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Highlights  Abstract  

▪ The work presents automated mapping and 

inspection of industrial environment. 

▪ Presents thermal and acoustic modalities for 

cooperative fault detection. 

▪ Utilizes point cloud for robot navigation and 

diagnostic data representation. 

▪ Multi-sensor data fusion to localize and 

identify anomalies in the machinery. 

 Machine diagnostics is essential in maintaining high operational 

efficiency and minimizing machinery downtime. One way to achieve 

this goal is by implementing automated diagnostic systems. This paper 

presents a multi-sensor mapping system developed on a quadruped 

robotic platform. The robot combines diagnostic data from thermal and 

acoustic sensors with LiDAR data to create a 3D map of the working 

environment. Anomalous readings of temperature and sound pressure 

levels are identified and indicated on a 3D map with distinct color values 

through data fusion. Validation tests performed in a laboratory 

environment confirmed the feasibility of this approach by correctly 

identifying simulated cases of malfunctioning machinery. The system 

robustness was evaluated through repeatability tests. The proposed 

multi-modal mapping solution enables reliable monitoring of the 

technical state of machinery in complex environments. 
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1. Introduction 

Machine diagnostics is essential in preventing severe machine 

faults and reducing downtimes [17]. Early detection of 

malfunctioning machinery helps to improve safety and 

effectiveness of the production process [12,22]. Currently, on-

demand nondestructive evaluation (NDE) involve trained 

human personnel and are usually performed during planned 

machinery downtimes [1]. Such a solution increases operational 

efficiency by avoiding unplanned downtimes caused by 

unpredictable machine failures. However, scheduled 

maintenance periods are still required to allow human personnel 

to perform the necessary inspections in a safe working 

environment, which negatively affects overall operational 

efficiency. To resolve this issue, a robot might be applied to 

perform the inspection in an automated manner during the 

regular operation of the machinery. Employing a mobile robotic 

platform to perform inspection tasks should enhance the 

diagnostic process by making it more time-efficient [5] and 

objective due to its reduced dependency on human factors [13]. 

Moreover, inspections carried out by humans are often limited 

to one modality at a time, while a robot can simultaneously 

carry and control multiple sensors and process the 

measurements at the same time. Certainly, human inspectors 
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also rely on their own senses, which might help discover 

abnormal events in the field. However, the performance of 

hearing and eyesight is limited, person-specific, and did not 

evolve for anomaly detection in industrial environments. 

Acoustic symptoms of machinery failure often extend beyond 

the audible range, and thermal symptoms are too subtle to be 

detected by humans from afar. 

Developing an autonomous robotic system to perform 

diagnostics, however, is a complicated task. Robot navigation 

in a complex environment is itself a complex matter that 

requires solving the obstacle avoidance [18], SLAM 

(simultaneous localization and mapping) [15] and path planning 

[19,24]. In addition to sensing and navigating through the 

environment, the robot needs to collect and process diagnostic 

data, which further increases the overall complexity. 

A mobile robot suitable for operating in industrial 

environments can be customized for nondestructive inspections. 

Acquiring multi-sensory diagnostic data while navigating 

through an industrial environment delivers an abundance of 

information that allows for the identification of anomalous 

states of the machinery. It is essential to process and interpret 

this data so that the anomalies can be detected and localized 

with reference to the global frame of reference. This requires 

efficient geometrical mapping of the working environment in 

3D and fusing this information with diagnostic data.   

In this article, we propose a diagnostic method designed for 

automated mapping and inspection of industrial environment. 

The approach integrates multi-sensor data fusion to identify and 

localize anomalous states of machinery during autonomous 

missions in complex settings. The main novelty of this paper 

lies in presenting diagnostic data as a point cloud representation, 

enabling spatially accurate visualization of anomalies within the 

3D environment. The proposed technique is validated in  

a laboratory environment simulating real industrial conditions, 

demonstrating its capability to provide comprehensive anomaly 

indications through multi-modal sensing.  

2. Related Work 

Autonomous diagnostics plays a crucial role in enhancing 

efficiency, safety, and reduce costs [7]. Although the solution to 

the problem strongly relies on the field and application, several 

studies have been performed in the area of robotic inspections. 

