Search for Author, Title, Keyword
RESEARCH PAPER
Testing of an industrial robot’s accuracy and repeatability in off and online environment
,
 
 
 
More details
Hide details
1
Institute of Engineering Processes Automation and Integrated Manufacturing Systems Faculty of Mechanical Engineering Silesian University of Technology ul. Konarskiego 18A, 44-100 Gliwice, Poland
 
2
ProPoint SP. Z O.O. SP. K. [Ltd.] ul. Bojkowska 37R, 44-100 Gliwice, Poland
 
 
Publication date: 2018-09-30
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2018;20(3):455-464
 
KEYWORDS
ABSTRACT
The paper discusses issues concerning the accuracy and repeatability tests of the positioning of the Kuka KR 16-2 industrial robot. The results of laboratory tests of an industrial robot, as well as a comparison of robot motion paths in the Robcad environment with the real robot motion paths are presented. In order to register movement paths in the laboratory conditions, the laser tracker Faro Vantage was used. Frequent necessity to correct programs of industrial robots created in the offline environment, is a results, among others, from the insufficient experience of people who carry out programming, the environment in which robots work and the parameters of the robots themselves, and therefore their accuracy and repeatability. It is connected with the extension of the start-up time and high costs. The work describes the measurement method and attempts to determine the influence of the type of route and motion parameters on the accuracy and repeatability of robot. The accuracy of mapping of simulated robot motion in a virtual environment was also verified.
 
REFERENCES (28)
1.
Banaś W, Herbuś K, Kost G, Nierychlok A, Ociepka P, Reclik D. Simulation of the Stewart platform carried out using the Siemens NX and NI LabVIEW programs. Advanced Materials Research 2014; 837(1): 537-542.
 
2.
Bocian M, Jamroziak K, Kulisiewicz M. An identification of nonlinear dissipative properties of constructional materials at dynamical impact loads conditions. Meccanica 2014; 49(8): 1955-1965, https://doi.org/10.1007/s11012....
 
3.
Brink J, Hinds B, Haney A. Robotics repeatability and accuracy: another approach. Texas Journal of Science 2004; 56 (2): 149–156.
 
4.
Buchacz A, Płaczek M, Wróbel A. Modelling of passive vibration damping using piezoelectric transducers – the mathematical model. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2014; 16 (2): 301–306.
 
5.
Cholewa A, Świder J, Zbilski A. Verification of forward kinematics of the numerical and analytical model of Fanuc AM100iB robot. IOP Conf. Ser.: Mater. Sci. Eng. 2016; 145(1): 052001, https://doi.org/10.1088/1757-8....
 
6.
Conrad K L, Shiakolas P S, Yih T C. Robotic calibration issues: accuracy, repeatability and calibration. Proceedings of the 8th Mediterranean Conference on Control & Automation (MED 2000), Rio, Patras, GREECE, 17-19 July 2000.
 
7.
Du G, Zhang P. Online robot calibration based on vision measurement. Robotics and Computer-Integrated Manufacturing 2013; 29 (1): 484–492, https://doi.org/10.1016/j.rcim....
 
8.
Dymarek A, Dzitkowski T, Herbuś K, Kost G, Ociepka P. Geometric analysis of motions exercised by the Stewart platform. Advanced Materials Research 2014; 837(1): 351-356.
 
9.
Gürsel A, Bijan S. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. Mechanism and Machine Theory 2005; 40 (8): 879–906, https://doi.org/10.1016/j.mech....
 
10.
Herbuś K, Kost G, Reclik D, Świder J. Integration of a virtual 3D model of a robot manipulator with its tangible model (phantom). Advanced Materials Research 2104; 837(1): 582-587.
 
11.
Jamroziak K, Bocian M, Kulisiewicz M. Energy consumption in mechanical systems using a certain nonlinear degenerate model. Journal of Theoretical and Applied Mechanics 2013; 51 (4): 827-835.
 
12.
Kluz R, Trzepieciński T. The repeatability positioning analysis of the industrial robot arm. Assembly 2014; 34 (3): 285–295, https://doi.org/10.1108/AA-07-....
 
13.
Płaczek M. Conception of the system for traffic measurements based on piezoelectric foils. IOP Conf. Series: Materials Science and Engineering 2016; 145 (1): 042025, https://doi.org/10.1088/1757-8....
 
