Search for Author, Title, Keyword
RESEARCH PAPER
Further Results on Relative Aging Orders and Comparison of Record Statistics
 
 
More details
Hide details
1
Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
 
 
Submission date: 2024-03-19
 
 
Final revision date: 2024-06-26
 
 
Acceptance date: 2024-08-29
 
 
Online publication date: 2024-08-30
 
 
Publication date: 2024-08-30
 
 
Corresponding author
Mohamed Kayid   

Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2025;27(1):192756
 
HIGHLIGHTS
  • Improve the study and understanding of relative aging ordering properties to compare lifetime distributions.
  • Highlight the difference between relative aging orders and other well-known stochastic orders in literature.
  • Compare items that are close to each other during aging.
  • Investigate the preservation properties of two well-known faster aging orders under the upper and lower record values.
KEYWORDS
TOPICS
ABSTRACT
In reliability engineering, relative aging is an important notion useful for measuring how a system ages relative to another. In recent years, the reliability properties of record statistics used for statistical modeling, such as shock models, have been investigated. This study presents new findings regarding aging faster orders. Several implications of relative aging orders are presented, including further inequalities arising from these stochastic orders. We apply two faster aging orders by comparing distributions using their cumulative hazard rate functions and cumulative reversed hazard rate functions in the upper and lower record values, respectively. In addition, we compare the record statistics in the two-sample problem. The extent to which the aging-induced faster orders are preserved in the record statistics resulting from sequences of independent and identically distributed random lifetimes is investigated. Finally, examples are provided to illustrate these concepts.
ACKNOWLEDGEMENTS
The author thanks two anonymous reviewers for their constructive comments and suggestions which lead to this improved version. This work is supported by Researchers Supporting Project number (RSP2025R392), King Saud University, Riyadh, Saudi Arabia.
REFERENCES (53)
1.
Barlow, R. E. and Proschan, F. (1975). Statistical theory of reliability and life testing. New York: Holt, Rinehart and Winston.
 
2.
Shaked, M. and Shanthikumar, J. G. (Eds.). (2007). Stochastic orders. New York, NY: Springer New York. DOI: 10.1007/978-0-387-34675-5.
 
3.
Kalashnikov, V. V. and Rachev, S. T. (1986). Characterization of queueing models and their stability. In: Probability Theory and Mathematical Statistics, eds. Yu. K. Prohorov et al., VNU Science Press, Amsterdam 2, 37-53. DOI: 10.2307/1427091.
 
4.
Sengupta, D. and Deshpande, J. V. (1994). Some results on the relative ageing of two life distributions. Journal of Applied Probability 31, 991–1003. DOI: 10.2307/3215323.
 
5.
Lai, C.D. and Xie, M. (2003). Relative ageing for two parallel systems and related problems. Mathematical and computer modelling 38, 1339-1345. DOI: 10.1016/S0895-7177(03)90136-1.
 
6.
Mantel, N. and Stablein, D. M. (1988). The crossing hazard function problem. Journal of the Royal Statistical Society, Series D 37, 59-64. DOI: 10.2307/2348379.
 
7.
Di Crescenzo, A. (2000). Some results on the proportional reversed hazards model. Statistics and Probability Letters 50, 313–321. DOI: 10.1016/S0167-7152(00)00127-9.
 
8.
Rezaei, M., Gholizadeh, B. and Izadkhah, S. (2015). On relative reversed hazard rate order. Communications in Statistics-Theory and Methods 44, 300-308. DOI: 10.1080/03610926.2012.745559.
 
9.
Misra, N. and Francis, J. (2018). Relative aging of (n-k+1)-out-of-n systems based on cumulative hazard and cumulative reversed hazard functions. Naval Research Logistics 65, 566-575. DOI: 10.1002/nav.21822.
 
10.
Hazra, N. K. and Nanda, A. K. (2016). On some generalized orderings: In the spirit of relative ageing. Communications in Statistics-Theory and Methods 45, 6165-6181. DOI: 10.1080/03610926.2014.957862.
 
11.
Hazra, N. K. and Misra, N. (2021). On relative aging comparisons of coherent systems with identically distributed components. Probability in the Engineering and Informational Sciences 35, 481-495. DOI: 10.1017/S0269964820000066.
 
12.
Misra, N., Francis, J. and Naqvi, S. (2017). Some sufficient conditions for relative aging of life distributions. Probability in the Engineering and Informational Sciences 31, 83-99. DOI: 10.1017/S0269964816000309.
 
13.
Kayid, M., Izadkhah, S. and Zuo, M. J. (2017). Some results on the relative ordering of two frailty models. Statistical Papers 58, 287-301. DOI: 10.1007/s00362-015-0697-8.
 
