RESEARCH PAPER
Multifractal analysis vehicle’s in-use speed profile for application in driving cycles
			
	
 
More details
Hide details
	
	
									
				1
				University of Technology and Humanities in Radom ul. Chrobrego 45, 26-600 Radom, Poland
				 
			 
						
				2
				Motor Transport Institute ul. Jagiellońska 80, 03-301 Warszawa, Poland
				 
			 
										
				
				
		
		 
			
			
		
		
		
		
		
			
			 
			Publication date: 2018-06-30
			 
		 			
		 
	
							
																								
		
	 
		
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2018;20(2):177-181
		
 
 
KEYWORDS
ABSTRACT
Time signals recorded by the on-board diagnostic system (OBD), describing the manner of vehicle’s movement in actual road
conditions show non-stationarity and non-linearity, as well as statistical multiscalarity. In practice, it means that the analysis of
registered time series requires modelling of non-linear phenomena. The aim of this study was to examine the nature of the vehicle
speed profile in actual road conditions with the method of multifractal analysis. A number of studies indicates that the driving tests
applied for many years have not been representative for the actual operating conditions of vehicles. For both the new Worldwide
Harmonised Light duty Test Cycle (WLTC), a worldwide harmonised procedure of light vehicle testing, as well as in actual urban
driving conditions along the measuring route, being subject to empirical research, confirmation of strong multifractal properties
of the recorded vehicle speed time series have been obtained.
		
	
		
REFERENCES (18)
			
	1.
	
		Batko W, Dąbrowski Z, Kiciński J. Nonlinear Effects In Technical Diagnostics. Radom, Poland: Institute for Sustainable Technologies, 2008.
		
	 
	 
 			
	2.
	
		Cheng Q. Generalized binomial multiplicative cascade processes and asymmetrical multifractal distributions. Nonlinear Processes in Geophysics 2014; 21: 477-487, 
https://doi.org/10.5194/npg-21....
 
	 
 			
	3.
	
		Chłopek Z. Synteza testów jezdnych zgodnie z kryteriami podobieństwa charakterystyk częstotliwościowych. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18(4): 572-577, 
https://doi.org/10.17531/ein.2....
 
	 
 			
			
	5.
	
		Kantelhardt J W. Fractal and Multifractal Time Series. Mathematics of Complexity and Dynamical Systems Robert A Meyers (Ed.). New York: Springer 2011.
		
	 
	 
 			
	6.
	
		Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 2002; 316: 87-114, 
https://doi.org/10.1016/S0378-....
 
	 
 			
	7.
	
		Kantz H, Schreiber T. Nonlinear time series analysis. Cambridge: University Press, 2004.
		
	 
	 
 			
			
	9.
	
		Merkisz J, Lijewski P, Fuc P, Siedlecki M, Ziółkowski A. Development of the methodology of exhaust emissions measurement under RDE (Real Driving Emissions) conditions for non-road mobile machinery (NRMM) vehicles. KONMOT 2016; Materials Science and Engineering 148: 1-11.
		
	 
	 
 			
	10.
	
		Mock P, Kühlwein J, Tietge U, Franco V, Bandivadekar A, German J. The WLTP: How a new test procedure for cars will affect fuel consumption values in the EU. Working paper 2014-9. International Council on Clean Transportation, 2014.
		
	 
	 
 			
	11.
	
		Puchalski A, Komorska I. Stable Distributions and Fractal Diagnostic Models of Vibration Signals of Rotating Systems. Advances in Condition Monitoring of Machinery in Non-Stationary Operations. Applied Condition Monitoring A.Timofiejczuk et al. (eds.) Springer International Publishing AG 2018; 9: 91-101, 
https://doi.org/10.1007/978-3-....
 
	 
 			
	12.
	
		Puchalski A. Multiscale analysis of vibration signals in engine valve system. Journal of Vibroegineering 2015; 17(7): 3586-3593.
		
	 
	 
 			
	13.
	
