Search for Author, Title, Keyword
RESEARCH PAPER
Energy losses’ reduction in metallic screens of MV cable power lines and busbar bridges composed of single-core cables
 
More details
Hide details
1
Institute of Electric Power Engineering Poznan University of Technology ul. Piotrowo 3a, 60-965 Poznań, Poland
 
 
Publication date: 2020-03-31
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2020;22(1):15-25
 
KEYWORDS
ABSTRACT
The growing share of medium voltage cable lines in distribution networks challenges distribution network operators in terms of proper mode of operation of these lines. It is related to the reduction of energy losses in cable conductors and metallic cable screens. The article focuses on energy losses in metallic cable screens of cable lines and substation busbar bridges composed of single-core cables with metallic screens and possible ways of their reduction. Simulation and measurement analysis of the level of energy losses in the metallic screens of cables is presented together with the economic analysis of various variants of losses reduction through the change of the way these screens are operated in relation to the traditional bilateral earthing at both ends of cable. Technical problems and threats connected with the use of considered modifications of metallic screens operation during earth fault disturbances in distribution networks are also presented
REFERENCES (52)
1.
Arritt R, Dugan R. Comparing Load Estimation Methods for Distribution System Analysis. 22nd International Conference and Exhibition on Electricity Distribution. CIRED 2013, https://doi.org/10.1049/cp.201....
 
2.
Barrett J S, Anders G J. Circulating current and hysteresis losses in screens, sheaths and armour of electric power cables - mathematical models and comparison with IEC Standard 287. IEE Proceedings - Science, Measurement and Technology 1997; 144: 101-110, https://doi.org/10.1049/ip-smt....
 
3.
Becker J, Musique F. Economical 36 kV Cable System for the Belgian Network. 16th International Conference and Exhibition on Electricity Distribution. CIRED 2001, https://doi.org/10.1049/cp:200....
 
4.
CEER Benchmarking Report 6.1 on the Continuity of Electricity and Gas Supply. Council of European Energy Regulators asbl 2018.
 
5.
Charlton T E, Hocaoglu M H, Karacasu O, Marican A M A. Impact of cable sheath sizing, material and connections upon the safety of electrical power installations. 21st International Conference on Electricity Distribution. CIRED 2011.
 
6.
Czapp S, Dobrzyński K, Klucznik J, Lubośny Z. Analiza napięć indukowanych w żyłach powrotnych kabli wysokiego napięcia dla ich wybranych konfiguracji. XVIII Międzynarodowa Konferencja Aktualne Problemy w Elektroenergetyce APE 2017.
 
7.
Deschamps P, Toravel Y. Reduction of Technical and Non-Technical Losses in Distribution Networks. CIRED Overview, final report 2017.
 
8.
DIgSILENT Power Factory 2018 Technical Reference Documentation. Cable System, ElmCabsys, TypCabsys.
 
9.
DIgSILENT Power Factory 2018 User Manual.
 
10.
Dong X, Yang Y, Zhou C, Hepburn D M. Online Monitoring and Diagnosis of HV Cable Faults by Sheath System Currents. IEEE Transactions on Power Delivery 2017; 32: 2281-2290, https://doi.org/10.1109/TPWRD.....
 
11.
Duda D, Szadkowski M. Ochrona przeciwprzepięciowa osłon kabli WN w różnych układach połączeń żył powrotnych. Przegląd Elektrotechniczny 2014; 10: 37-40.
 
12.
Elektroenergetyczne linie kablowe średniego napięcia. Standard w sieci dystrybucyjnej Enea Operator Sp. z o.o. 2017.
 
13.
European Standard PN-EN 50341-1:2013-03 Overhead electrical lines exceeding AC 1 kV - Part 1: General requirements - Common specifications.
 
14.
European Standard PN-EN 50522:2011 Earthing of power installations exceeding 1 kV a.c.
 
15.
European Standard PN-EN 61936-1:2011 Power installations exceeding 1 kV a.c. - Part 1: Common rules.
 
16.
European Standard PN-HD 60364-4-442:2012 Electrical Installations of Buildings -Protection for Safety - Protection of Low-Voltage Installations Against Temporary Overvoltages and Faults Between High-Voltage Systems and Earth.
 
17.
Gołaś A, Ciesielka W, Szopa K, Zydroń P, Bąchorek W, Benesz M, Kot A, Moskwa S. Analysis of the possibilities to improve the reliability of a 15 kV overhead line exposed to catastrophic icing in Poland. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(2): 282-288, https://doi.org/10.17531/ein.2....
 