14.
Chandler, K. (1952). The distribution and frequency of record values. Journal of the Royal Statistical Society: Series B (Methodological) 14, 220-228. DOI: 10.1111/j.2517-6161.1952.tb00115.x.
 
15.
Ahsanullah, M. (1995). Record Statistics. New York: Nova Science Publishers. DOI: 10.2991/978-94-6239-222-9-2.
 
16.
Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1998). Records. New York: John Wiley. DOI: 10.1002/9781118150412.
 
17.
Pellerey, F., Shaked, M. and Zinn, J. (2000). Nonhomogeneous Poisson processes and logconcavity. Probability in the Engineering and Informational Sciences 14, 353-373. DOI: 10.1017/S0269964800143062.
 
18.
Belzunce, F., Lillo, R. E., Ruiz, J. M. and Shaked, M. (2001). Stochastic comparisons of nonhomogeneous processes. Probability in the Engineering and Informational Sciences 15, 199-224. Doi:10.1017/S0269964801152058.
 
19.
Wang, G., Peng, R. and Xing, L. (2018). Reliability evaluation of unrepairable k-out-of-n: G systems with phased-mission requirements based on record values. Reliability Engineering & System Safety, 178, 191-197. DOI: 10.1016/j.ress.2018.06.009.
 
20.
Hassan, A. S., Nagy, H. F., Muhammed, H. Z. and Saad, M. S. (2020). Estimation of multicomponent stress-strength reliability following Weibull distribution based on upper record values. Journal of Taibah University for science, 14(1), 244-253. DOI: 10.1080/16583655.2020.1721751.
 
21.
Ahmadi, J. and Arghami, N. R. (2001). Some univariate stochastic orders on record values. Communications in Statistics-Theory and Methods 30, 69-78. DOI: 10.1081/STA-100001559.
 
22.
Belzunce, F., Mercader, J. A. and Ruiz, J. M. (2005). Stochastic comparisons of generalized order statistics. Probability in the Engineering and Informational Sciences 19, 99-120. Doi:10.1017/S0269964805050072.
 
23.
Alimohammadi, M., Esna-Ashari, M. and Cramer, E. (2021). On dispersive and star orderings of random variables and order statistics. Statistics and Probability Letters, 109014. DOI: 10.1016/j.spl.2020.109014.
 
24.
Esna-Ashari, M., Alimohammadi, M. and Cramer, E. (2022). Some new results on likelihood ratio ordering and aging properties of generalized order statistics. Communications in Statistics-Theory and Methods, 51 (14), 4667-4691. DOI: 10.1080/03610926.2020.1818103.
 
25.
Esna-Ashari, M., Balakrishnan, N. and Alimohammadi, M. (2023). HR and RHR orderings of generalized order statistics. Metrika, 86 (1), 131-148. DOI: 10.1007/s00184-022-00865-2.
 
26.
Khaledi, B. E. and Shojaei, R. (2007). On stochastic orderings between residual record values. Statistics and probability letters 77, 1467-1472. DOI: 10.1016/j.spl.2007.03.033.
 
27.
Zhao, P., Li, X., Li, Z. and Xu, M. (2008). Stochastic comparisons of spacings of record values from one or two sample sequences. Statistics 42, 167-177. DOI: 10.1080/02331880701597321.
 
28.
Khaledi, B. E., Amiripour, F., Hu, T. and Shojaei, S. R. (2009). Some new results on stochastic comparisons of record values. Communications in Statistics-Theory and Methods 38, 2056-2066. DOI: 10.1080/03610920802101548.
 
29.
Zhao, P. and Balakrishnan, N. (2009). Stochastic comparison and monotonicity of inactive record values. Statistics and Probability Letters 79, 566-572. DOI: 10.1016/j.spl.2008.10.002.
 
30.
Balakrishnan, N., Castaño-Martinez, A. and Sordo, M. A. (2023). Some stochastic comparisons of lower records and lower record spacings. Probability in the Engineering and Informational Sciences 37, 192-205. DOI:10.1017/S026996482100053X.
 
31.
Kayid, M. (2024). Stochastic comparisons of record values based on their relative aging, arXiv preprint arXiv:2406.15196. https://arxiv.org/abs/2406.151.... https://doi.org/10.1007/s11587....
 
32.
Zardasht, V. and Asadi, M. (2010). Evaluation of P(X_t>Y_t) when both X_t and Y_t are residual lifetimes of two systems. Statistica Neerlandica 64, 460-481. DOI: 10.1111/j.1467-9574.2010.00464.x.
 
