RESEARCH PAPER
Multi-Scale Graph Transformer for Rolling Bearing Fault Diagnosis
More details
Hide details
1
College of Intelligent Systems Science and Engineering, Harbin Engineering University, China
2
College of Power and Energy Engineering, Harbin Engineering University, China
Submission date: 2024-05-07
Final revision date: 2024-09-11
Acceptance date: 2024-10-16
Online publication date: 2024-10-20
Publication date: 2024-10-20
Corresponding author
Yunpeng Cao
College of Power and Energy Engineering, Harbin Engineering University, 150001, Harbin, China
Eksploatacja i Niezawodność – Maintenance and Reliability 2025;27(2):194779
HIGHLIGHTS
- Multi-Scale Graph Transformer enhances fault diagnosis precision significantly.
- Graph Node Aggregation Mechanism broadens receptive fields for feature extraction.
- Centrality and Spatial Encoding capture intricate graph node structural insights.
- Transformer Self-Attention improves crucial fault signature identification.
KEYWORDS
TOPICS
ABSTRACT
Traditional graph neural networks often encounter limitations in fault diagnosis due to insufficient feature extraction at a single scale, particularly in complex operational scenarios. To overcome these challenges, we introduce an innovative multi-scale graph Transformer framework for rolling bearing fault diagnosis. This framework incorporates a distinctive multi-scale feature aggregation mechanism, along with centrality and spatial encoding for graph nodes, to enhance structural insights. Leveraging multi-head self-attention, our approach efficiently extracts and learns fault features, thereby significantly improving fault identification. Extensive experiments on the designed bearing dataset, as well as a customized rolling bearing apparatus, validate the efficacy of our method. Our model achieves a peak diagnostic precision of 99.5% and maintains an average accuracy exceeding 97.9%, underscoring its robustness and adaptability across diverse operational scenarios.
ACKNOWLEDGEMENTS
This research was supported by the National Science and Technology Major Project (2019-I-0003-0004).
REFERENCES (29)
1.
Kankar P K, Sharma S C, Harsha S P. Fault diagnosis of ball bearings using machine learning methods[J]. Expert Systems with applications, 2011, 38(3): 1876-1886. DOI: 10.1016/j.eswa.2010.07.119.
2.
Lei Y, He Z, Zi Y. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J]. Expert Systems with Applications, 2011, 38(6): 7334-7341. DOI: 10.1016/j.eswa.2010.12.095.
3.
Borghesani P, Ricci R, Chatterton S, et al. A new procedure for using envelope analysis for rolling element bearing diagnostics in variable operating conditions[J]. Mechanical systems and signal processing, 2013, 38(1): 23-35. DOI: 10.1016/j.ymssp.2012.09.014.
4.
Chen J, Zi Y, He Z, et al. Compound faults detection of rotating machinery using improved adaptive redundant lifting multiwavelet[J]. Mechanical Systems and Signal Processing, 2013, 38(1): 36-54. DOI: 10.1016/j.ymssp.2012.06.025.
5.
Jiang H, Li C, Li H. An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis[J]. Mechanical Systems and Signal Processing, 2013, 36(2): 225-239. DOI: 10.1016/j.ymssp.2012.12.010.
6.
Pan M C, Tsao W C. Using appropriate IMFs for envelope analysis in multiple fault diagnosis of ball bearings[J]. International Journal of Mechanical Sciences, 2013, 69: 114-124. DOI: 10.1016/j.ijmecsci.2013.01.035.
7.
Zhao D, Li J, Cheng W, et al. Compound faults detection of rolling element bearing based on the generalized demodulation algorithm under time-varying rotational speed[J]. Journal of Sound and Vibration, 2016, 378: 109-123. DOI: 10.1016/j.jsv.2016.05.022.
8.
Rai A, Upadhyay S H. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings[J]. Tribology International, 2016, 96: 289-306. DOI: 10.1016/j.triboint.2015.12.037.
9.
Cao H, Fan F, Zhou K, et al. Wheel-bearing fault diagnosis of trains using empirical wavelet transform[J]. Measurement, 2016, 82: 439-449. DOI: 10.1016/j.measurement.2016.01.023.
10.
Miao Y, Zhao M, Lin J, et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017, 92: 173-195. DOI: 10.1016/j.ymssp.2017.01.033.
