Search for Author, Title, Keyword
RESEARCH PAPER
Reliability Assessment Method Based on Small Sample Accelerated Life Test Data
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
School of Mechanical Engineering, Hubei University of Technology, China
 
 
Submission date: 2024-04-19
 
 
Final revision date: 2024-06-25
 
 
Acceptance date: 2024-08-08
 
 
Online publication date: 2024-08-11
 
 
Publication date: 2024-08-11
 
 
Corresponding author
Hang Liu   

School of Mechanical Engineering, Hubei University of Technology, China
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2025;27(1):192170
 
HIGHLIGHTS
  • A method based on virtual augmentation augmentation fusion is proposed to expand the experimental data of small samples.
  • The prior distribution is obtained by improving the empirical distribution function and combining bootstrap and kernel density estimation method.
  • The posterior distribution was solved by Gibbs sampling combined with Bayes method and the reliability was evaluated.
KEYWORDS
TOPICS
ABSTRACT
Aiming at the problems of small sample size, few test failure data and low reliability evaluation efficiency in accelerated life test of high-reliability and long-life products, an improved virtual augmentation Bootstrap-Bayes reliability evaluation method based on small sample accelerated life test data was proposed. Firstly, the test data under various stress conditions are augmented by virtual fusion. Secondly, the empirical distribution function and bootstrap sampling method are improved, and the kernel density estimation method is used to fit the density distribution of test data as prior information. Then, the parameter estimates of the test data are obtained by Gibbs sampling combined with Bayes formula. Finally, the reliability index under normal stress level is obtained by accelerating model extrapolation. The feasibility of the proposed method is verified by the accelerated life test data of a type of Ship communication equipment.
REFERENCES (28)
1.
Cui Y , Zhang Y , Wang Z ,et al.Interval statistic based reliability analysis method on small sample hot test of satellite thruster[J].Applied Mathematical Modelling, 2018, 60.DOI:10.1016/j.apm.2018.03.044.
 
2.
Zhao D, Liu Y, Ren X, et al. Fatigue life prediction of wire rope based on grey particle filter method under small sample condition. Eksploatacja i Niezawodność – Maintenance and Reliability. 2021;23(3):454-467. DOI:10.17531/ein.2021.3.6.
 
3.
Wang H, Zhang Z, LI J, Xin W, Han C. Fault analysis and reliability evaluation for motorized spindle of cycloidal gear grinding machine based on multi-source Bayes. Eksploatacja i Niezawodność – Maintenance and Reliability. 2024;26(1). DOI:10.17531/ein/175010.
 
4.
Fan J W , Zhou Z Y , Wang Z L ,et al.Research on the Evaluation of Small Sample Reliability for CNC Grinding Machine Tools Based on Bayes Theory[J].Advanced Materials Research, 2014, 971-973:688-692.DOI:10.4028/www.scientific.net/AMR.971-973.688.
 
5.
Al-Mutairi D K , Ghitany M E , Gupta R C .Estimation of reliability in a series system with random sample size[J].Computational Statistics & Data Analysis, 2011, 55(2):964-972.DOI:10.1016/j.csda.2010.07.027.
 
6.
Yin M X , Zhu T , Xu J T ,et al.Service Reliability of a Heavy-Haul Wagon Coupler Body Based on the SMOTE-Bootstrap-Bayes Method[J].Engineering Failure Analysis, 2020, 118(3):104836.DOI:10.1016/j.engfailanal.2020.104836.
 
7.
Patowary A N , Hazarika J , Sriwastav G L .Reliability estimation of multi-component cascade system through Monte-Carlo simulation[J].International journal of systems assurance engineering and management, 2018, 9(6):1279-1286.DOI:10.1007/s13198-018-0716-y.
 
8.
Zhao D , Gao C , Zhou Z ,et al.Fatigue life prediction of the wire rope based on grey theory under small sample condition[J].Engineering Failure Analysis, 2019, 107:104237.DOI:10.1016/j.engfailanal.2019.104237.
 
9.
Coburger A , Likar J , Smith C .Bayesian Radiation Modeling for Spacecraft Reliability Prediction[C]//2019 IEEE Aerospace Conference.IEEE, 2019.DOI:10.1109/AERO.2019.8741783.
 
10.
Zhang L , Wang T , Hu Z .Assessment method of heavy NC machine reliability based on Bayes theory[J].Transactions of Tianjin University, 2016.DOI:10.1007/s12209-016-2567-4.
 
