Search for Author, Title, Keyword
RESEARCH PAPER
Outline of a method for estimating the durability of components or device assemblies while maintaining the required reliability level
,
 
,
 
 
 
More details
Hide details
1
Air Force Institute of Technology ul. Księcia Bolesława 6, 01-494 Warsaw 96, Poland
 
2
Faculty of Mechatronics and Aerospace Military University of Technology ul. Kaliskiego 2, 00-908 Warsaw 49, Poland
 
 
Publication date: 2018-06-30
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2018;20(2):260-266
 
KEYWORDS
ABSTRACT
The paper includes a probabilistic method for evaluating the durability of components and device assemblies which operate under the impact of destructive processes. As a result of these processes, wear that causes deterioration of their cooperation conditions occurs. It is assumed that a component operates reliably when the wear does not exceed the acceptable (limit) values. In mathematical terms, this method is based on a differential equation, after the transformation of which, it is possible to obtain the Fokker-Planck type partial differential equation. The specific solution of this equation allows for obtaining the density function of the probability wear in the normal distribution form. The paper presents two methods for determining the durability. The first one involves the application of the wear density function, and the second one consists in determining the probability density function of the time of reaching the acceptable state, and its use in order to determine the component or assembly durability. The paper presents a numerical example on the aircraft technology operation process
 
REFERENCES (21)
1.
DeLurgio SA. Forecasting principles and applications. University of Missouri-Kansas City: Irwin/McGraw-Hill, 1998.
 
2.
Franck TD. Nonlinear Fokker-Planck Equations. Fundamentals and Applications. Berlin Heildenberg: Springer-Verlag, 2005.
 
3.
Grasman J, Herwaarden OA. Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications. Berlin Heildenberg: Springer-Verlag, 1999, https://doi.org/10.1007/978-3-....
 
4.
Idziaszek Z, Grzesik N. Object characteristics deterioration effect on task realizability – outline method of estimation and prognosis. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2014; 16 (3): 433–440.
 
5.
Kinnison H, Siddiqui T. Aviation Maintenance Management. The McGraw-Hill Companies, Inc. 2013.
 
6.
Knopik L, Migawa K. Multi-state model of maintenance policy. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (1): 125–130, https://doi.org/10.17531/ein.2....
 
7.
Knopik L, Migawa K. Wdzięczny A. Profit optimization in maintenance system, Polish Martime Research, 2016, 1(89): 193-98.
 
8.
Kołowrocki K, Soszyńska Budny J. Reliability and Safety of Complex Technical Systems and Processes. Springer 2011, https://doi.org/10.1007/978-0-....
 
9.
McPherson JW. Reliability physics and engineering. New York: Springer, 2010, https://doi.org/10.1007/978-1-....
 
10.
Narayan V. Effective Maintenance Management. New York: Industrial Press Inc., 2012.
 
11.
Pham H. Handbook of Engineering Statistics. London: Springer-Verlag 2006, https://doi.org/10.1007/978-1-....
 
12.
Rasuo B., Duknic G. Optimization of the aircraft general overhaul process. Aircraft engineering and aerospace technology 2013; 85 (5): 343-354, https://doi.org/10.1108/AEAT-0....
 
13.
Restel F. The Markov reliability and safety model of the railway transportation system. Safety and reliability: methodology and applications:proceedings of the European Safety and Reliability Conference, ESREL 2014, 14-18 September, 2015, Wrocław, Poland. CRC Press/Balkema: 303-311.
 
14.
Risken H. The Fokker-Planck Equation. Methods of Solution and Applications. Berlin Heildenberg: Springer Verlag, 1984, https://doi.org/10.1007/978-3-....
 
15.
Tan CM, Singh P. Time evolution degradation physics in high power white LEDs under high temperature-humidity conditions. IEEE Transactions on Device and Materials Reliability 2014; 14(2): 742-750, https://doi.org/10.1109/TDMR.2....
 
16.
Ułanowicz L. Modelling of a process, which causes adhesive seizing (tacking) in precise pairs of hydraulic control devices. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18 (4): 492-500, https://doi.org/10.17531/ein.2....
 
17.
Valis D, Koucky M, Zak L. On approaches for non-direct determination of system deterioration. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2012; 1:33-41.
 
18.
Wang P, Tang Y, Baeb SJ, He Y. Bayesian analysis of two-phase degradation data based on change-point Wiener process. Reliability Engineering & System Safety 2018; 170: 244-256, https://doi.org/10.1016/j.ress....
 
19.
Wang YS, Zhang CH, Zhang SF, Chen X, Tan YY. Optimal design of constant stress accelerated degradation test plan with multiple stresses and multiple degradation measures. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2015; 229(1): 83-93, https://doi.org/10.1177/174800....
 
20.
Woch M. Reliability analysis of the PZL-130 Orlik TC-II aircraft structural component under real operating conditions. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017; 19 (2): 287–295, https://doi.org/10.17531/ein.2....
 
21.
Zurek J, Tomaszek H. Zieja M. Analysis of structural component's lifetime distribution considered from the aspect of the wearing with the characteristic function applied. Safety, reliability and risk analysis: Beyond the horizon. Amsterdam: Balkema 2014, 2597-2602.
 
 
CITATIONS (18):
1.
 
2.
 
3.
 
4.
 
5.
 
6.
 
7.
 
8.
 
9.
 
10.
 
11.
 
12.
 
13.
 
14.
 
15.
 
16.
 
17.
 
18.
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top