Search for Author, Title, Keyword
RESEARCH PAPER
Analysis of ore flow through longitudinal belt conveyor transfer point
 
More details
Hide details
1
Faculty of Geoengineering, Mining and Geology Wroclaw University of Science and Technology Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
 
2
Department of Mining and Geodesy Faculty of Geoengineering, Mining and Geology Wroclaw University of Science and Technology Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
 
 
Publication date: 2020-09-30
 
 
Eksploatacja i Niezawodność – Maintenance and Reliability 2020;22(3):536-543
 
KEYWORDS
ABSTRACT
A transfer point is an element of a belt conveyor prone to increased energy losses and to the risk of failure. It is also a location in which the receiving belt is particularly susceptible to damage. Except failure-free operation, a transfer point should offer minimal belt resistances to motion by ensuring that the transported material is placed centrally on the receiving belt, both spillage of the material and blockages are prevented, the process of particle defragmentation is limited, and also that noise and dust emissions to the environment are reduced. Ensuring that the above requirements are met requires inter alia the use of advanced simulation tests. The article analyzes the flow of ore particles stream through a longitudinal transfer point used in an underground copper ore mine. Discrete Element Method was used to identify the phenomena which occur while transferring ore onto the receiving conveyor. The research allowed key variables affecting the transfer point performance to be identified. It also resulted in a proposal of actions which can improve the performance of the transfer point and which are focused on saving energy and on minimizing the damage and wear of the receiving belt.
 
REFERENCES (24)
1.
E.M.A, Belt Conveyors for Bulk Materials, Conveyor Equipment Manufacturers Association, 2005.
 
2.
Coetzee C J. Calibration of the discrete element method. Powder Technology 2017; 310: 104-142, https://doi.org/10.1016/j.powt....
 
3.
Czuba W, Furmanik K. Analiza ruchu ziarna w przesypie przenośników taśmowych. Transport Przemysłowy i Maszyny Robocze 2013; 4:12-17.
 
4.
Doroszuk B, Król R. Analysis of conveyor belt wear caused by material acceleration in transfer stations. Mining Science 2019; 26: 189-201, https://doi.org/10.37190/msc19....
 
5.
Doroszuk B. Badania Materiałowe i Modelowe Rudy Miedzi w Metodzie Elementów Dyskretnych (praca niepublikowana). Wrocław, 2019.
 
6.
Doroszuk B, Walker P, Król R. Badania własności zróżnicowanej litologicznie rudy miedzi na potrzeby modelowania DEM. CUPRUM - Czasopismo Naukowo-Techniczne Górnictwa Rud 2019; 1: 5-19.
 
7.
Gładysiewicz L et al. Optymalizacja rozwiązań technicznych przenośników taśmowych w PGE Bełchatów SA. Zadanie 3: Optymalizacja przesypów przenośnikowych. Raporty Inst. Gór. PWroc. Ser. SPR nr 1, 97 s. (praca niepublikowana), Wrocław, 2011.
 
8.
Gładysiewicz L, Przenośniki Taśmowe teoria i obliczenia, Wrocław: Oficyna wydawnicza Politechniki Wrocławskiej, 2003.
 
9.
Grima A, Hastie D, Fraser T, Wypych P. Discrete Element Modelling: Trouble-Shooting And Optimisation Tool For Chute Design. BELTCON 16 International Materials Handling Conference. Johannesburg, 2011.
 
10.
Gutierrez A, Garate G A. Design of a Chute for Multiple Operating Conditions. ASME International Mechanical Engineering Congress and Exposition, 2014, https://doi.org/10.1115/IMECE2....
 
11.
Hastie D, Wypych P. Experimental validation of particle flow through conveyor transfer hoods via continuum and discrete element methods. Mechanics of Materials 2010; 4: 383-394, https://doi.org/10.1016/j.mech....
 
12.
Hastie D. Belt Conveyor Transfers: Quantifying and Modelling Mechanisms of Particle Flow. Wollongong: University of Wollongong, 2010.
 
13.
Hastie D, Grima A, Wypych P. Modelling and Design of Complete Conveyor Transfers. 2nd Annual Conveyors in Mining, Perth , 2008.
 
14.
Huque S T. Analytical and Numerical Investigation Into Belt Conveyors Transfers, Wollongong: University of Wollongong, 2004.
 
15.
Ilic D, Mcbride B, Katterfeld A Validation of continuum methods utilizing discrete element simulations as applied to a slewing stacker transfer chute. 9th International Conference on Bulk Materials Storage, Handling and Transportation. Newcastle, 2007.
 
