The Remaining Useful Life (RUL) of lithium batteries is vital for maintaining and safely operating the batteries, making precise RUL predictions highly significant. This paper introduces a method for predicting the RUL of lithium-ion batteries, utilizing a kernel adaptive filtering algorithm integrated with Deep Belief Networks (DBN). The method constructs a novel prediction model based on the Fixed-Budget Kernel Recursive Least Squares (FB-KRLS) algorithm. In this approach, the DBN extracts features from the original lithium battery data to reduce data complexity. The Square-root Cubature Kalman Filter (SCKF) is integrated with the FB-KRLS algorithm, employing a dual al-ternating learning strategy to improve the model's nonlinear fitting performance. The model was validated using NASA's lithium battery data, showing that the minimum val-ues for the MAPE, RMSE and MAE were 0.102%, 0.0016 and 0.0014, respectively. Therefore, the proposed method demonstrates potential for application in predicting the RUL of lithium-ion batteries.
ACKNOWLEDGEMENTS
This work was financially supported by the National Natural Science Foundation of China (51467008), Gansu Provincial Department of Education Industry Support Program (2021CYZC-32), Gansu Provincial Science and Technology Program (23JRRA892, 24JRRA243).
REFERENCES(61)
1.
Alsuwian T, Ansari S, Zainuri MA, Ayob A, Hussain A, Lipu MH, Alhawari AR, Almawgani AH, Almasabi S, Hindi AT. A Review of.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.