11.
Talafus T P,Pohl E A.Small sample reliability growth modeling using a grey systems model [J].Quality Engineering,2017,29(3):455-467. DOI: 10.1080/08982112.2017.1318920.
 
12.
Xia X .Reliability Analysis of Zero‐Failure Data with Poor Information[J].Quality & Reliability Engineering International, 2012, 28(8):981-990.DOI:10.1002/qre.1279.
 
13.
Yang J , Qiu X , Chen Z .The Reliability Evaluation of Antiskid Valve of CRH2 EMUs Based on Bayes Method[J].Periodica Polytechnica Transportation Engineering, 2018.DOI:10.3311/PPtr.11377.
 
14.
Liu X J,Sun Y H,Wang Y S,et al.Reliability evaluation of slip ring based on multi-field coupling modeling and Bootstrap method [J].Journal of Beijing University of Aeronautics and Astronautics,2019,45(11):2301-2311.DOI: 10.13700/j.bh.1001-5965.2019.0106(in Chinese).
 
15.
Chen C H , Yang Z J , Chen F ,et al.Reliability modeling of machining center spindle based on Boosttrap-Bayes[J].Journal of Jilin University(Engineering and Technology Edition), 2014, 44(1):95-100.DOI:10.13229/j.cnki.jdxbgxb201401017.
 
16.
Zhou Q , Thai V V .Fuzzy and grey theories in failure mode and effect analysis for tanker equipment failure prediction[J].Safety Science, 2016, 83:74-79.DOI:10.1016/j.ssci.2015.11.013.
 
17.
Xin-Yao Z .Lifetime Prediction for Exponential Distribution with Small Sample Data[J].Lecture Notes in Electrical Engineering, 2014, 273:505-512.DOI:10.1007/978-3-642-40640-9-64.
 
18.
You, D., Pham, H. Self-adaptive stress accelerated life testing scheme. J Braz. Soc. Mech. Sci. Eng. 39, 2095–2103 (2017). DOI:10.1007/s40430-016-0683-7.
 
19.
Zheng D , Fang X .Exact Confidence Limits for the Acceleration Factor Under Constant-Stress Partially Accelerated Life Tests With Type-I Censoring[J].IEEE Transactions on Reliability, 2017:1-13.DOI:10.1109/TR.2017.2747762.
 
20.
Cai BP , Sheng CY , Gao CT ,et al.Artificial Intelligence Enhanced Reliability Assessment Methodology With Small Samples[J].IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(9).DOI:DOI10.1109/TNNLS.2021.3128514.
 
21.
Guo J, Li Z J, Keyser T. A Bayesian approach for integrating multilevel priors and data for aerospace system reliability assessment [J]. Chinese Journal of Aeronautics, 2018, 31(1): 41-53. DOI:10.1016/j.cja.2017.08.020.
 
22.
Young T J D A .Objective Bayes and conditional inference in exponential families[J].Biometrika, 2010, 97(2):497-504.DOI:10.1093/biomet/asq002.
 
23.
Efron B. Bayesian inference and the parametric Bootstrap. Ann Appl Stat. 2012 Oct 1;6(4):1971-1997. DOI: 10.1214/12-AOAS571.
 
24.
J. N. Corcoran, U. Schneider. Pseudo-perfect and adaptive variants of the Metropolis-Hastings algorithm with an independent candidate density[J]. Journal of Statistical Computation and Simulation, 2005, 75(6): 459-475. https://doi.org/10.1080/009496....
 
25.
Chen Q , Huang N E , Riemenschneider S D ,et al.A B-spline approach for empirical mode decompositions[J].ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006(1).DOI:10.1007/S10444-004-7614-3.
 
26.
Mingas,Grigorios,Bottolo,et al.Particle MCMC algorithms and architectures for accelerating inference in state-space models.[J].International Journal of Approximate Reasoning, 2017.DOI:10.1016/j.ijar.2016.10.011.
 
27.
Baek E , Ferron J M .Bayesian Analysis for Multiple-baseline Studies Where the Variance Differs across Cases in OpenBUGS[J].Developmental Neurorehabilitation, 2021:1-14.DOI:10.1080/17518423.2020.1858455.
 
28.
Lee J H , Cho Y H , Kim D S ,et al.Lifetime estimation of harmonic reducer for manufacturing robot using accelerated life test[J].Journal of Mechanical Science and Technology, 2022(6):36.DOI:10.1007/s12206-022-0520-0.
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top