Interval Prediction of Remaining Useful Life based on Convolutional Auto-Encode and Lower Upper Bound Estimation
More details
Hide details
1
Department of Computer, University of Electronic Science and Technology of China, Zhongshan Institute, China
2
School of Computer Science and Engineering, University of Electronic Science and Technology of China, China
Online publication date: 2023-04-28
Publication date: 2023-04-28
Eksploatacja i Niezawodność – Maintenance and Reliability 2023;25(2):165811
HIGHLIGHTS
- A novel interval prediction model for RUL based on deep learning is proposed.
- The interval prediction model combines the LSTM and LUBE to make full use of the timing information in the degradation data.
- Experimental results show the RUL interval prediction performance has been significantly improved by the proposed method.
KEYWORDS
ABSTRACT
Deep learning is widely used in remaining useful life (RUL) prediction
because it does not require prior knowledge and has strong nonlinear
fitting ability. However, most of the existing prediction methods are
point prediction. In practical engineering applications, confidence
interval of RUL prediction is more important for maintenance strategies.
This paper proposes an interval prediction model based on Long ShortTerm Memory (LSTM) and lower upper bound estimation (LUBE) for
RUL prediction. First, convolutional auto-encode network is used to
encode the multi-dimensional sensor data into one-dimensional features,
which can well represent the main degradation trend. Then, the features
are input into the prediction framework composed of LSTM and LUBE
for RUL interval prediction, which effectively solves the defect that the
traditional LUBE network cannot analyze the internal time dependence
of time series. In the experiment section, a case study is conducted using
the turbofan engine data set CMAPSS, and the advantage is validated by
carrying out a comparison with other methods.
ACKNOWLEDGEMENTS
This research was funded by the Major Special Projects of Zhongshan (200824103628344) and the Guangdong Science and
Technology Program (2021A0101180005).
CITATIONS (1):
1.
Prediction of remaining useful life of lubricating oil based on optimal BP neural network
Zhongxin Liu, Huaiguang Wang, Dinghai Wu, Liqiang Song, Baojian Yang, Fengli Liu, Yonghe Wei
International Conference on Mechatronic Engineering and Artificial Intelligence (MEAI 2023)