16.
Karwat B, Machnik R, Niedźwiedzki J, Nogaj M, Rubacha P, Stańczyk E. Calibration of bulk material model in Discrete Element Method on example of perlite D18-DN. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21 (2): 351-357, https://doi.org/10.17531/ein.2....
 
17.
Katterfeld A, Groger T, Hachmann M, Becker G. Usage of DEM simulations for the development of a new chute design in underground mining. 6th International Conference for Conveying and Handling of Particulate Solids. Brisbane, 2009.
 
18.
Katterfeld A. Understanding granular media: from fundamentals and simulations to industrial application. Granular Matter 2017; 21, https://doi.org/10.1007/s10035....
 
19.
Kessler F, Prenner M. DEM - Simulation of Conveyor Transfer. FME Transactions 2009: 185-192.
 
20.
Korzeń Z. The Dynamics of Bulk Solids Flow on Impact Plates of Belt Conveyor Systems. Bulk Solids Handling 1988; 12: 689-697.
 
21.
Mascarenhas F, Mesquita A, Mesquita A L. Simulation of transfer chute operation using the Discrete Element Method. Cilmace 2013. Pirenópolis, Brazil, 2013.
 
22.
Quist J, Evertsson M. Framework for dem model calibration and validation. Proc. of the 14th European Symposium on Comminution and Classification, Gothenburg, Sweden, 2015.
 
23.
Roberts A. Chute Performance and Design for Rapid Flow Conditions. Chemical Engineering and Technology 2003: 163-170, https://doi.org/10.1002/ceat.2....
 
24.
Walker P, Kawalec W, Król R. Application of the Discrete Element Method (DEM) for Simulation of the Ore Flow Inside the Shaft Ore Bunker in the Underground Copper Ore Mine. Advances in Intelligent Systems and Computing 2019; 835: 633-644, https://doi.org/10.1007/978-3-....
 
 
CITATIONS (12):
1.
Optimization of a screw conveyor's exploitation parameters
Bolesław Karwat, Piotr Rubacha, Emil Stańczyk
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
2.
A multiphase data fusion approach based on CFD-DEM for gas–solid flow simulation in PDSS
Quan Jiang, Chongliang Xie
Energy Reports
 
3.
Conveyor Intermediate TT Drive with Power Transmission at the Return Belt
Piotr Bortnowski, Adam Gładysiewicz, Lech Gładysiewicz, Robert Król, Maksymilian Ozdoba
Energies
 
4.
A coupled discrete-finite element model for bulk materials transfer simulation and PDSS structural wear prediction
Quan Jiang, Chongliang Xie
Energy Reports
 
5.
Simple Design Solution for Harsh Operating Conditions: Redesign of Conveyor Transfer Station with Reverse Engineering and DEM Simulations
Błażej Doroszuk, Robert Król, Jarosław Wajs
Energies
 
6.
Discrete element modelling of a chevron patterned conveyor belt and a transfer chute
J. Rossow, C.J. Coetzee
Powder Technology
 
7.
Identification of the operating parameters of the friction drum drive in industrial conditions
Piotr Kulinowski, Piotr Kasza, Jacek Zarzycki
Eksploatacja i Niezawodnosc - Maintenance and Reliability
 
8.
Simulational and experimental determination of the exploitation parameters of a screw conveyor
Bolesław Karwat, Piotr Rubacha, Emil Stańczyk
Eksploatacja i Niezawodność – Maintenance and Reliability
 
9.
Calibration procedure for ultrasonic sensors for precise thickness measurement
Agata Kirjanow-Blazej, Leszek Jurdziak, Ryszard Blazej, Aleksandra Rzeszowska
Measurement
 
10.
Intelligent Systems in Production Engineering and Maintenance III
Leszek Jurdziak, Ryszard Błażej, Agata Kirjanów-Błażej, Aleksandra Rzeszowska
 
11.
Calibration and verification of DEM parameters for particles in transfer chute from rapid flow to stable accumulation
Yaocheng Shi, Guojun Wen, Luhua Lu, Xin He
Advanced Powder Technology
 
12.
Trends in the Growth of Damage Extents in a Steel Conveyor Belt’s Core
Leszek Jurdziak, Ryszard Błażej, Agata Kirjanów-Błażej, Aleksandra Rzeszowska
Minerals
 
eISSN:2956-3860
ISSN:1507-2711
Journals System - logo
Scroll to top