Search for Author, Title, Keyword
RESEARCH PAPER
Analysis, evaluation and monitoring of the characteristic frequencies of pneumatic drive unit and its bearing through their corresponding frequency spectra and spectral density
 
More details
Hide details
1
Department of Mining, Mechanical, Energy and Construction Engineering Higher Technical School of Engineering, University of Huelva, Huelva, Spain
 
2
Department of Agroforestry Sciences, Higher Technical School of Engineering University of Huelva, Huelva, Spain
 
 
Publication date: 2019-12-31
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2019;21(4):585-591
 
KEYWORDS
ABSTRACT
This article shows the results of the study of the characteristic frequencies of pneumatic drive equipment and its suspension bearing. The analysis approaches one of the most important requirements of the industrial sector, which seeks to be recognised by the efficiency and performance of its equipment when compared to its coming economic competitors. For data collection and we have followed the ISO 10816 standards, thus using the values of speed in RMS, aiming to reduce the masking of these signals that occurs depending on whether they are high or low frequencies. The study will respond to one of the most important requirements found in the predictive and preventive control of industrial sites. The problem of the predictive systems of maintenance of equipment with bearings lies in the number of monitoring and analysis points that generate a high cost in time and human resources. The aim will be to determine which of all the study frequencies is the most significant and in which position and measurement axis has the biggest impact. To do this, we will analyse the rotation frequency of the blowing machine, the resulting frequency of all the frequencies, the frequency of the impulsion blades and finally the frequency of the bearing. The study would be able to predict when our equipment is going to suffer a failure, reducing the control points and the cost
 
REFERENCES (23)
1.
Artzer A, Moats M, Bender J. Removal of Antimony and Bismuth from Copper Electrorefining Electrolyte: Part I—A Review. JOM 2018, https://doi.org/10.1007/s11837....
 
2.
Castilla J, Fortes JC, Davila JM, Melgar S, Sarmiento A. Predictive Maintenance of mining machinery based on vibrational analysis. 18 th. International Multidisciplinary Scientific Geoconference & Expo. Sgem 2018, http://doi.10.5593/sgem2018/1.....
 
3.
Chudzik A, Warda B. Effect of radial internal clearance on the fatigue life of the radial cylindrical roller bearing. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21 (2): 211–219, http://dx.doi.org/10.17531/ein....
 
4.
Cong F, Chen G, Dong G, et al. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis. J. Sound Vib. 2013;332 (8): 2081–2097, https://doi.org/10.1016/j.jsv.....
 
5.
Kausschinger B, Schroeder S. Uncertainties in Heat Loss Models of Rolling Bearings of Machine Tools, Procedia CIRP 46 2016; 107 – 110, https://doi.org/10.1016/j.proc....
 
6.
Leturiondo U, Salgado O, Galar D. Multi-body modelling of rolling element bearings and performance evaluation with localised damage. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18 (4): 638–648, http://dx.doi.org/10.17531/ein....
 
7.
Li H, Fu L, Zheng H. Bearing fault diagnosis based on amplitude and phase map of Hermitian wavelet transform. Journal of Mechanical Science and Technology 2011; 25(11):2731– 2740, https://doi.org/10.1007/s12206....
 
8.
McFadden P D, Smith J D. Model for the vibration produced by a single point defect in a rolling element bearing. Journal of Sound and Vibration 1984; 96(1), 69–82, https://doi.org/10.1016/0022-4....
 
9.
Medrano-Hurtado Z Y, Medrano-Hurtado C, Pérez-Tello J, Gómez Sarduy M, Vera-Pérez N. Methodology of Fault Diagnosis on Bearings in a Synchronous Machine by Processing Vibro-Acoustic Signals Using Power Spectral Density Ingeniería. Investigación y Tecnología 2016; Volume 17, Issue 1, January–March, Pages 73-85, https://doi.org/10.1016/j.riit....
 
