Search for Author, Title, Keyword
RESEARCH PAPER
Multi-Connected Temporal Encoding Graph Neural Network for Complex Industrial Fault Diagnosis
,
 
,
 
,
 
 
 
 
More details
Hide details
1
Northeastern University at Qinhuangdao, China
 
2
Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, China
 
3
Hebei Key Laboratory of Marine Perception Network and Data Processing, China.
 
 
Submission date: 2025-03-22
 
 
Final revision date: 2025-06-09
 
 
Acceptance date: 2025-07-25
 
 
Online publication date: 2025-08-02
 
 
Publication date: 2025-08-02
 
 
Corresponding author
Qiang Zhao   

Northeastern University at Qinhuangdao, China
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2026;28(1):208666
 
HIGHLIGHTS
  • MCTEGNN: A novel graph neural network for complex industrial fault diagnosis.
  • Multi-connected graph captures comprehensive spatial-temporal dependencies.
  • Moving-pooling GNN effectively extracts local spatial-temporal features.
  • Decay matrix enhances graph accuracy by considering temporal distances.
  • Superior performance on TE, TFF and BF dataset validates the model's effectiveness.
KEYWORDS
TOPICS
ABSTRACT
In modern industry, the complex system scale is large and the process variables are highly coupled. Traditional fault diagnosis methods are inherently challenged in their ability to effectively integrate information, leading to inappropriate feature representations and inaccurate diagnosis outcomes. To address these issues, this paper proposes a Multi-Connected Temporal Encoding Graph Neural Network (MCTEGNN). For multi-connected graph construction, by additionally considering the correlation between different sensors at different timestamps and connecting sensors between all timestamps, a multi-connected graph can be formed to achieve comprehensive dependency modeling. Multi-connected graph convolution captures local dependencies by utilizing moving windows and time pooling, and then learns advanced features to use the moving pool GNN. The proposed method improves the problem of incomplete modeling caused by low efficiency in capturing data relationships. The experimental results on the three dataset demonstrate the effectiveness of the proposed MCTEGNN for faults diagnosis
ACKNOWLEDGEMENTS
This work was supported by National Natural Science Foundation of China (U21A20475), Natural Science Foundation of Hebei Province of China(E2022501017, F2020501040), Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University(2021RALKFKT007), Fundamental Research Funds for the Central Universities (N2223001).
REFERENCES (45)
1.
Tian Z, Zhuo M, Liu L, et al. Anomaly detection using spatial and temporal information in multivariate time series[J]. Scientific Reports, 2023, 13(1): 4400. https://doi.org/10.1038/s41598....
 
2.
Wu Y, Dai H N, Tang H. Graph neural networks for anomaly detection in industrial Internet of Things[J]. IEEE Internet of Things Journal, 2021, 9(12): 9214-9231. https://doi.org/10.1109/JIOT.2....
 
3.
Corso G, Stark H, Jegelka S, et al. Graph neural networks[J]. Nature Reviews Methods Primers, 2024, 4(1): 17. https://doi.org/10.1038/s43586....
 
4.
Deng A, Hooi B. Graph neural network-based anomaly detection in multivariate time series[C]//Proceedings of the AAAI conference on artificial intelligence. 2021, 35(5): 4027-4035. https://doi.org/10.1609/aaai.v....
 
5.
Zhao Z, Li J, Liu G. Automated Graph Contrastive Learning Based on Node-Level and Edge-Level Learnable Augmentation[J]. IEEE Transactions on Computational Social Systems, 2025. https://doi.org/ 10.1109/TCSS.2025.3551250.
 
6.
Motie S, Raahemi B. Financial fraud detection using graph neural networks: A systematic review[J]. Expert Systems with Applications, 2024, 240: 122156. https://doi.org/10.1016/j.eswa....
 
7.
Ding C, Sun S, Zhao J. MST-GAT: A multimodal spatial–temporal graph attention network for time series anomaly detection[J]. Information Fusion, 2023, 89: 527-536. https://doi.org/10.1016/j.inff....
 
