Search for Author, Title, Keyword
RESEARCH PAPER
Inverse Method for Material Characterization of a UAV Composite Wing Based on FEM and Dynamic Response
 
More details
Hide details
1
Wrocław University of Science and Technology Faculty of Mechanical Engineering, Poland
 
 
Submission date: 2025-05-06
 
 
Final revision date: 2025-05-21
 
 
Acceptance date: 2025-06-18
 
 
Online publication date: 2025-06-19
 
 
Publication date: 2025-06-19
 
 
Corresponding author
Artur Kierzkowski   

Wrocław University of Science and Technology Faculty of Mechanical Engineering, Poland, 27 Wybrzeże Wyspiańskiego st., 50370, Wroclaw, Poland
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2026;28(1):207312
 
HIGHLIGHTS
  • Inverse identification method for composite materials based on dynamic response analysis.
  • Integration of experimental and numerical modal analysis for material property estimation.
  • Validated method applicable to UAV composite structures.
  • Non-destructive approach enabling accurate FEM-based material calibration.
KEYWORDS
TOPICS
ABSTRACT
This work introduces a method for the inverse identification of composite material properties using dynamic response data and finite element modelling. The methodology combines numerical modal analysis, Design of Experiments (DoE), Response Surface Methodology, and a Multi-Objective Genetic Algorithm (MOGA) to determine material parameters without destructive testing. The approach was applied to a UAV composite wing, achieving high correlation between simulated and experimental modal characteristics, with natural frequencies deviations below 2%. Variations between the identified parameters and reference data are linked to inherent inconsistencies in composite manufacturing and the operational condition of the tested structure. Nevertheless, the proposed method proves to be a reliable and non-invasive tool for estimating mechanical properties, enhancing the predictive capabilities of numerical models. Its adaptability makes it a promising solution for future applications in structural health monitoring, damage assessment, and optimization of aerospace composite structures.
REFERENCES (51)
1.
M. Kucharski, M. Milewski, B. Dziewoński, K. Kaliszuk, T. Kisiel, and A. Kierzkowski, ‘Flight Capability Analysis Among Different Latitudes for Solar Unmanned Aerial Vehicles’, Energies, vol. 18, no. 6, Art. no. 6, Jan. 2025, doi: 10.3390/en18061331.
 
2.
‘Home | Clean Aviation’. Accessed: May 20, 2025. [Online]. Available: https://www.clean-aviation.eu/.
 
3.
M. Karpenko and J. Nugaras, ‘Vibration damping characteristics of the cork-based composite material in line to frequency analysis’, Journal of Theoretical and Applied Mechanics, vol. 60, no. 4, pp. 593–602, Nov. 2022, doi: 10.15632/jtam-pl/152970.
 
4.
A. Filippatos, D. Markatos, A. Theochari, and S. Pantelakis, ‘Integrating Sustainability in Aircraft Component Design: Towards a Transition from Eco-Driven to Sustainability-Driven Design’, Aerospace, vol. 12, no. 2, Art. no. 2, Feb. 2025, doi: 10.3390/aerospace12020140.
 
5.
M. Karpenko et al., ‘Performance evaluation of extruded polystyrene foam for aerospace engineering applications using frequency analyses’, Int J Adv Manuf Technol, vol. 126, no. 11, pp. 5515–5526, Jun. 2023, doi: 10.1007/s00170-023-11503-0.
 
6.
P. Ragauskas and R. Belevičius, ‘Identification of material properties of composite materials’, Aviation, vol. 13, no. 4, Art. no. 4, Dec. 2009, doi: 10.3846/1648-7788.2009.13.109-115.
 
7.
B. Rahmani, F. Mortazavi, I. Villemure, and M. Levesque, ‘A new approach to inverse identification of mechanical properties of composite materials: Regularized model updating’, Composite Structures, vol. 105, pp. 116–125, Nov. 2013, doi: 10.1016/j.compstruct.2013.04.025.
 
8.
Y. L. Kang, X. H. Lin, and Q. H. Qin, ‘Inverse/genetic method and its application in identification of mechanical parameters of interface in composite’, Composite Structures, vol. 66, no. 1, pp. 449–458, Oct. 2004, doi: 10.1016/j.compstruct.2004.04.067.
 
