Search for Author, Title, Keyword
RESEARCH PAPER
An aggregate criterion for selecting a distribution for times to failure of components of rail vehicles
 
More details
Hide details
1
Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland
 
 
Publication date: 2020-03-31
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2020;22(1):102-111
 
KEYWORDS
ABSTRACT
This paper presents an aggregate method of selecting a theoretical cumulative distribution function (CDF) for an empirical CDF. The method was intended to identify the time of reliable operation of a renewable technical object by applying three criteria based on the following statistics: the modified Kolmogorov–Smirnov (MK-S) statistic, the mean absolute deviation of the theoretical CDF from the empirical CDF, and a statistic calculated on the basis of a log-likelihood function. The values of these statistics were used to rank eleven probability distributions. The data for which calculations were made concerned failures of the driver’s cab lock recorded during five years of operation of a fleet of 45 trams. Before calculating the statistics, the empirical CDF of the examined component was determined using the Kaplan–Meier estimator, and then, using the method of Maximum Likelihood Estimation, the parameters of the analysed theoretical distributions were estimated. The theoretical distributions were then ranked according to the values obtained for each of the assumed criteria: the lower the value for a given criterion, the higher the ranking position, indicating a better fit according to that criterion. Then, based on the three rankings and on weights assigned to the individual criteria, an aggregate criterion (referred to as DESV) was implemented to select the best-fitting probability distribution. The method assumes that the lowest DESV value corresponds to the best-fitting theoretical distribution. In the case of the examined component, this was found to be the generalised gamma distribution. It is shown that if the final decision is based on the aggregate criterion, which takes into account the three criteria for goodness of fit, the reliability of the estimation of the time-to-failure distribution increases, and thus mistakes resulting from the use of only one of the criteria can be avoided.
REFERENCES (39)
1.
Abernethy R B. The New Weibull Handbook: Reliability & Statistical Analysis for Predicting Life, Safety, Survivability, Risk, Cost, and Warranty Claims (Fifth ed.), Florida, 2010.
 
2.
Andrzejczak K, Selech J. Flexible Prediction of the Vehicle Component Damage. Transport Means 2018: Proceedings of the 22nd International Scientific Conference, Trakai, Lithuania, Part II, 2018; 987-990.
 
3.
Andrzejczak K, Selech J. Generalised Gamma Distribution in the Corrective Maintenance Prediction of Homogeneous Vehicles. In: Kabashkin I, Yatskiv (Jackiva) I, Prentkovskis O. (eds) Reliability and Statistics in Transportation and Communication. RelStat 2018. Lecture Notes in Networks and Systems. Springer, Cham 2018; 68.
 
4.
Andrzejczak K, Selech J. Investigating the trends of average costs of corrective maintenance of public transport vehicles. Journal of KONBiN 2017; 41: 207-226, https://doi.org/10.1515/jok-20....
 
5.
Andrzejczak K, Selech J. Quantile analysis of the operating costs of the public transport fleet. Transport Problems, 2017; 12 (3): 103-111.
 
6.
Andrzejczak K. Statystyka elementarna z wykorzystaniem systemu Statgraphics [Elementary statistics using the Statgraphics system], Wyd. Politechniki Poznańskiej, Poznań 1997.
 
7.
Bartnik G, Pieniak D, Niewczas A M, Marciniak A. Probabilistic model for flexural strength of dental composites used in modelling reliability of the "tooth-dental composite" system. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18 (1): 136-141, https://doi.org/10.17531/ein.2....
 
8.
Bavuso S J. Aerospace Applications of Weibull and Monte Carlo Simulation with Importance Sampling, IEEE, Annual Reliability and Maintainability Symposium, Proc. 1997.
 
9.
Dolce J E. Analytical Fleet Maintenance Management, SAE International, SUA, 1994.
 
10.
Elmahdy E E. Modelling Reliability Data with Finite Weibull or Lognormal Mixture Distributions. Appl. Math. Inf. Sci. 2017; 11 (9), 1081-1089, https://doi.org/10.18576/amis/....
 
11.
Ferreira L A, Silva J L. Parameter estimation for Weibull distribution with right censored data using EM algorithm. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19 (2): 310-315, https://doi.org/10.17531/ein.2....
 