10.
Mercorelli P, Mercorelli A. Denoising procedure using wavelet packets for instantaneous detection ofpantograph oscillations. Mechanical Systems and Signal Processing 2013; 35(1-2):137–149, https://doi.org/10.1016/j.ymss....
 
11.
Nagi G, Alaa E, Jing P. Residual Life prediction sin the absence of prior degradation know ledge. IEEE Trans. Reliab. 2009; (58): 106–116, https://doi.org/10.1109/TR.200....
 
12.
Nandi S, Toliyat H A, Li X. Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review. IEEE Transactions on Energy Conversion 2015; 20(4), 719–729, https://doi.org/10.1109/TEC.20....
 
13.
Patil M S, Mathew J, Rajendrakumar P K, Desai S. A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing. International Journal of Mechanical Sciences 2010; 52(9), 1193–1201, https://doi.org/10.1016/j.ijme....
 
14.
Pawlik P. Single-number statistical parameters in the assessmente of the techinical condition of machines operating under variable load. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21 (1): 164-169, http://ds.doi.org/10.17531/ein....
 
15.
Polimac V, Polimac J. Assessment of present maintenance practices and future trends. IEEE/PES Transmission and Distribution Conference and Exposition. Developing New Perspectives (Cat. No.01CH37294) 2001; https://doi.org/10.1109/tdc.20....
 
16.
Schnabel S, Marklund P, Larsson R, Golling S. The Detection of Plastic Deformation in Rolling Element Bearings by Acoustic Emission. Tribiology International 2017; https://doi.org/10.1016/j.trib....
 
17.
Toledo E, Pinhas I, Aravot D, Akselrod S. Bispectrum and bicoherence for the investigation of very high frecuency peaks in heart rate variability. Proceedings of the IEEE, Computers in Cardiology 2001; Núm. 28., pp. 667-670, https://doi.org/10.1109/CIC.20....
 
18.
Tse P, Peng Y, Yam R. Wavelet analysis and envelope detectionfor rolling element bearing fault diagnosis. Journal of vibration and acoustic 2001; p.303-310, https://doi.org/10.1115/1.1379....
 
19.
Yujie G, Jinguy L, Jie L, Zhanhui L, Wentao L. A method for improving envelopespectrum symptom of fault rolling bearing based on the auto-correlation acceleration signal. Applied Mechanics and Materials 2013; 275:856–864, https://doi.org/10.4028/www.sc....
 
20.
Zheng D, Chen W. Thermal performances on angular contact ball bearing of high- speed spindle considering structural constratints under oil-air lubrication. Tribology International, 2017; (109) 593–601, https://doi.org/10.1016/j.trib....
 
21.
Zhou W, Habetler T G, Harley R G. Bearing Condition Monitoring Methods for Electric Machines: A General Review. IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives 2007; https://doi.org/10.1109/demped....
 
22.
Zuber N, Bajric R. Application of artificial neural networks and principal component analysis on vibration signals for automated fault classification of roller element bearings. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18 (2): 299–306, http://dx.doi.org/10.17531/ein....
 
23.
Zuber N, Bajric R., Šostakov R. Gearbox faults identification using vibration signal analysis and artificial intelligence methods. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2014; 16 (1): 61–65.
 
 
CITATIONS (4):
1.
Radial internal clearance analysis in ball bearings
Bartłomiej Ambrożkiewicz, Arkadiusz Syta, Nicolas Meier, Grzegorz Litak, Anthimos Georgiadis
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
2.
Hybrid methodology using balancing optimization and vibration analysis to suppress vibrations in a double crank-rocker engine
Anwr Albaghdadi, Masri Baharom, Shaharin Sulaimana
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
3.
Evaluation procedure for blowing machine monitoring and predicting bearing SKFNU6322 failure by power spectral density
Javier Castilla-Gutiérrez, Garrido Fortes, Martín Davila, Gil Grande
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
4.
Control and prediction protocol for bearing failure through spectral power density
Javier Castilla-Gutiérrez, Juan Fortes, Jose Davila
Eksploatacja i Niezawodność – Maintenance and Reliability
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top