9.
B. Chen, Y. Zeng, H. Wang, and E. Li, ‘Approximate Bayesian assisted inverse method for identification of parameters of variable stiffness composite laminates’, Composite Structures, vol. 267, p. 113853, Jul. 2021, doi: 10.1016/j.compstruct.2021.113853.
 
10.
D. Lecompte, A. Smits, H. Sol, J. Vantomme, and D. Van Hemelrijck, ‘Mixed numerical–experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens’, International Journal of Solids and Structures, vol. 44, no. 5, pp. 1643–1656, Mar. 2007, doi: 10.1016/j.ijsolstr.2006.06.050.
 
11.
M. G. D. Geers, R. de Borst, and T. Peijs, ‘Mixed numerical-experimental identification of non-local characteristics of random-fibre-reinforced composites’, Composites Science and Technology, vol. 59, no. 10, pp. 1569–1578, Aug. 1999, doi: 10.1016/S0266-3538(99)00017-2.
 
12.
X. Liu, W. Sun, X. Yan, D. Du, H. Liu, and H. Li, ‘Nonlinear vibration analysis of carbon fiber-reinforced composites with frequency-dependence and strain-dependence: Experimental and theoretical studies’, Thin-Walled Structures, vol. 183, p. 110369, Feb. 2023, doi: 10.1016/j.tws.2022.110369.
 
13.
M. Karpenko, P. Skačkauskas, and O. Prentkovskis, ‘Methodology for the Composite Tire Numerical Simulation Based on the Frequency Response Analysis’, Eksploatacja i Niezawodność – Maintenance and Reliability, vol. 25, no. 2, Apr. 2023, doi: 10.17531/ein/163289.
 
14.
H. Lopes, S. P. Silva, and J. Machado, ‘A simulation strategy to determine the mechanical behaviour of cork-rubber composite pads for vibration isolation’, Eksploatacja i Niezawodność – Maintenance and Reliability, vol. 24, no. 1, pp. 80–88, Mar. 2022, doi: 10.17531/ein.2022.1.10.
 
15.
J. Wittig, G. Tzortzinis, N. Modler, M. Lißner, and A. Filippatos, ‘Vibration-based ice monitoring of composite blades using artificial neural networks under different icing conditions’, Cold Regions Science and Technology, vol. 231, p. 104379, Mar. 2025, doi: 10.1016/j.coldregions.2024.104379.
 
16.
T. H. Ooijevaar, R. Loendersloot, L. L. Warnet, A. de Boer, and R. Akkerman, ‘Vibration based Structural Health Monitoring of a composite T-beam’, Composite Structures, vol. 92, no. 9, pp. 2007–2015, Aug. 2010, doi: 10.1016/j.compstruct.2009.12.007.
 
17.
Z. Liang, K. R. Ramakrishnan, C.-T. Ng, Z. Zhang, and J. Fu, ‘Vibration-based prediction of residual fatigue life for composite laminates through frequency measurements’, Composite Structures, vol. 329, p. 117771, Feb. 2024, doi: 10.1016/j.compstruct.2023.117771.
 
18.
J. H. Tam, Z. C. Ong, C. L. Lau, Z. Ismail, B. C. Ang, and S. Y. Khoo, ‘Identification of material properties of composite plates using Fourier-generated frequency response functions’, Mechanics of Advanced Materials and Structures, vol. 26, no. 2, pp. 119–128, Jan. 2019, doi: 10.1080/15376494.2017.1365980.
 
19.
M. F. Teixeira Silva *, L. M. S. Alves Borges, F. A. Rochinha, and L. A. V. De Carvalho, ‘A genetic algorithm applied to composite elastic parameters identification’, Inverse Problems in Science and Engineering, vol. 12, no. 1, pp. 17–28, Jan. 2004, doi: 10.1080/1068276031000097992.
 