14.
Mayer J R, Parker R, Graham A. A Portable Instrument for 3-D Dynamic Robot Measurements Using Triangulation and Laser Tracking. IEEE Transactions on Robotics and Automation 1994; 10 (4): 504–516, https://doi.org/10.1109/70.313....
 
15.
Motta J M, Carvalho G C, McMaster R S. Robot calibration using a 3D vision-based measurement system with a single camera. Robotics and Computer Integrated Manufacturing 2001; 17 (1): 487–497, https://doi.org/10.1016/S0736-....
 
16.
Nubiola A, Bonev I A. Absolute robot calibration with a single telescoping ballbar. Precision Engineering 2014; 38 (1): 472–480, https://doi.org/10.1016/j.prec....
 
17.
Nubiola A, Bonev I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing 2013; 29 (1): 236–245, https://doi.org/10.1016/j.rcim....
 
18.
Płaczek M, Buchacz A, Wróbel A. Use of piezoelectric foils as tools for structural health monitoring of freight cars during exploitation. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17 (3): 443–449, https://doi.org/10.17531/ein.2....
 
19.
Shiakolas P S, Conrad K L, Yih T C. On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots. International Journal of Modelling and Simulation 2002; 22 (3): 1–10, https://doi.org/10.1080/022862....
 
20.
Shirinzadeh B, Teoh P L, Tian Y, Dalvand M M, Zhong Y, Liaw HC. Laser interferometry-based guidance methodology for high precision positioning of mechanisms and robots. Robotics and Computer-Integrated Manufacturing 2010; 26 (1): 74–82, https://doi.org/10.1016/j.rcim....
 
21.
Şirinterlikçi A, Tiryakioğlu M, Bird A, Harris A, Kweder K. Repeatability and accuracy of an industrial robot: laboratory experience for a design of experiments course. The Technology Interface Journal 2009; 9 (2): 1-10.
 
22.
Spong M W, Vidyasagar M. Robot Dynamics and Control, Wiley, 1989.
 
23.
Weichert F, Bachmann D, Rudak B, Fisseler D. Analysis of the Accuracy and Robustness of the Leap Motion Controller. Sensors 2013; 13(5): 6380-6393, https://doi.org/10.3390/s13050....
 
24.
Wiśniewski M. Proposed method for measuring the accuracy and repeatability of positioning of industrial robots in industrial conditions. Technologia i Automatyzacja Montazu 2014; 3 (1): 39–43 (In Polish).
 
25.
Wiśniewski M. Research of precision and repeatability of industrial robots. Poznań University of Technology Publishing House, 2015, Poznań.
 
26.
Young K, Pickin C G. Accuracy assessment of the modern industrial robot. Industrial Robot: An International Journal 2000; 27 (6): 427-436, https://doi.org/10.1108/014399....
 
27.
PN-EN 9283:2003.
 
28.
www.factory-metrology.faro.com/pl/kalibracja-robotow (Access: 06.08.2017).
 
 
CITATIONS (30):
1.
Modelling in Engineering 2020: Applied Mechanics
Mariusz Kosobudzki
 
2.
Compliant Human–Robot Collaboration with Accurate Path-Tracking Ability for a Robot Manipulator
Daniel Reyes-Uquillas, Tesheng Hsiao
Applied Sciences
 
3.
Electromagnetic compatibility tests of a measuring system based on MFC piezoelectric transducers
M Placzek, M Mackowski
IOP Conference Series: Materials Science and Engineering
 
4.
A substitute circuit of the piezoelectric transformer transmitting longitudinal vibrations
M Paczek, A Wrobel
IOP Conference Series: Materials Science and Engineering
 
5.
Visualization systems for industrial automation systems
A Wrobel, M Placzek
IOP Conference Series: Materials Science and Engineering
 
6.
Advanced Sensor and Target Development to Support Robot Accuracy Degradation Assessment
Guixiu Qiao
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
 
7.
Verification of Numerically Controlled Manufacturing Processes, Toward Identifying Cyber-Physical Threats
Joseph Piacenza, Kenneth Faller, Bradley Regez, Luisfernando Gomez
Journal of Manufacturing Science and Engineering
 
8.
Influence of the Approach Direction on the Repeatability of an Industrial Robot
Michal Vocetka, Róbert Huňady, Martin Hagara, Zdenko Bobovský, Tomáš Kot, Václav Krys
Applied Sciences
 