		Puchalski A. Techniki budowy nieliniowych modeli diagnostycznych z wykorzystaniem szeregów czasowych drgań mechanicznych. Przegląd Mechaniczny 2016; 10: 33-36, 
https://doi.org/10.15199/148.2....
 
	 
 			
	14.
	
		Puchalski A, Komorska I. Multifractal Nature of Diesel Engine Rattle Noise in Vehicle. Archives of Acoustics 2017; 42(3): 469-474, 
https://doi.org/10.1515/aoa-20....
 
	 
 			
			
	16.
	
		Shang P, Lu Y, Kamae S. Detecting long-range correlation of traffic time series with multifractal detrended fluctuation analysis. Chaos, Solitions and Fractals 2008; 36: 82-90, 
https://doi.org/10.1016/j.chao....
 
	 
 			
			
	18.
	
		Sileghem L, Bosteels D, May J, Favre C, Verhelst S. Analysis of vehicle emission measurements on the new WLTC, the NEDC and the CADC. Transportation Research Part D 2014; 32: 70–85, 
https://doi.org/10.1016/j.trd.....
 
	 
 	 
 
CITATIONS (11):
			
	1.
	
		Durability assessment of suspension coil spring considering the multifractality of road excitations
 C.H. Chin, S. Abdullah, S.S.K. Singh, A.K. Ariffin, D. Schramm 
Measurement
				
			 
 
	
			
	2.
	
		CO2 Emission Costs Due to the Production and Use of Vehicles in the Context of Automotive Development
 Piotr Wiśniowski, Anna Borucka, Maciej Menes, Andrzej Świderski 
Transport and Telecommunication Journal
				
			 
 
	
			
	3.
	
		Neuro-fuzzy fatigue life assessment using the wavelet-based multifractality parameters
 C. Chin, S. Abdullah, S. Singh, A. Ariffin, D. Schramm 
Journal of Mechanical Science and Technology
				
			 
 
	
			
	4.
	
		Efficiency of electric vehicle interior heating systems at low ambient temperatures
 Maciej Gis, Piotr Wiśniowski, Mateusz Bednarski 
Open Engineering
				
			 
 
	
			
	5.
	
		Method for synthesizing the laboratory exhaust emission test from car engines based on road tests
 P. Wiśniowski, M Ślęzak, A Niewczas, T Szczepański 
IOP Conference Series: Materials Science and Engineering
				
			 
 
	
			
	6.
	
		Verifying the Efficiency of a Diesel Particulate Filter Using Particle Counters with Two Different Measurements in Periodic Technical Inspection of Vehicles
 Wojciech Jarosiński, Piotr Wiśniowski 
Energies
				
			 
 
	
			
	7.
	
		Method of reconstructing dynamic load characteristics for durability test of heavy
semitrailer under different road conditions
 Arkadiusz Czarnuch, Marek Stembalski, Tomasz Szydłowski, Damain Batory 
Eksploatacja i Niezawodnosc - Maintenance and Reliability
				
			 
 
	
			
	8.
	
		Laboratory measurements of vehicle exhaust emissions in conditions reproducing real traffic
 Anna Borucka, Piotr Wiśniowski, Dariusz Mazurkiewicz, Andrzej Świderski 
Measurement
				
			 
 
	
			
	9.
	
		Computing low-frequency vibration energy with Hölder singularities as durability predictive criterion of random road excitation
 C. Chin, S. Abdullah, S. Singh, A. Ariffin, D. Schramm 
Soft Computing
				
			 
 
	
			
	10.
	
		Synthesis of naturalistic vehicle driving cycles using the Markov Chain Monte Carlo method
 Andrzej Puchalski, Iwona Komorska, Marcin Ślęzak, Andrzej Niewczas 
Eksploatacja i Niezawodność – Maintenance and Reliability
				
			 
 
	
			
	11.
	
		Vehicle Acceleration and Speed as Factors Determining Energy Consumption in Electric Vehicles
 Edward Kozłowski, Piotr Wiśniowski, Maciej Gis, Magdalena Zimakowska-Laskowska, Anna Borucka 
Energies