20.
S.-F. Hwang, J.-C. Wu, E. Barkanovs, and R. Belevicius, ‘Elastic Constants of Composite Materials by an Inverse Determination Method Based on A Hybrid Genetic Algorithm’, Journal of Mechanics, vol. 26, no. 3, pp. 345–353, Sep. 2010, doi: 10.1017/S1727719100003907.
 
21.
A. L. Araújo, C. M. Mota Soares, M. J. Moreira de Freitas, P. Pedersen, and J. Herskovits, ‘Combined numerical–experimental model for the identification of mechanical properties of laminated structures’, Composite Structures, vol. 50, no. 4, pp. 363–372, Dec. 2000, doi: 10.1016/S0263-8223(00)00113-6.
 
22.
P. Athi Sankar, R. Machavaram, and K. Shankar, ‘System identification of a composite plate using hybrid response surface methodology and particle swarm optimization in time domain’, Measurement, vol. 55, pp. 499–511, Sep. 2014, doi: 10.1016/j.measurement.2014.05.025.
 
23.
Z. Ismail, H. Khov, and W. L. Li, ‘Determination of material properties of orthotropic plates with general boundary conditions using Inverse method and Fourier series’, Measurement, vol. 46, no. 3, pp. 1169–1177, Apr. 2013, doi: 10.1016/j.measurement.2012.11.005.
 
24.
M. Jahanshahi, H. Shahbazi, and M. Heidari-Rarani, ‘Locating delamination in a composite laminate using machine learning and recurrent deep neural networks based on vibration response’, Structures, vol. 70, p. 107823, Dec. 2024, doi: 10.1016/j.istruc.2024.107823.
 
25.
J. Wang, Z. Chang, G. Cao, and S.-K. Lai, ‘Predicting delamination in composite laminates through semi-analytical dynamic analysis and vibration-based quantitative assessment’, Thin-Walled Structures, vol. 204, p. 112346, Nov. 2024, doi: 10.1016/j.tws.2024.112346.
 
26.
R. Gu, Y. Li, S. Zhang, J. Zhu, X. Pang, and Z. Liu, ‘Structural vibration-based identification of delamination in CFRP cylinders using complex frequency domain correlation and CNN’, Composite Structures, vol. 321, p. 117299, Oct. 2023, doi: 10.1016/j.compstruct.2023.117299.
 
27.
S. Kilimtzidis et al., ‘Modeling, analysis and validation of the structural response of a large-scale composite wing by ground testing’, Composite Structures, vol. 312, p. 116897, May 2023, doi: 10.1016/j.compstruct.2023.116897.
 
28.
G. Dessena, D. I. Ignatyev, J. F. Whidborne, A. Pontillo, and L. Zanotti Fragonara, ‘Ground Vibration Testing of a Flexible Wing: A Benchmark and Case Study’, Aerospace, vol. 9, no. 8, Art. no. 8, Aug. 2022, doi: 10.3390/aerospace9080438.
 
29.
V. Mugnaini, L. Zanotti Fragonara, and M. Civera, ‘A machine learning approach for automatic operational modal analysis’, Mechanical Systems and Signal Processing, vol. 170, p. 108813, May 2022, doi: 10.1016/j.ymssp.2022.108813.
 
30.
P. Mohanty and D. J. Rixen, ‘Identifying mode shapes and modal frequencies by operational modal analysis in the presence of harmonic excitation’, Experimental Mechanics, vol. 45, no. 3, pp. 213–220, Jun. 2005, doi: 10.1007/BF02427944.
 
31.
P. Avitabile, ‘Experimental Modal Analysis (A Simple Non-Mathematical Presentation)’. University of Massachusetts Lowell. [Online]. Available: https://www.uml.edu/docs/s-v-j....
 
32.
J. Zhao, ‘Basics of Modal Testing and Analysis’. Crystal Instruments Corporation, Jul. 2017.
 
33.
A. Nettles, ‘Basic Mechanics of Laminated composite plates’, Oct. 1994.
 
34.
V. Timhede, S. Timhede, S. Winyangkul, and S. Sleesongsom, ‘Aircraft Wing Design Against Bird Strike Using Metaheuristics’, Aerospace, vol. 12, no. 5, Art. no. 5, May 2025, doi: 10.3390/aerospace12050436.
 