12.
Fuc P, Rymaniak L, Ziolkowski A. The correlation of distribution of PM number emitted under actual conditions of operation by PC and HDV vehicles, WIT Transactions on Ecology and the Environment. WIT Press, 2013; 174: 207.
 
13.
Gill A. Optimisation of the technical object maintenance system taking account of risk analysis results. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19 (3): 420-431, https://doi.org/10.17531/ein.2....
 
14.
Hajkowski J, Popielarski P, Sika R. Prediction of HPDC casting properties made of AlSi9Cu3 alloy, Advances in Manufacturing, SPRINGER, Manufacturing 2017, 621-631, https://doi.org/10.1007/978-3-....
 
15.
Hirose H. Bias Correction for the Maximum Likelihood Estimation in Two-parameter Weibull Distribution, IEEE Transactions on Dielectrics and Electrical Insulation 1999; 6: 1, https://doi.org/10.1109/94.752....
 
17.
Johnson R A, Miller I, Freund J E. Probability and Statistics for Engineers, eighth ed., Pearson Education Limited Co., UK, 2014.
 
18.
Kececioglu D. Reliability & Life Testing Handbook, PrenticeHall, Inc., Englewood Cliffs, New Jersey, 1993; 1.
 
19.
Lawless J F. Statistical Models and Methods for Lifetime Data, second ed., Wiley, 2002, https://doi.org/10.1002/978111....
 
20.
Lawless J F. Statistical Models And Methods for Lifetime Data, John Wiley & Sons, Inc., New York, 1982.
 
21.
Lee E T, Wang J W. Statistical Methods for Survival. Data Analysis, John Wiley & Sons Inc; (3rd Edition), 2003, https://doi.org/10.1002/047145....
 
22.
Legát V, Mošna F, Aleš Z, Jurča V. Preventive maintenance models - higher operational reliability. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19 (1): 134-141, https://doi.org/10.17531/ein.2....
 
23.
Liu J, Song B, and Zhang Y. Competing failure model for mechanical system with multiple functional failures. Advances in Mechanical Engineering 2018, 10(5) 1-16, https://doi.org/10.1177/168781....
 
24.
Loska A. Exploitation assessment of selected technical objects using taxonomic methods, Eksploatacja i Niezawodnosc − Maintenance and Reliability 2013; 15, 1.
 
25.
Młynarski S, Pilch R, Smolnik M, Szybka J. Methodology of network systems reliability assessment on the example of urban transport. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (2): 278-283, https://doi.org/10.17531/ein.2....
 
26.
Młyńczak M. Analiza danych eksploatacyjnych w badaniach niezawodności obiektów technicznych, Zeszyty Naukowe WSOWL, 2001; 1 (159).
 
27.
Nelson W. Applied Life Data Analysis, John Wiley & Sons, Inc., New York, 1982, https://doi.org/10.1002/047172....
 
28.
Perz P, Malujda I, Wilczyński D, Tarkowski P. Methods of controlling a hybrid positioning system using LabVIEW, 21th Scientific Polish-Slovak Conference "Machine Modeling and Simulations 2016", Procedia Engineering 2017; 177, 339-346, https://doi.org/10.1016/j.proe....
 
29.
Pieniak D, Niewczas A M, Niewczas A, Bieniaś J. Analysis of Survival Probability and Reliability of the Tooth-composite Filling System. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2011; 2(50): 25-34.
 
30.
ReliaSoft Corporation, Life Data (Weibull) Analysis Reference, ReliaSoft Publishing Tucson, AZ, 2008.
 
31.
Research Project "Increase in the efficiency of functioning of public means of transport as a result of implementation of LCC and RAMS concepts in accordance with the IRIS standards based on integrated information technology system" financed by Polish National Center for Research and Development. No. PBS3/B6/30/2015.
 
32.
Rojek I, Kujawińska A, Hamrol A, Rogalewicz M. Artificial neural networks as a means for making process control charts user friendly. In: Burduk A., Mazurkiewicz D. (eds.), Intelligent Systems in Production Engineering and Maintenance - ISPEM 2017, Advances in Intelligent Systems and Computing, Springer, 637, 168-178, 2017, https://doi.org/10.1007/978-3-....
 
