Search for Author, Title, Keyword
RESEARCH PAPER
Layered composite increasing the resistance of patrol and intervention vehicles to the impact of improvised explosive devices (IED) from below
 
 
More details
Hide details
1
Military Institute of Armored and Automotive Technology (WITPiS) Okuniewska 1, 05-070 Sulejówek, Poland
 
 
Publication date: 2018-03-31
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2018;20(1):9-15
 
KEYWORDS
ABSTRACT
Model layered composites were made of polyester resin reinforced with layers of glass fibre and aramid fibre fabrics. The fabrics for the study were selected in a manner enabling the comparison of their ballistic resistance depending on the material type and density. Additionally, aluminium plates were used to produce the composites.The study examined the resistance of the model composites to 1.1 g fragment simulating projectile (FSP) penetration, their susceptibility to deformation caused by shock waves produced by pure TNT charges, and their resistance to the effects of detonation of model improvised explosive devices (IED) containing fragments in the form of bearing balls. The analysis and optimisation of the test results enabled the selection of a layer configuration combining the materials studied that has the lowest area density and that protects car bottom structures against perforation in the case of a detonation of a small improvised explosive device.
REFERENCES (41)
1.
Abrate S. Impact on composite structures. Cambridge: Cambridge University Press, 1998, ISBN 0-521-01832-3.
 
2.
Abrate S. Impact on Laminated Composite Materials. Applied Mechanics Reviews 1991; 44(4): 155-190, https://doi.org/10.1115/1.3119....
 
3.
Amparo G, Graciani E, Paris F. Prediction of in-plane stiffness properties of Non-Crimp Fabric laminates by means of 3D Finite Element analysis. Composites Science and Technology 2008; 68(1): 121-131.
 
4.
Andrews E W, Moussa N A. Failure mode maps for composite sandwich panels subjected to air blast loading. International Journal of Impact Engineering 2009; 36(3): 418-425, https://doi.org/10.1016/j.ijim....
 
5.
Bogusz P, Ochelski S, Panowicz R, Niezgoda T, Barnat W. Influence of loading rate on energy absorption performance of epoxy composites reinforced with glass fabric. Composites Theory and Practice 2012; 12(2): 110-114.
 
6.
Borvik T, Dey S, Clausen A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectile. International Journal of Impact Engineering 2009; 36(7): 948-964.
 
7.
Borvik T, Langseth M, Hopperstad O S, Malo K A. Ballistic penetration of steel plates. International Journal of Impact Engineering 1999; 22(9): 855-886.
 
8.
Committee on High-Performance Structural Fibers for Advanced Polymer Matrix Composites, National Research Council. Report: High-Performance Structural Fibers for Advanced Polymer Matrix Composites. Washington: The National Academies Press, 2005, ISBN: 0-309-54943-4.
 
9.
Committee on Materials Research for Defense After Next, National Research Council. Report: Materials Research to Meet 21st Century Defense Needs. Washington: The National Academies Press, 2003, ISBN: 0-309-50572-0.
 
10.
Committee on Lightweight Materials for 21st Century Army Trucks, National Research Council. Report: Use of Lightweight Materials in 21st Century Army Trucks. Washington: The National Academies Press, 2003, ISBN:0-309-50646-8.
 
11.
Ernest S C. Army focused research team on functionally graded armor composites. Materials Science and Engineering 1999; A259: 155-161.
 
12.
Fahmy A A. Report AD-A281587: Deformation, strength, and failure modes of laminated conventional and hybrid polymer-matrix composites loaded in the thickness direction. Defense Technical Information Center, 1994.
 
13.
Galanis K. Hull construction with composite materials for ships over 100 m in length. Massachusetts Institute of Technology, 2002.
 
14.
Gürdal Z, Haftka R T, Hajela P. Design and Optimization of Laminated Composite Materials. John Wiley & Sons, 1999, ISBN: 978-0-471-25276-4.
 
15.
Hogg P J. Composites for Ballistic Applications. Proceedings of Composite Processing, 2003.
 
16.
Imielińska K, Wojtyra R. Wpływ rodzaju zbrojenia i kolejności ułożenia warstw na tolerancję zniszczeń wywołanych udarami o małej prędkości laminatów epoksydowych zbrojonych włóknem węglowym, szklanym, kevlarowym i hybrydowych. Kompozyty - Composites 2002; 5: 364-368.
 
17.
Jena P K, Mishra B, Ramesh Babu M, Singh A K, Sivakumar K, Bhat T B. Effect of heat treatment on mechanical and ballistic properties of a high strength armour steel. International Journal of Impact Engineering 2010; 37(3): 242-249, https://doi.org/10.1016/j.ijim....
 
18.
Jensen R E, Mcnight S H, Quesenberry M J. Report ARL-TR-2655: Strength and Durability of Glass Fiber Composites Treated With Multicomponent Sizing Formulations. Army Research Laboratory, 2002.
 
19.
Kang T J, Kim C. Impact energy absorption mechanism of largely deformable composites with different reinforcing structures. Fibers and Polymers 2000; 1(1): 45-54.
 