35.
J. Sauro and J. R. Lewis, ‘Chapter 3 - How precise are our estimates? Confidence intervals’, in Quantifying the User Experience (Second Edition), J. Sauro and J. R. Lewis, Eds., Boston: Morgan Kaufmann, 2016, pp. 19–38. doi: 10.1016/B978-0-12-802308-2.00003-5.
 
36.
L. M. S. Pereira, T. M. Milan, and D. R. Tapia-Blácido, ‘Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review’, Biomass and Bioenergy, vol. 151, p. 106166, Aug. 2021, doi: 10.1016/j.biombioe.2021.106166.
 
37.
C. Song and R. Kawai, ‘Monte Carlo and variance reduction methods for structural reliability analysis: A comprehensive review’, Probabilistic Engineering Mechanics, vol. 73, p. 103479, Jul. 2023, doi: 10.1016/j.probengmech.2023.103479.
 
38.
ANSYS Inc., DesignXplorer User’s Guide. 2024.
 
39.
A. Kierzkowski, J. Wróbel, M. Milewski, and A. Filippatos, ‘Sensitivity Analysis of Unmanned Aerial Vehicle Composite Wing Structural Model Regarding Material Properties and Laminate Configuration’, Drones, vol. 9, no. 2, Art. no. 2, Feb. 2025, doi: 10.3390/drones9020099.
 
40.
Department of Defense USA, ‘Composite Materials Handbook. Volume 2. Polymer Matrix Composites Materials Properties’. Department of Defence USA, Jul. 17, 2002. [Online]. Available: https://www.waveequation.com/H....
 
41.
‘Airex C70 Data Sheet’. Jul. 2011. [Online]. Available: https://www.3accorematerials.c....
 
42.
H. Karali, G. Inalhan, and A. Tsourdos, ‘Advanced UAV Design Optimization Through Deep Learning-Based Surrogate Models’, Aerospace, vol. 11, no. 8, Art. no. 8, Aug. 2024, doi: 10.3390/aerospace11080669.
 
43.
X.-S. Yang, ‘Chapter 14 - Multi-Objective Optimization’, in Nature-Inspired Optimization Algorithms, X.-S. Yang, Ed., Oxford: Elsevier, 2014, pp. 197–211. doi: 10.1016/B978-0-12-416743-8.00014-2.
 
44.
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘A fast and elitist multiobjective genetic algorithm: NSGA-II’, IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002, doi: 10.1109/4235.996017.
 
45.
Standard Test Method for Tensile Properties of Polymer Matrix Composite Maerials, D3039.
 
46.
Standard Test Method fro Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture, D6641.
 
47.
‘Standard Test Method for Shear Properties of Composite Materials by V-Notched Rail Shear Method’. Accessed: Oct. 23, 2024. [Online]. Available: https://www.astm.org/d7078_d70....
 
48.
M. Karpenko, O. Prentkovskis, and P. Skačkauskas, ‘Analysing the impact of electric kick-scooters on drivers: vibration and frequency transmission during the ride on different types of urban pavements’, Eksploatacja i Niezawodność – Maintenance and Reliability, vol. 27, no. 2, Jan. 2025, doi: 10.17531/ein/199893.
 
49.
S. Zhang, H. Song, L. Xu, and K. Cai, ‘Application Research on the Lightweight Design and Optimization of Carbon Fiber Reinforced Polymers (CFRP) Floor for Automobile’, Polymers, vol. 14, no. 21, Art. no. 21, Jan. 2022, doi: 10.3390/polym14214768.
 
50.
L. Yan and H. Xu, ‘Lightweight composite materials in automotive engineering: State-of-the-art and future trends’, Alexandria Engineering Journal, vol. 118, pp. 1–10, Apr. 2025, doi: 10.1016/j.aej.2024.12.002.
 
51.
X. Cheng et al., ‘A review of thermoplastic composites on wind turbine blades’, Composites Part B: Engineering, vol. 299, p. 112411, Jun. 2025, doi: 10.1016/j.compositesb.2025.112411.
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top