8.
Wu D, Zhao J. Process topology convolutional network model for chemical process fault diagnosis[J]. Process Safety and Environmental Protection, 2021, 150: 93-109. https://doi.org/10.1016/j.psep....
 
9.
Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arxiv preprint arxiv:1609.02907, 2016 .https://doi.org/10.48550/arXiv....
 
10.
Fan S, Liu G, Li J. A heterogeneous graph neural network with attribute enhancement and structure-aware attention[J]. IEEE Transactions on Computational Social Systems, 2023, 11(1): 829-838. https://doi.org/ 10.1109/TCSS.2023.3239034.
 
11.
Shin J H, Bae J, Kim J M, et al. An interpretable convolutional neural network for nuclear power plant abnormal events[J]. Applied Soft Computing, 2023, 132: 109792. https://doi.org/10.1016/j.asoc....
 
12.
Meng H, Geng M, Han T. Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis[J]. Reliability Engineering & System Safety, 2023, 236: 109288. https://doi.org/10.1016/j.ress....
 
13.
Liu Z, Wan G, Prakash B A, et al. A review of graph neural networks in epidemic modeling[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2024: 6577-6587. https://doi.org/10.1145/363752....
 
14.
Jeong Y. Fault detection with confidence level evaluation for perception module of autonomous vehicles based on long short term memory and Gaussian Mixture Model[J]. Applied Soft Computing, 2023, 149: 111010. https://doi.org/10.1016/j.asoc....
 
15.
Deng C, Deng Z, Miao J. Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels[J]. Reliability Engineering & System Safety, 2024, 242: 109740. https://doi.org/10.1016/j.ress....
 
16.
Li T, Zhao Z, Sun C, et al. Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction[J]. Reliability Engineering & System Safety, 2021, 215: 107878. https://doi.org/10.1016/j.ress....
 
17.
Elshenawy L M, Chakour C, Mahmoud T A. Fault detection and diagnosis strategy based on k-nearest neighbors and fuzzy C-means clustering algorithm for industrial processes[J]. Journal of the Franklin institute, 2022, 359(13): 7115-7139. https://doi.org/10.1016/j.jfra....
 
18.
Chen Z, Xu J, Alippi C, et al. Graph neural network-based fault diagnosis: A review[J]. arxiv preprint arxiv:2111.08185, 2021.https://doi.org/10.48550/arXiv....
 
19.
Li J, Wang Y, Zi Y, et al. Causal consistency network: A collaborative multimachine generalization method for bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2022, 19(4): 5915-5924. https://doi.org/10.1109/ TII.2022.3174711.
 
20.
Zhang Z, Wu L. Graph neural network-based bearing fault diagnosis using Granger causality test[J]. Expert Systems with Applications, 2024, 242: 122827. https://doi.org/10.1016/j.eswa....
 
21.
Wang T, Liu Z, Lu G, et al. Temporal-spatio graph based spectrum analysis for bearing fault detection and diagnosis[J]. IEEE Transactions on Industrial Electronics, 2020, 68(3): 2598-2607. https://doi.org/10.1109/TIE.20....
 
22.
Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks[J]. IEEE transactions on neural networks and learning systems, 2020, 32(1): 4-24. https://doi.org/10.1109/TNNLS.....
 
23.
Li T, Zhao Z, Sun C, et al. Multi receptive field graph convolutional networks for machine fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2020, 68(12): 12739-12749. https://doi.org/10.1109/tie.20....
 
24.
Zhang X, Gao Y, Lin J, et al. Tapnet: Multivariate time series classification with attentional prototypical network[C]//Proceedings of the AAAI conference on artificial intelligence. 2020, 34(04): 6845-6852. https://doi.org/10.1609/aaai.v....
 
25.
Ju W, Fang Z, Gu Y, et al. A comprehensive survey on deep graph representation learning[J]. Neural Networks, 2024: 106207. https://doi.org/10.1016/j.neun....
 
26.
James J Q. Graph construction for traffic prediction: A data-driven approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15015-15027. https://doi.org/10.1109/TITS.2....
 
