The aim of the study was to investigate rail vehicle dynamics under
primary suspension dampers faults and explore possibility of its
detection by means of artificial neural networks. For these purposes two
types of analysis were carried out: preliminary analysis of 1 DOF rail
vehicle model and a second one - a passenger coach benchmark model
was tested in multibody simulation software - MSC.Adams with use of
VI-Rail package. Acceleration signals obtained from the latter analysis
served as an input data into the artificial neural network (ANN). ANNs
of different number of hidden layers were capable of detecting faults for
the trained suspension fault cases, however, achieved accuracy was
below 63% at the best. These results can be considered satisfactory
considering the complexity of dynamic phenomena occurring in the
vibration system of a rail vehicle.
CITATIONS(1):
1.
Modeling the dynamics of changes in CO2 emissions from Polish road transport in the context of COVID-19 and decarbonization requirements Anna Borucka, Edward Kozłowski Combustion Engines
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.