Search for Author, Title, Keyword
RESEARCH PAPER
The failure analysis of the drilling rig hoisting steel wire rope
 
More details
Hide details
1
Faculty of Mining, Ecology, Process Control and Geotechnology, Technical University of Kosice, Park Komenskeho 14, 042 00 Kosice, Slovak Republic
 
2
Institute of Materials Research, Slovak Academy of Science, Watsonova 47, 040 01 Košice, Slovak Republic
 
 
Publication date: 2020-12-31
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2020;22(4):667-675
 
HIGHLIGHTS
  • Use of ropes in systems with lower safety level.
  • Added energy absorbed by non-slipped rope length indicates degree of rope fatigue.
  • Failure in following of rules stated for rope pulling causes rapid rope fatigue.
  • Monitoring of rope condition by NDT and by evaluation of ton-kilometres.
KEYWORDS
ABSTRACT
Drilling rigs belong to the lowest-safety level of hoisting rope systems. The valid regulation for drilling permits the usage of steel ropes on condition that their permanent safety does not decrease under the value 2.5. Considerable dynamic and cyclic stresses, abrasion and corrosive environment generated during the operation cause rapid fatigue and rope damage. The stress of the rope in operation leads to the specific precautions ensuring the safety rope work. The specific precautions include monitoring of the rope tractive work measured in tonne-kilometres (ton-kilometres services). The working part of the hoisting ropes of the drilling rigs - after the stated number of tonne kilometres was worked off - is slipped and a regular non-destructive rope test (NDT) is recommended. Rope under sizing, failing in rope slipping program and non- implementation of NDT controls led to the situations endangering the drilling crew safety. After the critical situations the operator decided to perform the analysis of the condition of all ropes.
 
REFERENCES (37)
1.
Andrzejczak K, Młyńczak M, Selech J. Poisson-distributed failures in the predicting of the cost of corrective maintenance. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (4): 602-609, https://doi.org/10.17531/ein.2....
 
2.
Celik N, Guloksuz CT. A new lifetime distribution. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19 (4): 634-639, https://doi.org/10.17531/ein.2....
 
3.
Chang X D, Peng Y X, Zhu Z C, Zou S Y, Gong X S, Xu C M. Evolution Properties of Tribological Parameters for Steel Wire Rope under Sliding Contact Conditions. Metals (Basel) 2018; 8: 743, https://doi.org/10.3390/met810....
 
4.
Chang X, Peng Y, Zhu Z, Gong X. Breaking failure analysis and finite element simulation of wear-out winding hoist wire rope. Engineering Failure Analysis 2018; 95: 1-17, https://doi.org/10.1016/j.engf....
 
5.
Chang X D, Peng Y X, Zhu Z C. Experimental investigation of mechanical response and fracture failure behavior of wire rope with different given surface wear. Tribology International 2018; 119: 208-221, https://doi.org/10.1016/j.trib....
 
6.
Chang X D, Peng Y X, Zhu Z C, Zou S Y, Gong X S, XU C M. Effect of wear scar characteristics on the bearing capacity and fracture failure behavior of winding hoist wire rope. Tribology International 2019; 130: 270-283, https://doi.org/10.1016/j.trib....
 
7.
Čereška A, Zavadskas E K, Bucinskas V, Podvezko V, Sutinys E. Analysis of Steel Wire Rope Diagnostic Data Applying Multi-Criteria Methods. Applied Sciences, 2018; 8: 260, https://doi.org/10.3390/app802....
 
8.
Grygier D. The impact of operation of elastomeric track chains on the selected properties of the steel cord wires. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19: 95-101, https://doi.org/10.17531/ein.2....
 
9.
Guo Y, Zhang D, Chen K, Feng C, Ge S. Longitudinal dynamic characteristics of steel wire rope in a friction hoisting system and its coupling effect with friction transmission. Tribology International 2018; 119: 731-743, https://doi.org/10.1016/j.trib....
 
10.
Knopik L, Migawa K. Multi-state model of maintenance policy. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (1): 125-130, https://doi.org/10.17531/ein.2....
 
11.
Kou B, Liu Q, Li N. Research on transverse vibration characteristics of rope change device with clamping chain transmission in lifting system. Journal of Vibroengineering 2017 19: 894-907, https://doi.org/10.21595/jve.2....
 
12.
Kuľka J, Mantič M, Kopas M, Faltinova E. Locking the Movement of Persons on the Bridge Crane. Advances in Science and Technology Research Journal 2018; 12: 260-265, https://doi.org/10.12913/22998....
 
13.
Li C Y, Wang J H, Zhi Y R, Wang Z R, Gong J H, Jiang J C. A dynamic prediction method for probability of rupture accidents of a chloride process based on experimental corrosion data. Journal of Loss Prevention in the Process Industries 2018; 56: 467-477, https://doi.org/10.1016/j.jlp.....
 
14.
Liang B, Zhao Z, Wu X, Liu H. The establishment of a numerical model for structural cables including friction. Journal of Constructional Steel Research 2017 139: 424-436, https://doi.org/10.1016/j.jcsr....
 
15.
Liu X, Xiao J, Wu B, He C. A novel sensor to measure the biased pulse magnetic response in steel stay cable for the detection of surface and internal flaws. Sensors and Actuators A: Physical 2018; 269: 218-226, https://doi.org/10.1016/j.sna.....
 