9.
An enhanced moment-based approach to time-dependent positional reliability analysis for robotic manipulators
Qiangqiang Zhao, Junkang Guo, Jun Hong, Gregory Chirikjian
Mechanism and Machine Theory
 
10.
Effect of temperature variation on repeatability positioning of a robot when assembling parts with cylindrical surfaces
Rafał Kluz, Andrzej Kubit, Jarosław Sęp, Tomasz T
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
11.
Assessment of ISO Standardisation to Identify an Industrial Robot's Base Frame
Lauren McGarry, Joseph Butterfield, Adrian Murphy
Robotics and Computer-Integrated Manufacturing
 
12.
Estimation of the power of a MFC type piezoelectric used for electric energy recovery from vibrations
M Placzek, M Brzezny
IOP Conference Series: Materials Science and Engineering
 
13.
Calibration of 6-DOF industrial robots based on line structured light
Zexiao Xie, Pengfei Zong, Peng Yao, Ping Ren
Optik
 
14.
Generic Hand–Eye Calibration of Uncertain Robots
Markus Ulrich, Markus Hillemann
2021 IEEE International Conference on Robotics and Automation (ICRA)
 
15.
Parameter Calibration on Replacement Manipulator for UHV Valve-Side Bushing Based on Spinor Theory
Yanghua Zhang, Aiping Xiao, Ailing Wu, Hongqiang Yue, Xiaopeng Du, Antonio Lopes
Mathematical Problems in Engineering
 
16.
Joining methods in car body construction
R Rzasinski, L Kochanski
IOP Conference Series: Materials Science and Engineering
 
17.
Selected aspects of modular fixtures design for car body production
R Rzasinski, L Kochanski
IOP Conference Series: Materials Science and Engineering
 
18.
Power losses and their properties for low range of a robot electric motor working conditions as the part of energy effectiveness research
Jerzy Świder, Adrian Zbilski
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
19.
Measurement of unidirectional pose accuracy and repeatability of the collaborative robot UR5
Martin Pollák, Marek Kočiško, Dušan Paulišin, Petr Baron
Advances in Mechanical Engineering
 
20.
Replacement models in the analysis of intelligent systems
A Wrobel
IOP Conference Series: Materials Science and Engineering
 
21.
A calibration-based method for interval reliability analysis of the multi-manipulator system
Wei Wang, Shuangyao Liu, Jin Wang, Guodong Lu
Eksploatacja i Niezawodność – Maintenance and Reliability
 
22.
A moment-matching based method for the analysis of manipulator’s repeatability of positioning with arbitrarily distributed joint clearances
Wei Wang, Jin Wang, Jian-Hui Fu, Guo-Dong Lu
Eksploatacja i Niezawodność – Maintenance and Reliability
 
23.
Robot 3D spatial motion measurement via vision-based method
Lulu Wu, Yi Liu, Yuan Wang, Xin Du, Xinyan Xiong, Benchi Jiang
Measurement Science and Technology
 
24.
Evaluation framework for smartphone-based road roughness index estimation systems
Qiqin Yu, Yihai Fang, Richard Wix
International Journal of Pavement Engineering
 
25.
Advanced, Contemporary Control
Marek Płaczek, Piotr Krauze, Arkadiusz Ryfa, Tomasz Jabłonka, Karol Bałys, Magdalena Helmich, Dawid Badora, Bartosz Florkiewicz, Kamil Polak, Piotr Słonka, Mateusz Trybułowski
 
26.
"AN AUTOMATIC LIQUID LEVEL CONTROL SYSTEM WITH THE USE OF THE ARDUINO MICROCONTROLLER AND STRAIN GAUGES - ANALYSIS OF APPLICATION POSSIBILITY IN MANUFACTURING PROCESSES "
Marek Płaczek, Maciej Kaźmierczak
International Journal of Modern Manufacturing Technologies
 
27.
Robotic check of a subassembly, and its simulation
László Rónai
SN Applied Sciences
 
28.
Simulation Design and Measurement of Welding Robot Repeatability Utilizing the Contact Measurement Method
Martin Pollák, Karol Goryl
Machines
 
29.
A method for the assessment and compensation of positioning errors in industrial robots
Sergio Ferrarini, Pietro Bilancia, Roberto Raffaeli, Margherita Peruzzini, Marcello Pellicciari
Robotics and Computer-Integrated Manufacturing
 
30.
Uncertainty-Aware Hand–Eye Calibration
Markus Ulrich, Markus Hillemann
IEEE Transactions on Robotics
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top