18.
Gouda O E, Farag A A. Factors affecting the sheath losses in single-core underground power cables with two-points bonding method. International Journal of Electrical and Computer Engineering (IJECE) 2012; 2: 7-16, https://doi.org/10.11591/ijece....
 
19.
Gouramanis K V, Kaloudas Ch G, Papadopoulos T A, Papagiannis G K, Stasinos K. Sheath Voltage Calculations in Long Medium Voltage Power Cables. IEEE Trondheim PowerTech 2011, https://doi.org/10.1109/PTC.20....
 
20.
Heiss A, Balzer G, Schmitt O, Richter B. Surge arresters for cable sheath preventing power losses in MV networks. 16th International Conference and Exhibition on Electricity Distribution. CIRED 2001, https://doi.org/10.1049/cp:200....
 
21.
IEEE Guide for the Application of Sheath-Bonding Methods for Single-Conductor Cables and the Calculation of Induced Voltages and Currents in Cable Sheaths. IEEE Standard 575 1988.
 
22.
Instrukcja Ruchu i Eksploatacji Sieci Dystrybucyjnej Enea Operator Sp. z o.o.: Standardowe profile zużycia energii na rok 2017. http://www.operator.enea.pl/21..., available: 24.07.2019.
 
23.
Jensen C F, Nanayakkara O M K K, Rajapakse A D, Gudmundsdottir U S, Bak C L. Online fault location on AC cables in underground transmissions systems using sheath currents. Electric Power Systems Research 2014; 115: 74-79, https://doi.org/10.1016/j.epsr....
 
24.
Jung C K, Lee J B, Kang J W, Wang X H, Song Y H. Sheath Current Characteristic and Its Reduction on Underground Power Cable Systems. IEEE Power Engineering Society General Meeting 2005.
 
25.
Kauppinen M, Pylvanainen J, Karjalainen J, Sihvola V, Experiences of using AMI system for DSO's business operation. CIRED - Open Access Proceedings Journal 2017; 1: 2756-2759, https://doi.org/10.1049/oap-ci....
 
26.
Korab R, Siwy E. Statistical analysis of the double line-to-ground short-circuit current in MV urban network for the power cable metallic screen rating. International Conference on Probabilistic Methods Applied to Power Systems 2006, https://doi.org/10.1109/PMAPS.....
 
27.
Korab R, Siwy E, Żmuda K. Analiza możliwości redukcji przekroju żył powrotnych w kablach średniego napięcia w sieciach miejskich. Zeszyty Naukowe Politechniki Śląskiej. Elektryka 2004; 189: 111-120.
 
28.
Korab R, Siwy E, Żmuda K. Podstawy racjonalnego doboru żył powrotnych (ekranów) kabli 6-20 kV różnego typu w sieciach miejskich. Elektroenergetyczne linie kablowe 2004; 148-149: 19-28.
 
29.
Kornatka M. Analysis of the exploitation failure rate in Polish MV networks. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20(3): 413-419, https://doi.org/10.17531/ein.2....
 
30.
Krawiec H. Przyczyny grzania się bednarki i żył powrotnych kabli 6 kV. Zeszyty Problemowe - Maszyny Elektryczne 2014; 1: 141-145.
 
31.
Li J, Xu L, Chen X, Zhao A, Liu J, Zhao X, Deng J, Zhang G. Analysis of Statistical and Frequency Characteristics of Transient Overvoltage of Hybrid Cable-OHL Lines. China International Conference on Electricity Distribution (CICED) 2018; 2650-2654, https://doi.org/10.1109/CICED.....
 
32.
Lin Y, Xu Z. Cable Sheath Loss Reduction Strategy Research Based on the Coupled Line Model. IEEE Transactions on Power Delivery 2015; 30: 2303-2311, https://doi.org/10.1109/TPWRD.....
 
33.
Lin Y, Yang F, Xu Z, Weng H. Cable Sheath Loss Analysis Based on Coupled Line Model. International Conference on Power System Technology 2014.
 
34.
Łowczowski K. Badanie wpływu ułożenia kabli na straty energii w żyle powrotnej - symulacja w programie Power Factory. Przegląd Elektrotechniczny 2016; 10: 54-57, https://doi.org/10.15199/48.20....
 
35.
Moore G F. Electric Cables Handbook, Third Edition. Oxford: Blackwell Science Ltd, 1997.
 
36.
Niewiedział R, Niewiedział E, Wyznaczanie czasu trwania strat maksymalnych w sieciach elektroenergetycznych modelami obliczeniowymi. http://www.sep.krakow.pl/nbiul..., available 5.07.2019.
 
