energies
 
23.
Ultrasound tomography enhancement by signal feature extraction with modular machine learning method
Bartłomiej Baran, Dariusz Majerek, Piotr Szyszka, Dariusz Wójcik, Tomasz Rymarczyk, Khan Bahadar Khan
PLOS ONE
 
24.
Use of electrical impedance tomography for lung volume reconstruction
Paweł Tchórzewski, Małgorzata Lalak - Dybała, Bartosz Przysucha, Paweł Olszewski
Journal of Modern Science
 
25.
Energy Optimization in Ultrasound Tomography Through Sensor Reduction Supported by Machine Learning Algorithms
Bartłomiej Baran, Tomasz Rymarczyk, Dariusz Majerek, Piotr Szyszka, Dariusz Wójcik, Tomasz Cieplak, Marcin Gąsior, Marcin Marczuk, Edmund Wąsik, Konrad Gauda
Energies
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top