Search for Author, Title, Keyword
RESEARCH PAPER
IIoT based operational technology system for monitoring belt transmissions
 
More details
Hide details
1
Faculty of Mechanical Engineering, Silesian University of Technology, Poland
 
2
KOMAG Institute of Mining Technology, Poland
 
These authors had equal contribution to this work
 
 
Submission date: 2024-07-08
 
 
Final revision date: 2024-09-30
 
 
Acceptance date: 2024-12-14
 
 
Online publication date: 2024-12-27
 
 
Publication date: 2024-12-27
 
 
Corresponding author
Jakub Franek   

Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100, Gliwice, Poland
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2025;27(3):197382
 
HIGHLIGHTS
  • Lower number of measurements necessary to determine the parameters of the drive system.
  • According to Industry 4.0 standards, system based on the Industrial In-ternet of Things.
  • Multiplatform, integrated information technology system.
  • Generating data on the basis of various, distributed sources.
  • Industrial hardware and software facilities, adjusted to Ethernet-based networking.
KEYWORDS
TOPICS
ABSTRACT
The aim of the paper was to search for and study concepts of identifying anomalies in the operation of synchronous belt transmissions. It was assumed that such a system should provide basic data for classical diagnostic purposes, as well as indicators for synchronisation error measurements, and indicators of correlation between parameters of pulley motion as well as vibration and synchronisation error for research purposes. Consideration was given to the possibility of reducing to a minimum the number of measurements necessary to determine the key parameters of the drive system. According to Industry 4.0 standards, the prototype of such system is based on the Industrial Internet of Things. The proposed solution is a multiplatform, integrated information technology, generating data on the basis of various, distributed sources. The system combines standard industrial hardware and software facilities, adjusted to Ethernet-based networking. The expected result was a graphical data representation accessible in digital displays, acquired from computational node (e.g. cloud).
REFERENCES (32)
1.
Kagotani, M.; Aida, T.; Koyama, T.; Sato, S.; Hoshiro, T. A study on transmission characteristics of toothes belt drives. Bulletin of the JSME, 1983, Volume 26, pp. 1238-1244. https://doi.org/10.1299/jsme19....
 
2.
Koyama, T.; Kagotani, M.; Shibata, T.; Hoshiro, T. A study on strength of toothed belt-2nd report – Influence of Pitch Difference on Load Distribution. Bulletin of the JSME, 1979, Volume 22, pp. 982–987. https://doi.org/10.1299/jsme19....
 
3.
Koyama, T.; Kagotani, M.; Shibata, T.; Sato, S.; Hoshiro, T. A study on strength of toothed belt-3rd report – Fatigue Strength and Features of Fracture. Bulletin of the JSME, 1979, Volume 22, pp. 988–993. https://doi.org/10.1299/jsme19....
 
4.
Koyama, T.; Kagotani, M.; Shibata, T.; Sato, S.; Hoshiro, T. A study on strength of toothed belt-4th report – Load Distribution in Case of Considering Incomplete Meshing. Bulletin of the JSME, 1980, Volume 23, pp. 1235–1239. https://doi.org/10.1299/jsme19....
 
5.
Koyama, T.; Kagotani, M.; Shibata, T.; Sato, S.; Hoshiro, T. A study on strength of toothed belt-5th report – Effect of Pitch Difference on Fatigue Strength of Toothed Belt. Bulletin of the JSME, 1980, Volume 23, pp. 1240–1244. https://doi.org/10.1299/jsme19....
 
6.
Koyama, T.; Kagotani, M.; Shibata, T.; Sato, S.; Hoshiro, T. A study on strength of toothed belt-6th report – Behavior of Belt and Pulley Tooth at Incomplete Meshing Region. Bulletin of the JSME, 1981, Volume 24, pp. 1500–1506. https://doi.org/10.1299/jsme19....
 
7.
Koyama, T.; Marshek, K.M. Toothed belt drives—Past, present and future. Zahnriemenantriebe—Vergangenheit, gegenwart und zukunft. Mechanism and Machine Theory, 1988, Volume 23, pp. 227-241. https://doi.org/10.1016/0094-1....
 
8.
Köster, L. Der Zugkraftverlauf in Zahnriemenantrieben. Konstruktion, 1982, Volume 34, pp. 99-104.
 
9.
Köster, L. Untersuchung der Kräftverhältnisse in Zahnriemenantrieben; Diss. UniBw, Hamburg, 1981.
 
10.
Krause, W. Zahnriemengetriebe, Verlag Hüthig, Heidelberg, Germany, 1988.
 
11.
Funk, W.; Köster, L. Problematik der Drehmomentübertragung durch Zahnriementriebe. Antriebstechnik, 1982, Volume 21, pp. 390-394.
 
12.
Niemann, G. Maschinenelemente II, Springer-Verlag, Berlin, Germany, 1960. https://doi.org/10.1007/978-3-....
 
13.
Gerbert, G.; Jönsson, H.; Persson, U.; Stensson, G. Load Distribution in Timing Belts. Journal of Mechanical Design, 1978, Volume 100, pp. 208-215. https://doi.org/10.1115/1.3453....
 