11.
Seera M, Wong M L D, Nandi A K. Classification of ball bearing faults using a hybrid intelligent model[J]. Applied Soft Computing, 2017, 57: 427-435. DOI: 10.1016/j.asoc.2017.04.034.
12.
Hoseinzadeh M S, Khadem S E, Sadooghi M S. Modifying the Hilbert-Huang transform using the nonlinear entropy-based features for early fault detection of ball bearings[J]. Applied Acoustics, 2019, 150: 313-324. DOI: 10.1016/j.apacoust.2019.02.011.
13.
Hong Y, Kim M, Lee H, et al. Early fault diagnosis and classification of ball bearing using enhanced kurtogram and Gaussian mixture model[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(12): 4746-4755. DOI: 10.1109/TIM.2019.2898050.
14.
Huang R, Li W, Cui L. An intelligent compound fault diagnosis method using one-dimensional deep convolutional neural network with multi-label classifier[C]//2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2019: 1-6. DOI: 10.1109/I2MTC.2019.8827030.
15.
Huang R, Liao Y, Zhang S, et al. Deep decoupling convolutional neural network for intelligent compound fault diagnosis[J]. Ieee Access, 2018, 7: 1848-1858. DOI: 10.1109/ACCESS.2018.2886343.
16.
Huang R, Li J, Li W, et al. Deep ensemble capsule network for intelligent compound fault diagnosis using multisensory data[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(5): 2304-2314. DOI: 10.1109/TIM.2019.2958010.
17.
Huang R, Wang Z, Li J, et al. A transferable capsule network for decoupling compound fault of machinery[C]//2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2020: 1-6. DOI: 10.1109/I2MTC43012.2020.9129078.
18.
Jin Y, Qin C, Huang Y, et al. Actual bearing compound fault diagnosis based on active learning and decoupling attentional residual network[J]. Measurement, 2021, 173: 108500. DOI: 10.1016/j.measurement.2020.108500.
19.
Li J, Huang R, He G, et al. A two-stage transfer adversarial network for intelligent fault diagnosis of rotating machinery with multiple new faults[J]. IEEE/ASME Transactions on Mechatronics, 2020, 26(3): 1591-1601. DOI: 10.1109/TMECH.2020.3025615.
20.
Huang R, Li J, Liao Y, et al. Deep adversarial capsule network for compound fault diagnosis of machinery toward multidomain generalization task[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-11. DOI: 10.1109/TIM.2020.3042300.
21.
Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arxiv preprint arxiv:1409.0473, 2014. DOI: 10.48550/arXiv.1409.0473.
22.
Song J, Qin X, Lei J, et al. A fault detection method for transmission line components based on synthetic dataset and improved YOLOv5[J]. International Journal of Electrical Power & Energy Systems, 2024, 157: 109852. DOI: 10.1016/j.ijepes.2024.109852.
23.
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arxiv preprint arxiv:2010.11929, 2020. DOI: 10.48550/arXiv.2010.11929.
24.
Zhang Z, Wu L. Graph neural network-based bearing fault diagnosis using Granger causality test[J]. Expert Systems with Applications, 2024, 242: 122827. DOI: 10.1016/j.eswa.2023.122827.
25.
Zhang J, Cheng Y, He X. Fault Diagnosis of Energy Networks Based on Improved Spatial–Temporal Graph Neural Network With Massive Missing Data[J]. IEEE Transactions on Automation Science and Engineering, 2023. DOI: 10.1109/TASE.2023.3281394.
26.
Srinivas A, Lin T Y, Parmar N, et al. Bottleneck transformers for visual recognition[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 16519-16529. DOI: 10.1109/CVPR46437.2021.01625.
27.
Yu J, Li J, Yu Z, et al. Multimodal transformer with multi-view visual representation for image captioning[J]. IEEE transactions on circuits and systems for video technology, 2019, 30(12): 4467-4480. DOI: 10.1109/TCSVT.2019.2947482.
28.
Chen X, Wang H, Ni B. X-volution: On the unification of convolution and self-attention[J]. arxiv preprint arxiv:2106.02253, 2021. DOI: 10.48550/arXiv.2106.02253.
29.
Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 10012-10022. DOI: 10.1109/ICCV48922.2021.00986.