33.
Selech J. Prognozowanie kosztów obsługiwania korekcyjnego pojazdów transportu masowego [Forecasting costs of corrective maintenance of mass transport vehicles]. Wydawnictwo Naukowe ITeE-PIB, Radom 2019, ISBN 978-83-7789-557-3.
 
34.
Świderski A, Jóźwiak A, Jachimowski R. Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks, Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (2), 292-299, https://doi.org/10.17531/ein.2....
 
35.
Trojanowska J, Kolinski A, Galusik D, Varela M L R, Machado J. A methodology of improvement of manufacturing productivity through increasing operational efficiency of the production process. In: Hamrol A., Ciszak O., Legutko S., Jurczyk M. (eds) Advances in Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham, 2018; 23-32, https://doi.org/10.1007/978-3-....
 
36.
Waluś K J. Driver's Strategy and Braking Distance in Winter, Transport Means 2017: Proceedings of the 21st International Scientific Conference, Juodkrante, Lithuania. 2017; Part 2, 505 - 509, ISSN 1822-296 X, e-ISSN 2351-7034.
 
37.
Wojtkowiak D, Talaśka K, Malujda I, Domek G. Estimation of the perforation force for polymer composite conveyor belts taking into consideration the shape of the piercing punch. The International Journal of Advanced Manufacturing Technology 2018, https://doi.org/10.1007/s00170....
 
38.
Ziółkowski J, Borucka A, Model Markowa w logistycznym zarządzaniu przedsiębiorstwem [Markov model in logistic management of enterprise], Journal of Konbin 2016; 2 (38), https://doi.org/10.1515/jok-20....
 
39.
Żurek J, Ziółkowski J, Borucka A. Application of Markov processes to the method for analysis of combat vehicle operation in the aspect of their availability and readiness, Safety and Reliability - Theory and Applications - Čepin & Briš (Eds)©, Taylor & Francis Group, London, 2017; 2343-2352.
 
 
CITATIONS (28):
1.
Innovations in Mechatronics Engineering
Edward Kozłowski, Anna Borucka, Yiliu Liu, Dariusz Mazurkiewicz
 
2.
The Issue of Evaluating the Effectiveness of Miniature Safety Fuses as Anti-Damage Systems
Jarosław Łukasiak, Adam Rosiński, Michał Wiśnios
Energies
 
3.
A framework for corrosion assessment in metallic structures, from data analysis to risk based inspection
Xiaofei Cui, Xiaoxia Liang, Ujjwal Bharadwaj
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
4.
Reliability Analysis for Unrepairable Automotive Components
Dariusz Ulbrich, Jaroslaw Selech, Jakub Kowalczyk, Jakub Jóźwiak, Karol Durczak, Leszek Gil, Daniel Pieniak, Marta Paczkowska, Krzysztof Przystupa
Materials
 
5.
Uncertainty propagation in structural reliability with implicit limit state functions under aleatory and epistemic uncertainties
Shuang Zhou, Jianguo Zhang, Lingfei You, Qingyuan Zhang
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
6.
Improved method of processing the output parameters of the diesel locomotive engine for more efficient maintenance
Peter Zvolenský, Dalibor Barta, Droździel Pawel, Ľubomír Kašiar
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
7.
Case Study of Support Frame Optimization Using a Distant Load
Paweł Lonkwic, Krzysztof Przystupa, Tomasz Krakowski, Hubert Ruta
Sustainability
 
8.
Assessment of disc brake vibration in rail vehicle operation on the basis of brake stand
Wojciech Sawczuk, Agnieszka Merkisz-Guranowska, Cañás Rilo
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
9.
A method for estimating the probability distribution of the lifetime for new technical equipment based on expert judgement
Karol Andrzejczak, Lech Bukowski
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
10.
Reliability Analysis of Military Vehicles Based on Censored Failures Data
Mateusz Oszczypała, Jarosław Ziółkowski, Jerzy Małachowski
Applied Sciences
 
11.
Predictive analysis of the impact of the time of day on road accidents in Poland
Anna Borucka, Edward Kozłowski, Piotr Oleszczuk, Andrzej Świderski
Open Engineering
 
