RESEARCH PAPER
Weibull Reliability Methodology based on Cumulated Vibration Damage
More details
Hide details
1
Industrial and Manufacturing Department at the Engineering and Technological Institute, Universidad Autónoma de Ciudad Juárez, Mexico
These authors had equal contribution to this work
Submission date: 2024-10-31
Final revision date: 2024-12-20
Acceptance date: 2025-02-17
Online publication date: 2025-02-21
Publication date: 2025-02-21
Corresponding author
Manuel Piña Monarrez
Industrial and Manufacturing Department at the Engineering and Technological Institute, Universidad Autónoma de Ciudad Juárez, Henri Dunant, 32310, Ciudad Juórez, Mexico
Eksploatacja i Niezawodność – Maintenance and Reliability 2025;27(3):201990
HIGHLIGHTS
- We determine the reliability index of each damage element D_i and damage block B_i.
- We determined the Weibull shape and scale parameters for each D_i, and B_i element.
- The estimated shape parameter represents the spread of the cumulated damage until D=1.
- Fatigue vibration damage is cumulated by using a nonlinear model for AL6061-T6.
- The only input of the reliability methodology is the data from the cumulated damage analysis.
KEYWORDS
TOPICS
ABSTRACT
In the paper, the formulated Weibull vibration reliability methodology is based on the cumulative vibration damage analysis. It lets us determine the reliability index of each damage element, each damage block, and the reliability of the analyzed element. The vibration cumulated damage is cumulated until D=1, by using the addressed vibration stress and a nonlinear cumulative damage model. Based on static and modal analysis, the vibration stress is determined by incorporating to it the geometry, weight and resonance effects. In the reliability analysis the Weibull shape (β) parameter is determined directly from the number of blocks, for which D=1. The damage element, damage block, and element reliability are all determined based on the values of beta (β) and D_i elements. Finally, based on the cumulated applied cycles n_i the Weibull scale (η) parameter is determined by to each D_i elements, damage block, and analyzed element.
REFERENCES (27)
1.
Kundu P, Darpe AK, Kulkarni MS. Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions. Mech Syst Signal Process [Internet]. 2019;134:106302. Available from:
https://doi.org/10.1016/j.ymss....
2.
Standardization IO for. INTERNATIONAL STANDARD Road vehicles — Environmental conditions and testing for electrical. 2012;.
3.
Wang LJ, Wang ZW. FEM verification of accelerated vibration test method based on Grms - T curve. Advances in Mechanical Engineering. 2022;14(2):1–12.
https://doi.org/10.1177/168781....
4.
Edson L. The GMW3172 Users Guide. 2008;.
5.
Wang H, Zhang Z, Li J, Xin W, Han C. Fault analysis and reliability evaluation for motorized spindle of cycloidal gear grinding machine based on multi-source bayes. Eksploatacja i Niezawodnosc. 2024;26(1).
https://doi.org/10.17531/ein/1....
6.
Wang W, Shen G, Zhang Y, Zhu Z, Li C, Lu H. Dynamic reliability analysis of mechanical system with wear and vibration failure modes. Mech Mach Theory. 2021 Sep 1;163.
https://doi.org/10.1016/j.mech....
7.
Wang W, Liu W, Fang Y, Zheng Y, Lin C, Jiang Y, et al. Reliability analysis of subway sliding plug doors based on improved FMECA and Weibull distribution. Eksploatacja i Niezawodnosc. 2024;26(2).
https://doi.org/10.17531/ein/1....
8.
Wan L, Jiang K, Zeng Q, Gao K. Dynamic response and reliability analysis of shearer drum cutting performance in coal mining process. Eksploatacja i Niezawodnosc. 2022;24(1):123–9.
https://doi.org/10.17531/ein.2....
9.
Rouillard V, Lamb MJ. Using the Weibull distribution to characterise road transport vibration levels. Packaging Technology and Science [Internet]. 2020;33(7):255–66. Available from:
https://doi.org/10.1002/pts.25....
10.
Hosseini SAA, Khadem SE. Vibration and reliability of a rotating beam with random properties under random excitation. Int J Mech Sci. 2007 Dec;49(12):1377–88.
https://doi.org/10.1016/j.ijme....
11.
Barraza-Contreras JM, Piña-Monarrez MR, Torres-Villaseñor RC. Reliability by Using Weibull Distribution Based on Vibration Fatigue Damage. Applied Sciences (Switzerland). 2023 Sep 1;13(18).
https://doi.org/10.3390/app131....
12.
Piña-Monarrez MR. Weibull stress distribution for static mechanical stress and its stress/strength analysis. Qual Reliab Eng Int. 2018 Mar 1;34(2):229–44.
https://doi.org/10.1002/qre.22....
13.
Kumar SM. Analyzing Random Vibration Fatigue. ANSYS Advantage [Internet]. 2008;II(3):39–42. Available from: www.ansys.com.
14.
Steinberg DS. Vibration analysis for electronic equipment. John Wiley & Sons; 2000. 0–432 p.
15.
Al-Yafawi A, Patil S, Yu D, Park S, Pitarresu J. Random Vibartion Test for Electronic Assemblies Fatigue Life Estimation. IEEE. 2010;
https://doi.org/10.1109/ITHERM....
16.
Qin S, Li Z, Chen X, Shen H. Comparing and Modifying Estimation Methods of Fatigue Life for PCBA under Random Vibration Loading by Finite Element Analysis. IEEE. 2015;.
17.
Zheng M, Shen F, Luo P. Vibration Fatigue Analysis of the Structure under Thermal Loading. In: Advanced Materials Research. 2014. p. 559–64.
https://doi.org/10.4028/www.sc....
19.
Lee YL, Pan J, Hathaway R, Barker M. Fatigue Testing and Analysis. 2005. 5–417 p.
20.
Castillo E, Fernández-Canteli A. A Unified Statistical Methodology for Modeling Fatigue Damage. 2009. 0–235 p.
21.
Manson SS, Halford GR. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage. Vol. 17, International Journal of Fracture. 1981.
https://doi.org/10.1007/BF0003....
22.
Weibull W. A Statistical theory of the strength of materials. 1939;1–45.
23.
Barraza-Contreras JM, Piña-Monarrez MR, Molina A, Torres-Villaseñor RC. Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model. Applied Sciences (Switzerland). 2022;12(9).
https://doi.org/10.3390/app120....
24.
ReliaSoft. Two Methods for Analyzing Time-Varying Stress Data in ALTA. 2016.
25.
ReliaSoft. Topics A Look Under the Hood at the Cumulative Damage Model. 2003.
26.
Živković P, Milutinović M, Tica M, Trifković S, Čamagić I. Reliability Evaluation of Transmission Planetary Gears “bottom-up” approach. Eksploatacja i Niezawodnosc. 2023;25(1).
https://doi.org/10.17531/ein.2....
27.
Hernández-Ramos MM, Piña-Monarrez MR, Barraza-Contreras JM, Monclova-Quintana O. Weibull Random Vibration Reliability Based on Cumulated Damage [Internet]. 2024. Available from:
https://www.preprints.org/manu....