Cavitation erosion of cylinder liner seriously affects the operational reliability and service life of heavy-duty diesel engines. The accuracy of the modeling-based cavitation risk evaluation is limited by the unclear correspondence between cylinder liner vibration and coolant cavitation. This report is intended to investigate the correspondence between cylinder liner vibration and coolant pressure by combining vibration cavitation test, pressure gradient calculation, and visualization observation. The cavitation risk of the cylinder liner under piston slap is also quantitatively analyzed based on the nonlinear structural dynamics model. The results show that the occurrence of cavitation will cause a nonlinear relationship between the cylinder liner acceleration and the coolant pressure. The difference in cavitation risk for each cylinder is related to the structural modal characteristics of the crankcase. In addition, the effect of piston-liner clearance and piston pin offset on the cavitation risk is investigated based on the dynamics model.
ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of China (NO. 51805353) and Research Project Supported by Shanxi Scholarship Council of China (NO. HGKY2019041).
CITATIONS(1):
1.
Strengthening the Cavitation Resistance of Cylinder Liners Using Surface Treatment with Electroless Ni-P (ENP) Plating and High-Temperature Heat Treatment Wenjuan Zhang, Hao Gao, Qianting Wang, Dong Liu, Enlai Zhang Materials
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.