In the work identificaton of surface stresses in the exhaust pipe made of Cr-Ni steel shaped with hydroforming technology. Stresses
were determined by the non-destructive x-ray method sin2
ψ. A complex state of tensile stresses with values in the range of 69÷240
MPa for circumferential stresses and 26÷290 MPa for longitudinal stresses was found on the surface of the pipe. The distribution
of stresses on the circumference and length of the pipe was analyzed on the basis of coefficients of variation and wall thickness.
A relationship was found between the value of surface stress and the wall thickness of the pipe. The highest stresses occurred in
the areas of the pipe where the thickness of the wall was reduced the most. In the central part of the pipe, where the wall thickness
reduction was the smallest, the stresses were also the smallest, but they were characterized by the highest dispersion of value. The
distribution of surface stresses determined by diffractometric method was compared with the model of deformation of the pipe
generated numerically
REFERENCES(20)
1.
Alaswad A, Benyounis K Y, Olabi A G. Tube hydroforming process: a reference guide. Materials and Design 2012; 33: 328-339, https://doi.org/10.1016/j.matd....
Baczmański A, Wierzbanowski K, Lipiński P. Determination of Residual Stresses in Plastically Deformed Polycrystalline Material. Materials Science Forum 1994; 157-162: 2051-2058, https://doi.org/10.4028/www.sc....
Chałupczak J. Hydromechanical spreading in application to the formation of tees and X-pieces (in Polish). Works of the Kielce University of Technology. Mechanics; 39. Habilitation dissertation. Kielce, 1986.
Gronostajski Z, Kuziak R. Metallurgical, technological and functional foundations of advanced high-strength steels for the automotive industry (in Polish). Works of the Institute of Ferrous Metallurgy 2010; 22-26.
Hashemi R, Assemoiur A, Masourni E, Abad K. Implementation of the forming limit stress diagram to obtain suitable load path in tube hydroforming considering M-K model. Materials & Design 2009; 30(9): 3545-3553, https://doi.org/10.1016/j.matd....
Kocańda A, Sadłowska H. Automotive component development by means of hydroforming. Archives of Civil and Mechanical Engineering 2008; 8(3): 55-69, https://doi.org/10.1016/S1644-....
Koç M. An overall review of tube hydroforming (THF) technology. Journal of Materials Processing Technology 2001; 108: 384-393, https://doi.org/10.1016/S0924-....
Kucharska B, Krzywiecki M. Stresses in a Cr-Ni superficial steel layer based on x-ray measurements and electropolishing Solid State Phenomena 2015; 223: 348-354, https://doi.org/10.4028/www.sc....
Kucharska B, Wróbel A, Kulej E, Nitkiewicz Z. The X-ray measurement of the thermal expansibility of Al-Si alloy in the form of cast and a protective coating on steel. Solid State Phenomena 2010; 163: 286-290, https://doi.org/10.4028/www.sc....
14 Miłek T. Variations of wall thickness in the sections of hydromechanically bulged copper cross joints. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2003; 2(18): 45-48.
Morphy G. Pressure-sequence and high pressure hydroforming: Knowing the processes can mean boosting profits. The Tube & Pipe Journal, September/October 1998 (thefabricator.com, February 2001).
Skrzypek S J, Witkowska M, Kowalska M, Chruściel K. The non-destructive X-Ray methods in measuring of some material properties (in Polish). Hutnik-Wiadomości Hutnicze 2012; 79(4): 238-246.
Wróbel-Knysak A, Kucharska B, The abrasion of Al-Si coatings with different silicon crystal morphology used in car exhaust systems. Tribologia 2016; 5: 209-218, https://doi.org/10.5604/01.300....
Xianfeng Chen, Zhongqi Yu, Bo Hou, Shuhui Li, Zhongqin Lin. A theoretical and experimental study on forming limit diagram for a seamed tube hydroforming. Journal of Materials Processing Technology 2011; 211(12): 2012-2021, https://doi.org/10.1016/j.jmat....
20 Kumbár V, Votava J, Numerical modelling of pressure and velocity rates of flowing engine oils in real pipe. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2015; 7(3): 422-426, https://doi.org/10.17531/ein.2....
Exhaust system piping made by hydroforming: relations between stresses, microstructure, mechanical properties and surface Barbara Kucharska, Oskar Moraczyński Archives of Civil and Mechanical Engineering
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.