37.
Novak B, Koller L, Berta I. Loss reduction in cable sheathing. Renewable Energy and Power Quality Journal 2010; 1: 293-297, https://doi.org/10.24084/repqj....
 
38.
Novak B, Koller L. Current distribution and losses of grouped underground cables. IEEE Transactions on Power Delivery 2011; 26: 1515-1521, https://doi.org/10.1109/TPWRD.....
 
39.
Orsagova J, Toman P. Transient overvoltages on distribution underground cable inserted in overhead line. 20th International Conference on Electricity Distribution. CIRED 2009, https://doi.org/10.1049/cp.200....
 
40.
Polityka Energetyczna Polski do 2040 roku, projekt. Warszawa: Ministerstwo Energii, 2018.
 
41.
Pons E, Colella P, Napoli R, Tommasini R. Impact of MV Ground Fault Current Distribution on Global Earthing Systems. IEEE Transactions on Industry Applications 2015; 51: 4961-4968, https://doi.org/10.1109/TIA.20....
 
42.
Popović L M. Ground Fault Current Distribution When a Ground Fault Occurs in HV Substations Located in an Urban Area. Progress In Electromagnetics Research B 2014; 59: 167-179, https://doi.org/10.2528/PIERB1....
 
43.
Rakowska A. Service Experiences for MV Cable Network - Optimistic or Pessimistic State of The Art. Jicable Conference: The leading forum about Insulated Power Cables 2007.
 
44.
Riba Ruiz J R, Garcia A, Alabern Morera X. Circulating sheath currents in flat formation underground power lines. 2007, https://doi.org/10.24084/repqj....
 
45.
Rozporządzenie Rady Ministrów z dnia 10.12.2010 r. w sprawie Klasyfikacji Środków Trwałych (KŚT).
 
46.
Sakalkale S, Kanakgiri K. Study of Underground Power Cable Considering Sheath Circulating Current. Proceedings of Fourth IRF International Conference 2014; 7-10.
 
47.
Sapienza G, Noce C, Valvo G. Network Technical Losses Precise Evaluation Using Distribution Management System and Accurate Network Data. 23rd International Conference on Electricity Distribution. CIRED 2015.
 
48.
Sobral A, Moura A, Carvalho M. Technical Implementation of Cross Bonding on Underground High Voltage Lines Projects. 21st International Conference on Electricity Distribution. CIRED 2011.
 
49.
Sullivan R G, Abplanalp J M, Lahti S, Beckman K J, Cantwell B L, Richmond P. Electric Transmission Visibility and Visual Contrast Threshold Distances in Western Landscapes. National Association of Environmental Professionals Annual Conference 2014; 1-46.
 
50.
Tarko R, Benesz M, Nowak W, Szpyra W. Statystyczna analiza zakłóceń zwarciowych dla określenia przekroju żył powrotnych kabli średnich napięć. Przegląd Elektrotechniczny 2016; 7: 186-189, https://doi.org/10.15199/48.20....
 
51.
Todorovski M, Ackovski R. Equivalent Circuit of Single-Core Cable Lines Suitable for Grounding System Analysis Under Line-to-Ground Faults. IEEE Transactions on Power Delivery 2014; 29: 751-759, https://doi.org/10.1109/TPWRD.....
 
52.
Żmuda K. Elektroenergetyczne układy przesyłowe i rozdzielcze. Wybrane zagadnienia z przykładami. Gliwice: Wydawnictwo Politechniki Śląskiej, 2016.
 
 
CITATIONS (5):
1.
Detection and Location of Earth Fault in MV Feeders Using Screen Earthing Current Measurements
Krzysztof Lowczowski, Jozef Lorenc, Jozef Zawodniak, Grzegorz Dombek
Energies
 
2.
Analysis of Overvoltages Appearing in One-Sidedly Ungrounded MV Power Cable Screen
Aleksandra Schött-Szymczak, Krzysztof Walczak
Energies
 
3.
Impact of Cable Configuration on the Voltage Induced in Cable Screen during Work with One-Sidedly Ungrounded Cable Screen
Aleksandra Schött-Szymczak, Krzysztof Walczak
Energies
 
4.
The proceedings of the 16th Annual Conference of China Electrotechnical Society
Yu Ba, Junyi Ma, Haiwei Ma, Dongjie Sun, Shanshan Feng, Wenhe Xiao, Yu Zhang, Hanqing Wu
 
5.
Determination of the Optimal Level of Reactive Power Compensation That Minimizes the Costs of Losses in Distribution Networks
Jerzy Andruszkiewicz, Józef Lorenc, Agnieszka Weychan
Energies
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top