12.
Assessing the Operation System of Fire Alarm Systems for Detection Line and Circuit Devices with Various Damage Intensities
Jacek Paś, Adam Rosiński, Michał Wiśnios, Marek Stawowy
Energies
 
13.
Monitoring the Damage Evolution in Rolling Contact Fatigue Tests Using Machine Learning and Vibrations
Luca Provezza, Ileana Bodini, Candida Petrogalli, Matteo Lancini, Luigi Solazzi, Michela Faccoli
Metals
 
14.
Constructing Reference Plans of Two-Criteria Multimodal Transport Problem
Krzysztof Przystupa, Zhang Qin, Serhii Zabolotnii, Volodymyr Pohrebennyk, Sergii Mogilei, Chen Zhongju, Leszek Gil
Transport and Telecommunication Journal
 
15.
Assessment of the Impact of Emitted Radiated Interference Generated by a Selected Rail Traction Unit on the Operating Process of Trackside Video Monitoring Systems
Jacek Paś, Adam Rosiński, Patryk Wetoszka, Kamil Białek, Tomasz Klimczak, Mirosław Siergiejczyk
Electronics
 
16.
Dynamic reliability assessment of a complex recovery system using fault tree, fuzzy inference and discrete event simulation
Abolghasem Nobakhti, Sadigh Raissi, Kaveh Damghani, Roya Soltani
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
17.
Analysis of Light Utility Vehicle Readiness in Military Transportation Systems Using Markov and Semi-Markov Processes
Mateusz Oszczypała, Jarosław Ziółkowski, Jerzy Małachowski
Energies
 
18.
Mathematical Programming and Solution Approaches for Transportation Optimisation in Supply Network
Joanna Szkutnik-Rogoż, Jarosław Ziółkowski, Jerzy Małachowski, Mateusz Oszczypała
Energies
 
19.
Method for estimating the durability of aviation hydraulic drives
Leszek Ułanowicz, Grzegorz Jastrzębski, Paweł Szczepaniak
Eksploatacja i Niezawodność – Maintenance and Reliability
 
20.
Semi-Markov approach for reliability modelling of light utility vehicles
Mateusz Oszczypała, Jarosław Ziółkowski, Jerzy Małachowski
Eksploatacja i Niezawodność – Maintenance and Reliability
 
21.
Research Determining the Priority Order of Forces Acting on a Vehicle Transporting Logs
Jonas Matijošius, Kristina Čižiūnienė, Jūratė Liebuvienė, Edgar Sokolovskij
Applied Sciences
 
22.
Applied Modeling Techniques and Data Analysis 1
Franciszek Grabski
 
23.
Reliability analysis and redundancy optimization of k-out-of-n systems with random variable k using Continuous Time Markov Chain and Monte Carlo simulation
Mateusz Oszczypała, Jakub Konwerski, Jarosław Ziółkowski, Jerzy Małachowski
Reliability Engineering & System Safety
 
24.
Comparison of the Relative Importance of Factors Affecting the Conveyance of Bulk and Liquid Cargo
Kristina Čižiūnienė, Jonas Matijošius, Jūratė Liebuvienė, Edgar Sokolovskij
Applied Sciences
 
25.
Validation of Ecology and Energy Parameters of Diesel Exhausts Using Different Fuel Mixtures, Consisting of Hydrogenated Vegetable Oil and Diesel Fuels, Presented at Real Market: Approaches Using Artificial Neural Network for Large-Scale Predictions
Jonas Matijošius, Alfredas Rimkus, Alytis Gruodis
Machines
 
26.
Copula-Based Reliability Analysis of Vehicles Based on Censored Failures Data Using Reliability Importance Measures
Mateusz Oszczypała, Jakub Konwerski, Jarosław Ziółkowski, Jerzy Małachowski
IEEE Access
 
27.
Using Artificial Intelligence to Solve Transportation Problems
Antoniia Bieliatynska, Kristina Čižiūnienė, Iryna Klymenko, Jonas Matijošius
 
28.
Analysis of Parcel Delivery Issues at ‘State Parcel Company’: An Examination of Customer Complaints and Interrelationships
Kristina Čižiūnienė, Augustė Šiugždinytė, Jonas Matijošius
Logistics
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top