The article describes a method of increasing the adhesion of the wheel to the rail based on the preliminary electrification of the
abrasive-air mixture before its feed into a contact. A simulation model of the movement of sand in the system “injecting nozzle of
a sandbox - a rail” is presented. The effectiveness of the proposed method to improve adhesion is confirmed experimentally. The
results of experiments carried out on a friction machine, which characterize the change in friction ratio depending on the temperature with different methods of sand supply, are presented. The reduction in the consumption of sand caused by its electrification and
the supply of a rational amount of abrasive substance into the contact of the wheel with the rail is estimated.
REFERENCES(42)
1.
Arias-Cuevas O, Li Z. Field investigations into the adhesion recovery in leaf-contaminated wheel–rail contacts with locomotive sanders. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 2011; 225: 442-456, https://doi.org/10.1177/204130....
Arias-Cuevas O, Li Z, Lewis R. Investigating the lubricity and electrical insulation caused by sanding in dry wheel-rail contacts. Tribology Letters 2010; 37: 623–635, https://doi.org/10.1007/s11249....
Blatnicky M, Barta D, Dizo J, Drozdziel P. Diagnosing of fatigue lifespan using the modern method of welding simulating. Diagnostyka 2017; 18(4): 19-26.
Chen H, Ban T, Ishid, M, Nakahara T. Experimental investigation of influential factors on adhesion between rail and wheel under wet conditions. Wear 2008; 265: 1504–1511, https://doi.org/10.1243/095440....
Cortis D, Giulianelli S, Malavasi G, Rossi S. Self-diagnosis method for checking the wayside systems for wheel-rail vertical load measurement. Transport Problems 2017; 12 (4): 91-100.
Dižo J, Blatnický M, Steišūnas S, Skočilasová B. Assessment of a rail vehicle running with the damaged wheel on a ride comfort for passengers. Open Access proceedings in Materials Science, Engineering and Chemistry. Machine Modelling and Simulations 2017; 157: 1-11.
Gerlici J, Lack T. Contact geometry influence on the rail/ wheel surface stress distribution. The 4th international fatigue congress – Fatigue 2010. Procedia Engineering 2010; 2: 2249–2257, https://doi.org/10.1016/j.proe....
Gerlici J, Gorbunov M, Kravchenko K, Kostyukevich A, Nozhenko O, Lack T. Experimental rigs for wheel/rail contact research. Manufacturing Technology 2016; 16 (5): 909-916.
Haas S. Verbesserung des Haftwerts zwischen Rad und Schiene durch fahrzeugseitige Ma durch fahrzeugseitige Maßnahmen. Schienenfahrzeugtagung, Graz 2005; 24 p.
Harrison H, McCanney T, Cotter J. Recent developments in coefficient of friction measurements at the rail/ wheel interface. Wear 2002; 253: 114–123, https://doi.org/10.1016/S0043-....
Hauser V, Nozhenko OS, Kravchenko KO, Loulová M, Gerlici J, Lack T. Impact of wheelset steering and wheel profile geometry to the vehicle behaviour when passing curved track. Manufacturing Technology 2017; 17 (3): 306-312.
Hsu S, Huang Z, Iwnicki S, Thompson D, Jones C, Xie G, Allen P. Experimental and theoretical investigation of railway wheel squeal. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 2007; 221: 59–73, https://doi.org/10.1243/095440....
Ishizaka K, Lewis SR, Lewis, R. The Low Adhesion Problem due to Leaf Contamination in the Wheel/Rail Contact: Bonding and Low Adhesion Mechanisms. Wear 2017; 378-379: 183–197, https://doi.org/10.1016/j.wear....
Jin XS, Zhang WH, Zeng J, Zhou ZR, Liu QY, Wen Z F. Adhesion experiment on a wheel–rail system and its numerical analysis. Proceedings of the Institution of Mechanical Engineers, Part J; Journal of Engineering Tribology, 2004; 218(J1): 293–303, https://doi.org/10.1243/135065....
Kravchenko KO. The grounds of increase backlogs of locomotive hauling qualities and its realization by the management of sliding in the system of wheel with a rail. PhD Dissertation. Volodymyr Dal East-Ukrainian National University, Lugansk 2010; 215 p.
Kumar S, Krishnamoorthy PK, Prasanna Rao DL. Wheel–rail wear and adhesion with and without sand for a north American locomotive. Journal of Engineering for Industry 1986; 108: 141–147, https://doi.org/10.1115/1.3187....