33.
Lai, C. and Xie, M. (2006). Stochastic ageing and dependence for reliability. New York: Springer. DOI: 10.1007/0-387-34232-X.
 
34.
Karlin, S. Total Positivity, Stanford University Press, 1968.
 
35.
Brown, G. G. and Rutemiller, H. C. (1973). Evaluation of Pr(X≥Y) when both X and Y are from three-parameter Weibull distributions. IEEE Transactions on Reliability 22, 78-82. Doi: 10.1109/TR.1973.5216038.
 
36.
Tan, S. and Lü, J. (2014). Characterizing the effect of population heterogeneity on evolutionary dynamics on complex networks. Scientific Reports 4, 5034. DOI: 10.1038/srep05034.
 
37.
Lü, J. and Chen, G. (2005). A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Transactions on Automatic Control 50, 841-846. DOI: 10.1109/TAC.2005.849233.
 
38.
Chen, Y., Lü, J., Yu, X. and Lin, Z. (2013). Consensus of discrete-time second-order multiagent systems based on infinite products of general stochastic matrices. SIAM Journal on Control and Optimization 51, 3274-3301. DOI: 10.1137/110850116.
 
39.
Zhou, J., Lü, J. A. and Lü, J. (2006). Adaptive synchronization of an uncertain complex dynamical network. IEEE Transactions on Automatic Control 51, 652-656. DOI: 10.1109/TAC.2006.872760.
 
40.
Kayid, M., Izadkhah, S. and Alshami, S. (2014). Residual probability function, associated orderings, and related aging classes. Mathematical Problems in Engineering 2014, Article ID 490692. DOI: 10.1155/2014/490692.
 
41.
Cox, D.R., (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological) 34(2) 187-202. DOI: 10.1111/j.2517-6161.1972.tb00899.x.
 
42.
Kumar, D. and Klefsjö, B., (1994). Proportional hazards model: a review. Reliability Engineering and System Safety 44(2), 177-188. DOI: 10.1016/0951-8320(94)90010-8.
 
43.
Rao, M., Chen, Y., Vemuri, B. C. and Wang, F. (2004). Cumulative residual entropy: a new measure of information. IEEE Transactions on Information Theory 50, 1220-1228. DOI: 10.1109/TIT.2004.828057.
 
44.
Asadi, M. and Zohrevand, Y. (2007). On the dynamic cumulative residual entropy. Journal of Statistical Planning and Inference 137, 1931-1941. DOI: 10.1016/j.jspi.2006.06.035.
 
45.
Navarro, J., del Aguila, Y. and Asadi, M. (2010). Some new results on the cumulative residual entropy. Journal of Statistical Planning and Inference 140, 310-322. DOI: 10.1016/j.jspi.2009.07.015.
 
46.
Psarrakos, G. and Navarro, J. (2013). Generalized cumulative residual entropy and record values. Metrika 76, 623-640. DOI: 10.1007/s00184-012-0408-6.
 
47.
Psarrakos, G. and Toomaj, A. (2017). On the generalized cumulative residual entropy with applications in actuarial science. Journal of computational and applied mathematics 309, 186-199. DOI: 10.1016/j.cam.2016.06.037.
 
48.
Tahmasebi, S. and Mohammadi, R. (2021). Results on the fractional cumulative residual entropy of coherent systems. Revista Colombiana de Estadistica 44, 225-241. DOI: 10.15446/rce.v44n2.86562.
 
49.
Mohamed, M. S., Barakat, H. M., Alyami, S. A. and Abd Elgawad, M. A. (2022). Cumulative residual tsallis entropy-based test of uniformity and some new findings. Mathematics 10, 771. DOI: 10.3390/math10050771.
 
50.
Abouelmagd, T. H. M., Hamed, M. S., Ebraheim, A. E. H. N. and Afify, A. Z. (2018). Toward the evaluation of P(X_((t))>Y_((t))) when both X_((t)) and Y_((t)) are inactivity times of two systems. Communications in Statistics-Theory and Methods 47, 3293-3304. DOI: 10.1080/03610926.2017.1353624.
 
51.
Gupta, R.C., Gupta, R.D., (2007). Proportional reversed hazard rate model and its applications. Journal of Statistical Planning and Inference 137, 3525-3536. DOI: 10.1016/j.jspi.2007.03.029.
 
52.
Di Crescenzo, A. and Longobardi, M. (2009). On cumulative entropies. Journal of statistical planning and inference 139, 4072-4087. DOI: 10.1016/j.jspi.2009.05.038.
 
53.
Navarro, J., (2022). Introduction to System Reliability Theory. Springer. DOI: 10.1007/978-3-030-86953-3.
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top