In the production and operation, inherent variability and uncertainty necessitate addressing unit-to-unit heterogeneity in initial performance values and degradation processes. This article presents a bi-stochastic exponential dispersion process (BS-ED) designed to account for heterogeneity in both initial performance values and degradation processes. First, based on the ED process, the time and acceleration covariates are introduced to form a nonlinear accelerated ED process, and a random effect coefficient associated with the accelerated stress is incorporated to consider the heterogeneity of the process. Meanwhile, through the modelling of degradation time-shift, a degradation model considering the stochastic initial value of the product performance is developed. To effectively conduct the statistic inference of the BS-ED process, an improved stochastic EM algorithm is proposed, and the information matrix and Ito calculus are combined to estimate the confidence intervals. Finally, the stability of the method is verified by simulation and analyzed by two real cases.
CITATIONS(2):
1.
Degradation Modeling and Remaining Useful Life Assessment Based on the Hougaard Process Hongguang Du, Fan Zhang, Zhenyang Ma 2024 Global Reliability and Prognostics and Health Management Conference (PHM-Beijing)
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.