Lewis R, Dwyer-Joyce RS. Wear at the wheel/rail interface when sanding is used to increase adhesion. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 2006; 220: 29-41, https://doi.org/10.1243/095440....
Lewis R, Dwyer-Joyce RS, Lewis SR, Hardwick C, Gallardo-Hernandez EA. Tribology of the Wheel-Rail Contact: The Effect of Third Body Materials. International Journal of Railway Technology 2012; 1(1): 167-194, https://doi.org/10.4203/ijrt.1....
Lewis R, Gallardo-Hernandez EA, Hilton T, Armitage T. Effect of oil and water mixtures on adhesion in the wheel/rail contact. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009; 223: 275-283, https://doi.org/10.1243/095440....
Lewis SR, Riley S, Fletcher DI, Lewis R. Optimisation of a railway sanding system, Part 2: Adhesion Tests. The International Conference on Contact Mechanics CM 2015, Colorado Springs, Colorado, USA, 2015.
Lewis SR, Riley S, Fletcher DI, Lewis R. Optimisation of a railway sanding system for optimal grain entrainment into the wheel–rail contact. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 2018; 232(1): 43–62, https://doi.org/10.1177/095440....
Liudvinavičius L, Bureika G. Theoretical and practical perspectives of diesel locomotive with DC traction motors wheel-sets' slipping and sliding control. Transport 2011; 26 (4): 335-343, https://doi.org/10.3846/164841....
Liudvinavičius L, Lingaitis LP, Bureika G. Investigation on wheel-sets slip and slide control problems of locomotives with AC traction motors. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2011; 4: 21-28.
Liu X, Meehan PA. Investigation of the effect of relative humidity on lateral force in rolling contact and curve squeal. Wear 2014; 310: 12–19, https://doi.org/10.1016/j.wear....
Magheri S, Malvezzi M, Meli E, Rindi A. An innovative wheel–rail contact model for multibody applications. Wear 2011; 271: 462–471, https://doi.org/10.1016/j.wear....
Marko MD, Kyle JP, Wang Y.S, Terrell EJ. Tribological investigations of the load, temperature, and time dependence of wear in sliding contact. Public Library of Science 2017; 12(4): e0175198, https://doi.org/10.1371/journa....
Olofsson U, Sundvall K. Influence of leaf, humidity and applied lubrication on friction in the wheel–rail contact: pin-on-disc experiments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 2004; 218: 235–242, https://doi.org/10.1243/095440....
Smetanka L, Št'astniak P, Harušinec J. Wear research of railway wheelset profile by using computer simulation. Open Access proceedings in Materials Science, Engineering and Chemistry. Machine Modelling and Simulations 2018. 157: 1-9.
Wang WJ, Lewis R, Yang B, Guo LC, Liu QY, Zhu MH. Wear and damage transitions of wheel and rail materials under various contact conditions. Wear 2016; 362 (36): 146-152. ISSN 0043-1648, https:// doi.org/10.1016/j.wear.2016.05.021.
Zhang W, Chen J, Wu X, Jin X. Wheel/rail adhesion and analysis by using full scale roller rig. Wear 2002; 253: 82–88, https://doi.org/10.1016/S0043-....
Дмитриев ВЕ. Заряженное состояние адсорбентов и их применение в энергетике при экстремальных условиях: автореферат дис. к.т. н. : 05.14.02, 01.04.13. Новосибирск, НГАВТ, 2000; 8 с.
Проволоцкий АЕ, Нарбутович-Кащенко АН. Развитие технологий струйной обработки. Збірник наукових праць. Сучасні технології в машинобудуванні, 2008. http://www.nbuv.gov.ua/portal/....
Algorithm for Reducing Truck Noise on Via Baltica Transport Corridors in Lithuania Kristina Čižiūnienė, Jonas Matijošius, Audrius Čereška, Artūras Petraška Energies
Specification of estimation of a passenger car ride smoothness under various exploitation conditions Gediminas Vaičiūnas, Stasys Steišūnas, Gintautas Bureika Eksploatacja i Niezawodnosc - Maintenance and Reliability
A calculation and analysis of a cylindrical part of a steam boiler of a steam locomotive miniature model Vadym Ishchuk, Ján Dižo, Miroslav Blatnický, Denis Molnár, Alyona Lovska, Oleksij Fomin Transportation Research Procedia
Accelerometer-Based Pavement Classification for Vehicle Dynamics Analysis Using Neural Networks Vytenis Surblys, Edward Kozłowski, Jonas Matijošius, Paweł Gołda, Agnieszka Laskowska, Artūras Kilikevičius Applied Sciences
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.