27.
Aggarwal K, Joty S, Fernandez-Luque L, et al. Adversarial unsupervised representation learning for activity time-series[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 834-841.https://doi.org/10.1609/aaai.v....
 
28.
Yue Z, Wang Y, Duan J, et al. Ts2vec: Towards universal representation of time series[C]//Proceedings of the AAAI conference on artificial intelligence. 2022, 36(8): 8980-8987. https://doi.org/10.1609/aaai.v....
 
29.
Gupta A, Gupta H P, Biswas B, et al. Approaches and applications of early classification of time series: A review[J]. IEEE Transactions on Artificial Intelligence, 2020, 1(1): 47-61. https://doi.org/10.1109/TAI.20....
 
30.
Zheng Y, Koh H Y, Jin M, et al. Graph spatiotemporal process for multivariate time series anomaly detection with missing values[J]. Information Fusion, 2024, 106: 102255. https://doi.org/10.1016/j.inff....
 
31.
Liu C L, Hsaio W H, Tu Y C. Time series classification with multivariate convolutional neural network[J]. IEEE Transactions on industrial electronics, 2018, 66(6): 4788-4797. https://doi.org/10.1109/tie.20....
 
32.
Tan Z, Zhu Y, Liu B. Learning spatial-temporal feature with graph product[J]. Signal Processing, 2023, 210: 109062. https://doi.org/10.1016/j.sigp....
 
33.
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30. https://doi.org/ 10.48550/ARXIV.1706.03762.
 
34.
Wang Y, Wu M, Li X, et al. Multivariate time-series representation learning via hierarchical correlation pooling boosted graph neural network[J]. IEEE Transactions on Artificial Intelligence, 2023, 5(1): 321-333. https://doi.org/ 10.1109/TAI.2023.3241896.
 
35.
Xiao Y, Yin H, Zhang Y, et al. A dual‐stage attention‐based Conv‐LSTM network for spatio-temporal correlation and multivariate time series prediction[J]. International Journal of Intelligent Systems, 2021, 36(5): 2036-2057. https://doi.org/10.1002/int.22....
 
36.
Yang C L, Yang C Y, Chen Z X, et al. Multivariate time series data transformation for convolutional neural network[C]//2019 IEEE/SICE International Symposium on System Integration (SII). IEEE, 2019: 188-192. https://doi.org/10.1109/SII.20....
 
37.
Zerveas G, Jayaraman S, Patel D, et al. A transformer-based framework for multivariate time series representation learning[C]//Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. 2021: 2114-2124. https://doi.org/10.1145/344754....
 
38.
Wang Y, Xu Y, Yang J, et al. Graph-aware contrasting for multivariate time-series classification[C]//Proceedings of the AAAI conference on artificial intelligence. 2024, 38(14): 15725-15734. https://doi.org/10.1609/aaai.v....
 
39.
Van der Maaten L, Hinton G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11).
 
40.
Bathelt A, Ricker N L, Jelali M. Revision of the Tennessee Eastman process model[J]. IFAC-PapersOnLine, 2015, 48(8): 309-314. https://doi.org/10.1016/j.ifac....
 
41.
Ruiz-Cárcel C, Cao Y, Mba D, et al. Statistical process monitoring of a multiphase flow facility[J]. Control Engineering Practice, 2015, 42: 74-88. https://doi.org/10.1016/j.cone....
 
42.
Velickovic P, Cucurull G, Casanova A, et al. Graph attention networks[J]. stat, 2017, 1050(20): 10-48550.https://doi.org/10.48550/arXiv....
 
43.
Du J, Zhang S, Wu G, et al. Topology adaptive graph convolutional networks[J]. arxiv preprint arxiv:1710.10370, 2017. https://doi.org/10.48550/arXiv....
 
44.
Chen D, Liu R, Hu Q, et al. Interaction-aware graph neural networks for fault diagnosis of complex industrial processes[J]. IEEE Transactions on neural networks and learning systems, 2021, 34(9): 6015-6028. https://doi.org/10.1109/TNNLS.....
 
45.
Wu Z, Pan S, Long G, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. 2020: 753-763. https://doi.org/10.1145/339448....
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top