20.
Kant S, Verma S L. A Review on Analysis and Design of Bullet Resistant Jacket - Ballistic Analysis. International Advanced Research Journal in Science, Engineering and Technology 2017; 4(3): 71-80.
 
21.
Kevlar Technical Guide. DuPont.
 
22.
Kirkwood J E, Kirkwood K M, Lee Y S, Egres R G, Wagner N J, Wetzel E D. Report ARL-CR-538: Yarn pull-out as a mechanism for dissipating ballistic impact energy in KevlarR KM-2 fabric: part II: predicting ballistic performance. Army Research Laboratory, 2004.
 
23.
Lane R, Craig B, Babcock W. Materials for blast and penetration resistance. The Amptiac Quarterly 2002; 6(4): 39-45.
 
24.
Liu D. Characterization of impact properties and damage process of glass/epoxy composite laminates. Journal of Composite Materials 2004; 38(16): 1425-1442, https://doi.org/10.1177/002199....
 
25.
Madhu V, Balakrishna Bhat T. Armour Protection and Affordable Protection for Futuristic Combat Vehicles. Defence Science Journal 2011; 61(4): 394-402.
 
26.
Mamalis A G, Spentzas K N, Manolakos D E, Ioannidis M B. Composite and hybrid materials for next generation road and rail vehicles. Proceeding Synenergy Forum Conference, National Technical University of Athens 2008: 9-16.
 
27.
Marston C, Gabbitas B, Adams J. The effect of fibre sizing on fibres and bundle strength in hybrid glass carbon fibre composites. Journal of Materials Science 1997; 32(6): 1415-1423, https://doi.org/10.1023/A:1018....
 
28.
McMahon P E, Ying L. Report 3607: Effects of fibre/matrix interactions on the properties of graphite/epoxy composites. NASA 1982.
 
29.
MIL-HDBK-1002/6. Aluminum structures, composites structures, structural plastics, and fiber-reinforced composites. Department of Defence USA.
 
30.
MIL-HDBK-17. Composite Materials Handbook. Department of Defense USA.
 
31.
Nurick G N, Langdon G S, Chi Y, Jacob N. Behavior of sandwich panels subjected to intense air blast - part 1: experiments. Composite Structures 2009; 91(4): 433-441.
 
32.
Patel B P, Bhola S K, Ganapathi M, Makhecha D P. Penetration of Projectiles in Composite Laminates. Institute of Armament Technology. Defence Science Journal 2004; 54(2): 151-159, https://doi.org/10.14429/dsj.5....
 
33.
Pike R A, Novak R C. Report CR-134763: Design, fabrication and test of multi-fiber laminates. NASA 1975.
 
34.
Randjbaran E, Zahari R, Majid D, Jalil N, Vaghei R and Ahmadi R. The Effects of Stacking Sequence Layers of Hybrid Composite Materials in Energy Absorption under the High Velocity Ballistic Impact Conditions: An Experimental Investigation. Journal of Material Sciences & Engineering 2013, 2(4): 1-8.
 
35.
Razali N, Sultan M T H, Mustapha F, Yidris N, Ishak M R. Impact Damage on Composite Structures - A Review. International Journal of Engineering and Science (IJES) 2014; 3(7): 8-20.
 
36.
Report ETL 1110-2-548: Composite materials for civil engineering structures, U.S. Army Corps of Engineers, 1997.
 
37.
Schuster D. Ballistic impact on composites. Transactions on Engineering Sciences 1994; 4: 175-181.
 
38.
Surowska B. Materiały funkcjonalne i złożone w transporcie lotniczym. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2008; 3: 30-40.
 
39.
Tekalur S A, Bogdanovich A E, Shukla A. Shock loading response of sandwich panels with 3-D woven E-glass composite skins and stitched foam core. Composites Science and Technology 2009; 69(6): 736-753, https://doi.org/10.1016/j.comp....
 
40.
Wang E, Gardner N, Shukla A. The blast resistance of sandwich composites with stepwise graded cores. International Journal of Solids and Structures 2009; 46(18-19): 3492-3502.
 
41.
Zhu F, Lu G. A review of blast and impact of metallic and sandwich structures. Electronic Journal of Structural Engineering 2007; Special Issue: Loading on Structures: 92-101.
 
 
CITATIONS (5):
1.
Influence of aqueous sodium chloride solutions on operational properties of epoxy coatings
Danuta Kotnarowska, Aleksandra Żabińska
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
2.
Numerical study of an IED blast protection system
Sebastian Stanisławek, Grzegorz Sławiński
 
3.
Experimental and Numerical Study of Ballistic Resistance of Composites Based on Sandwich Metallic Foams
Anna Dmitruk, Krzysztof Naplocha, Joanna Pach, Dariusz Pyka, Grzegorz Ziółkowski, Mirosław Bocian, Krzysztof Jamroziak
Applied Composite Materials
 
4.
Strength tests of polymer-glass composite to evaluate its operational suitability for ballistic shield plates
Tadeusz Szymczak, Zbigniew Kowalewski
Eksploatacja i Niezawodność – Maintenance and Reliability
 
5.
Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks
A. Świderski, A. Jóźwiak, R. Jachimowski
Eksploatacja i Niezawodność – Maintenance and Reliability
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top