16.
Lourenco J M, Pereira F G L, Bernardini P A N, de Carvalho L A. Análise De Falha Em Um Cabo De Aço Usado Em Máquinas Apolete. Holos 2018; 4: 75-88, https://doi.org/10.15628/holos....
 
17.
Ma W, Lubrecht A A. Detailed contact pressure between wire rope and friction lining. Tribology International 2017; 109: 238-245, https:// doi.org/10.1016/j.triboint.2016.12.051.
 
18.
Mańka E, Słomion M, Matuszewski M. Constructional Features of Ropes in Functional Units of Mining Shaft Hoist. Acta Mechanica et Automatica 2018;12: 66-71, https://doi.org/10.2478/ama-20....
 
19.
Marandi L, Sen I. Effect of Saline Atmosphere on the Mechanical Properties of Commercial Steel Wire. Metallurgical and Materials Transactions A Physical Metallurgy and Materials Science 2018; 50: 132-141, https://doi.org/10.1007/s11661....
 
20.
Młynarski S, Pilch R, Smolnik M, Szybka J, Wiązania G. A model of an adaptive strategy of preventive maintenance of complex technical objects. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22 (1): 35-41, https://doi.org/10.17531/ein.2....
 
21.
Pal U, Mukhopadhyay G, Sharma A, Bhattacharya S. Failure analysis of wire rope of ladle crane in steel making shop. International Journal of Fatigue 2018; 116: 149-155, https://doi.org/10.1016/j.ijfa....
 
22.
Pawłowski B, Krawczyk J, Bała P, Cios G, Tokarski T. The analysis of the water-expanded rock bolts ruptures during pressure test. Archives of Mining Sciences 2017; 62: 423-430, https://doi.org/10.1515/amsc-2....
 
23.
Peng Y X, Chang X D, Sun S S, Zhu Z C, Gong X S, Zou S Y, XU W X, Mi Z T. The friction and wear properties of steel wire rope sliding against itself under impact load. Wear 2018; 400-401: 194-206, https://doi.org/10.1016/j.wear....
 
24.
Peterka P, Krešák J, Kropuch S, Fedorko G, Molnar V, Vojtko M. Failure analysis of hoisting steel wire rope. Engineering Failure Analysis 2014; 45: 96-105, https://doi.org/10.1016/j.engf....
 
25.
Peterka P, Krešák J, Šimoňák J, Bindzár P, Kečkešová I. Tractive work of the aerial cableway towing haul rope. Measurement 2017; 100:322-328, https://doi.org/10.1016/j.meas....
 
26.
Piskoty G, Affolter C, Sauder M, Nambiar M, Weisse B. Failure analysis of a ropeway accident focussing on the wire rope's fracture load under lateral pressure. Engineering Failure Analysis 2017; 82: 648-656, https://doi.org/10.1016/j.engf....
 
27.
Singh R P, Mallick M, Verma M K. Studies on failure behaviour of wire rope used in underground coal mines. Engineering Failure Analysis 2016; 70: 290-304, https://doi.org/10.1016/j.engf....
 
28.
Vukelic G, Vizentin G. Damage-Induced Stresses and Remaining Service Life Predictions of Wire Ropes. Applied Sciences 2017; 7: 107, https://doi.org/10.3390/app701....
 
29.
Wang D, Wang D. Dynamic contact characteristics between hoisting rope and friction lining in the deep coal mine. Engineering Failure Analysis 2016; 64: 44-57, https://doi.org/10.1016/j.engf....
 
30.
Wang S, Zhang D, Hu N, Zhang J. Effect of stress ratio and loading frequency on the corrosion fatigue behavior of smooth steel wire in different solutions. Materials (Basel) 2016; 9: 9, https://doi.org/10.3390/met701....
 
31.
Wang D, Li X, Wang X, Zhang D, Wang D. Dynamic wear evolution and crack propagation behaviors of steel wires during fretting-fatigue Tribology International 2016; 101: 348-355, https://doi.org/10.1016/j.trib....
 
32.
32 Zhang J, Zheng P, Tan X. Recognition of broken wire rope based on remanence using EEMD and wavelet methods. Sensors 2018; 18: 1-14, https://doi.org/10.3390/s18041....
 
33.
Zhang J, Tan X, Zheng P. Non-destructive detection of wire rope discontinuities from residual magnetic field images using the hilbert-huang transform and compressed sensing. Sensors 2017; 17: 1-19, https://doi.org/10.3390/s17030....
 
34.
Zhang D, Feng C, Chen K, Wang D, Ni X. Effect of broken wire on bending fatigue characteristics of wire ropes. International Journal of Fatigue 2017; 103: 456-465, https://doi.org/10.1016/j.ijfa....
 
35.
Zhang S, Sun S, Si S, Wang P. A decision diagram based reliability evaluation method for multiple phased-mission systems. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19 (3): 485-492, https://doi.org/10.17531/ein.2....
 
36.
36 Zhao B, Zhao ZB, Hua G, Liu C. A new low-carbon microalloyed steel wire in drilling rope. Materials Science and Technology 2016; 32: 722-727, https://doi.org/10.1080/026708....
 
37.
Zhao D, Liu S, Xu Q, Shi F, Sun W, Chai L. Fatigue life prediction of wire rope based on stress field intensity method. Engineering Failure Analysis 2017; 81: 1-9, https://doi.org/10.1016/j.engf....
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top