14.
Uchida, T.; Furukawa, Y.; Tomono, K.; Takahashi, H. Pitch Difference and Belt Tooth Configuration Effect on Load Distribution of Timing Belt Using FEM Analysis. Journal of engines, 1996. Volume 105, pp. 346-355. https://doi.org/10.4271/960299.
 
15.
Abrate, S. Vibrations of belts and belt drives. Mechanism and Machine Theory, 1992, Volume 27, pp. 645-659. https://doi.org/10.1016/0094-1....
 
16.
Dalgarno, K.W.; Day, A.J.; Childs, T.H.C.; Moore, R.B. Stiffness loss of synchronous belts. Composited Part B: Engineering, 1998, Volume 29, pp. 217-222. https://doi.org/10.1016/S1359-....
 
17.
Alspaugh, D.W. Torsional vibration of a moving band. Journal of the Franklin Institute, 1967. Volume 283, pp. 328-338. https://doi.org/10.1016/0016-0....
 
18.
Childs, T.H.C.; Parker, I.K. Power transmission by flat, V and timing belts. Tribology Series, 1989, Volume 14, pp. 133-142. https://doi.org/10.1016/S0167-....
 
19.
Belofsky, H. On the theory of power transmission by a flat, elastic belt. Wear, 1973. Volume 25, pp. 73-84. https://doi.org/10.1016/0043-1....
 
20.
Chowdhurry, S.; Yedavalli, R.K. Dynamics of belt-pulley-shaft systems. Mechanism and Machine Theory, 2016, Volume 98, pp. 199-215. https://doi.org/10.1016/j.mech....
 
21.
Wenbo, L.; Zhenxiang, X. Flexural fatigue life prediction of a tooth V-belt made of fiber reinforced rubber. International Journal of Fatigue, 2018. Volume 111, pp. 269-277. https://doi.org/10.1016/j.ijfa....
 
22.
Khazaee, M.; Banakar, A.; Ghobadian, B.; Mirsalim, M.A.; Minaei, S.; Jafari, S.M. Detection of inappropriate working conditions for the timing belt in internal combustion engines using vibration signals and data mining. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017. Volume 231, pp. 418-432. https://doi.org/10.1177/095440....
 
23.
Johanesson, T. Synchronous belt mechanics and durability – An investigation towards life prediction. Doktorsavhandlingar vid Chalmers Tekniska Hogskola, 2003. Volume 1953, pp. i+1-67.
 
24.
Bucchi, F.; Frendo, F. Enhanced brush model for the mechanics of power transmission in flat belt drives under steady–state conditions: Effect of belt elasticity. Mechanism and Machine Theory, 2020, Volume 153. https://doi.org/10.1016/j.mech....
 
25.
Bucchi, F.; Frendo, F. Validation of the brush model for the analysis of flat belt transmissions in steady-state conditions by finite element simulation. Mechanism and Machine Theory, 2022, Volume 167. https://doi.org/10.1016/j.mech....
 
26.
Kycyku, A.; Likaj, R.; Hamidi, B. Modelling and Analysis of Nominal Conveying Ability for the Toothed Belt with STD Profile. IFAC-PapersOnLine, 2016. Volume 49, pp. 243-246. https://doi.org/10.1016/j.ifac....
 
27.
Zhang, L.; Zy, J.W. Modal analysis of serpentine belt drive systems. Journal of Sound and Vibration, 1999. Volume 222, pp. 259-279. https://doi.org/10.1006/jsvi.1....
 
28.
Fehsenfeld, M.; Kühn, J.; Wielitzka, M.; Ortmaier, T. Tension Monitoring of Toothed Belt Drives Using Interval-Based Spectral Features. IFAC-PapersOnLine, 2020. Volume 53, pp. 738-743. https://doi.org/10.1016/j.ifac....
 
29.
Childs, T.H.C.; Parker, I.K.; Day, A.J.; Coutzoucos, A.; Dalgarno, K.W. Paper XII (ii) Tooth Loading and Life of Automotive Timing Belts. Tribology Series, 1991. Volume 18, pp. 341-348. https://doi.org/10.1016/S0167-....
 
30.
Childs, T.H.C.; Dalgarno, K.W.; Hojjati, M.H.; Tutt, M.J.; Day, A.J. The meshing of timing belt teeth in pulley grooves. Pro-ceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1997. Volume 211, pp. 205-218. https://doi.org/10.1243/095440....
 
31.
Bucchi, F.; Frendo, F. “Brush model” for the analysis of flat belt transmissions in steady-state conditions. Mechanism and Machine Theory, 2020, Volume 143. https://doi.org/10.1016/j.mech....
 
32.
Firbank, T.C. Mechanics of the belt drive. International Journal of Mechanical Science, 1970, Volume 12, pp. 1053-1063. https://doi.org/10.1016/0020-7....
 
 
CITATIONS (2):
1.
Intelligent Systems in Production Engineering and Maintenance IV
Hubert Kędziora, Artur Meller, Stanisław Legutko
 
2.
Intelligent Systems in Production Engineering and Maintenance IV
Mariusz Piechowski, Izabela Kudelska
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top