Search for Author, Title, Keyword
Method for assessing the grinding wheels operational properties
More details
Hide details
Sonoco Poland - Packaging Services Sp. z o.o. Nowy Jozefów 70, 94-406 Łódź, Poland
Department of Technology Jacob of Paradies University Fryderyk Chopin 52 Street, 66-400 Gorzów Wielkopolski, Poland
Institute of Machine Tools and Production Engineering Lodz University of Technology Stefanowskiego 1/15 Street, 90-924 Łódź, Poland
Publication date: 2018-12-31
Eksploatacja i Niezawodność – Maintenance and Reliability 2018;20(4):531–541
The paper presents a new, multi-criteria method which allows the numerical evaluation of the machining process in terms of efficiency, quality and costs. Three indicators were developed to assess the operational properties of grinding wheels. Their values are determined on the basis of the results of short grinding tests carried out on a special test stand. The evaluation of the proposed indicators is described. Furthermore, the application exemple of this method in determining the grinding wheel’s operational properties is presented. In the research, the vitrified alumina oxide grinding wheels were used for grinding of constructional and tool steels of various hardness. The results of the experiments show that the proposed indicators are an effective tool for assessing the process and results of grinding for a specific grinding wheel and material within certain tested grinding parameters range. The study also showed that the differences in indicators’ values, observed during tests of grinding specific material type using grinding wheels with different properties, are useful for optimizing the choice of tool type and machining conditions.
Adibi H, Rezaei Ahmed S M, Sarhan A D. Analytical modeling of grinding wheel loading phenomena. International Journal of Advanced Manufacturing Technology 2013; 68: 473-485,
Axinte D, Butler-Smith P, Akgun C, Kolluru K. On the influence of single grit microgeometry on grinding behavior of ductile and brittle materials. International Journal of Machine Tools and Manufacture 2013; 74: 12-18,
Brinksmeier E, Heinzel C,Wittmann M. Friction, Cooling and Lubrication in Grinding CIRP Annals - Manufacturing Technology 1999; 48: 581-598.
Burakowski T, Wierzchoń T. Surface Engineering of Metals: Principles, Equipment, Technologies. CRC Press, Boca Raton, 1999.
Dębkowski R. Analiza komputerowa obrazu mikroskopowego w zastosowaniu do oceny zużycia czynnej powierzchni ściernicy. Materiały XXIII Naukowej Szkoły Obróbki Ściernej, Rzeszów, 2000.
Gołąbczak A, Koziarski T. Assessment method of cutting ability of CBN grinding wheels. International Journal of Machine Tools and Manufacture 2005; 45: 1256-1260,
Guo C, Chand R H. Grindability and Mechanical Property of Ceramics. Proceedings of the 20th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures-A: Ceramic Engineering and Science Proceedings, 2008: 214-219.
Hahn R S. On the mechanics of the grinding process under plunge cut conditions. Journal of Engineering for Industry 1966; 1: 72-79,
Herzenstiel P, Aurich J C. CBN-grinding wheel with a defined grain pattern -extensive numerical and experimental studies, Machining Science and Technology 2010; 14: 301-322,
Jackson M J, Mills B. Microscale wear of vitrified abrasive materials. Journal of Materials Science 2004; 39: 2131-2143,
Kacalak W, Lipiński D, Rypina Ł, Szafraniec F, Tandecka K, Bałasz B. Performance evaluation of the grinding wheel with aggregates of grains in grinding of Ti-6Al-4V titanium alloy. International Journal of Advanced Manufacturing Technology 2018; 94: 301-314,
Karpuschewski B, Wehmeier M, Inasaki I. Grinding monitoring system based on power and acoustic emission sensors. Annals of the CIRP 2000; 49: 235-240,
Katalog materiałów ściernych. Koło: Andre Abrasives, 2017.
Kato T, Fuji H. Temperature measurement of workpieces in conventional surface grinding. Journal of Manufacturing Science and Engineering 2000; 122: 297-303,
Klocke F, Brinksmeier E, Weinert K. Capability Profile of Hard Cutting and Grinding Processes. CIRP Annals 2005; 54: 22-45,
König W, Messer J. Influence of the Composition and Structure of Steels on Grinding Process. Annals of the CIRP 1981; 30: 547-552,
Koziarski A, Golabczak A. The Assessment of the Grinding Wheel Cutting Surface Condition after Dressing with Single Point Diamond Dresser. International Journal of Machine Tools Design and Research 1985; 25: 313-325,
Lipiński D, Kacalak W, Tomkowski R. Methodology of Evaluation of Abrasive Tool Wear with the Use of Laser Scanning Microscopy. Scanning 2014; 36: 53-63,
Malkin S, Cook N H. The wear of grinding wheels. Part 1: attritious wear. Transactions of ASME, Journal of Engineering for Industry 1971; 93: 1120-1128,
Malkin S, Guo C. Thermal analysis in grinding. CIRP Annals - Manufacturing Technology 2007; 56, 760-782.
Malkin S, Guo C. Thermal analysis of grinding. Annals of the CIRP 2007; 56: 760 - 782,
Malkin S. The wear of grinding wheels. Part 2: fracture wear. Transactions of ASME, Journal of Engineering for Industry 1971; 93: 1129-1133,
Marinescu I D, Hitchiner M, Uhlmann E, Rowe W B. Inasaki I. Handbook of Machining with Grinding Wheels. CRC Press, Boca Raton, 2007.
Marinescu I D, Rowe W B, Dimitrov B, Inasaki I. Tribology of abrasive machining processes. William Andrew, Inc., Norwich, 2004.
Maslov E N.: Teorija šlifovanija materialov, Moskva: Mašinostroenie, 1974.
Mofdi M, Linghchi M, Zhang T. Applied mechanics in grinding. Part 7: residual stresses induced by the full coupling of mechanical deformation, thermal deformation and phase transformation. International Journal of Machine Tools and Manufacture 1999; 39: 1285-1298,
Nadolny K. Wear phenomena of grinding wheels with sol-gel alumina abrasive grains and glass-ceramic vitrified bond during internal cylindrical traverse grinding of 100Cr6 steel. International Journal of Advanced Manufacturing Technology 2015; 77: 83-98,
Rasim M, Mattfeld P, Klocke F. Analysis of the grain shape influence on the chip formation in grinding. Journal of Materials Processing Technology 2015; 226: 60-68,
Rowe W B. Principles of modern grinding technology. Elsevier, 2009.
Setti D, Ghosh S, Rao P V. A method for prediction of active grits count in surface grinding. Wear 2017; 382-383: 71-77,
Sieniawski J, Nadolny K. The effect upon grinding fluid demand and workpiece quality when an innovative zonal centrifugal provision method is implemented in the surface grinding of steel CrV12. Journal of Cleaner Production 2016; 113: 960-972,
Steffens K. Beschreibung eines Gleitlinienfelds für die Deutung der Spanbildung beim Schleifen. Industrie-Anzeiger 1979; 19.
Stephenson D J. Three Dimensional Finite Element Simulation of Transient Heat Transfer in High Efficiency Deep Grinding. Annals of the CIRP 2004; 53: 259-262,
Tönshoff K H, Friemuth T, Becker J C. Process monitoring in grinding. Annals of the CIRP, 2002; 51: 551-571,
Uhlmann E, Lypovka P, Hochschild L, Schröer N. Influence of rail grinding process parameters on rail surface roughness and surface layer hardness. Wear 2016; 366-367:287-293,
Urbaniak M, Leonarcik R, Szajder M. Stanowisko do oceny szlifowalności materiałów. Naukowa Szkoła Obróbki Ściernej, Gdańsk, 2011.
Urbaniak M, Skowron M, Leonarcik R. Patent nr 213086 na wynalazek pt.: Urządzenie pomiarowe, 2013.
Urbaniak M. System oceny użytkowych właściwości ściernic. Łódź: Zeszyty Naukowe P.Ł., 2002.
Wegener K, Hoffmeister W, Karpuschewski B, Kuster F, Hahmann W C, Rabiey M. Conditioning and monitoring of grinding wheels. CIRP Annals 2011; 60: 757-777,
Yu H, Lu Y, Wang J. Study on wear of the grinding wheel with an abrasive phyllotactic pattern. Wear 2016; 358-359: 89-96,
Wear behavior of a new composite formulation, with TEOS addition, for abrasive vitrified grinding wheels
P. Capela, S. Costa, M.S. Souza, S. Carvalho, M. Pereira, L. Carvalho, J.R. Gomes, D. Soares
A study of wear on focusing tubes exposed to corundum-based abrasives in the waterjet cutting process
Andrzej Perec, Frank Pude, Anton Grigoryev, Michael Kaufeld, Konrad Wegener
The International Journal of Advanced Manufacturing Technology