Different types of robots have been developed and adapted to 

meet the diverse operational demands of diagnostics, including 

ground-based robots [14,27], aerial drones [16,20,29], climbing 

robots [25], and underwater vehicles [21]. Each platform type 

presents distinct advantages depending on the environment, 

inspection modality, and surface accessibility. Recent studies 

emphasize the growing relevance of quadruped robots in the 

field of NDE [8,26]. Recent implementations demonstrate that 

these robots can reliably carry thermal [4], visual and other 

sensors, supporting multi-modal NDE inspections without 

significant compromise in mobility or battery life. 

Robotic multi-modal perception allows to use the 

advantages of multiple sources and compensate for single 

sensor limitations by enhancing measurements through sensor 

fusion. In literature, combining heterogenous sensors on robots 

has been utilized mainly for simultaneous localization and 

mapping (SLAM) to improve accuracy and robustness of pose 

estimation [6,9,11]. 

The use of sensor fusion can provide reliable pose 

estimation on various mobile platforms, including legged robots. 

For example Belter and Nowicki [2] proposed a fusion of robot 

odometry and RGB-D cameras to enhance pose estimation of 

walking robots. Through a combination of visual SLAM and 

legged odometry, optimisation-based motion estimation was 

used as a feedback, making the algorithm robust to rapid 

movements. Another approach, Multi-Modal SLAM (MIMOSA) 

[10] was proposed to enhance robustness of pose estimation in 

GPS-denied environments depending on odometry, point cloud 

data and IMU readings. The data was fused through first 

estimating the position from each sensor separately and then 

performing factor graph optimization.  

More recent works have explored the use of unconventional 

sensors like thermal cameras for pose estimation. The work of 

Bultmann et. al. [3] proposed a combination of LiDAR, RGB 

camera and thermal data. The authors prepared a CNN-based 

neural network to acquire semantic information. The solution 

prepared in the study allowed to mitigate domain adaptation 

issue. 

Ongoing investigations are focused on sensor fusion to 

acquire a higher level of perception to the extent of panoptic 

segmentation. In [28], instance recognition is obtained through 

fusion of depth, geometric information and semantic labels.  
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Sensor fusion in the field of mobile robotics is usually 

considered for improvement of localization and mapping. 

Despite different data characteristics, these measurements are 

often used to acquire the same information, which is pose 

estimation. In our work, we explore the possibility of combining 

autonomously acquired diagnostic data from sources that 

contain non-overlapping information. Acoustic and thermal 

data can complement each other’s measurements by providing 

independent assessment of level of threat severity. Creating  

a fused diagnostic system aims to construct a comprehensive 

view on the occurrence of anomalies in the environment.     

3. Experimental setup 

3.1. Inspection system 

The following section describes the hardware and software 

components of the diagnostic system mounted on the quadruped 

robot shown in Fig. 1. The inspection payload consisted of  

a thermal camera FLIR A70, an acoustic camera Sorama 

L642v+, a LiDAR sensor Ouster OS-1 with 32 channels, and an 

on-board computer NVIDIA Jetson Orin Nano. The system was 

running on Ubuntu 20.04 Focal and ROS Noetic. The FLIR A70 

thermal camera had a field of view of hFOV × vFOV = 51° × 

39° and spatial resolution of width × height = 640 × 480 pixels. 

The Sorama L642v+ acoustic camera was set to record 

frequency bandwidth from 5000 to 10000 Hz, and its field of 

view was hFOV x vFOV = 90° x 51°. The thermal camera 

captures radiometric images, enabling temperature 

measurement in each pixel with a 2 Kelvin accuracy, and stores 

it in the form of a matrix. An acoustic camera delivers a visual 

image of the environment with a color scale overlay of the 

sound pressure level values, representing the sound sources. 

LiDAR sensor allows for the capture of a spatial representation 

of the environment in the form of a point cloud. In this study, X, 

Y, and Z coordinates of points are collected. LiDAR does not 

capture color values. 

The inspection payload was mounted on a quadruped mobile 

robot. The mobile platform, Spot, from Boston Dynamics, has 

five stereo cameras that are employed for obstacle avoidance 

and are used to handle rough terrain or stairs. The advantage of 

using a legged robot instead of a wheeled platform is its 

capability to move in complicated environments with uneven 

ground.  

 

Figure 1. Mobile platform equipped with diagnostic system. 

3.2. Test Field Configuration 

The mobile platform can perform autonomous missions in large, 

complex, multilevel environments. In this work, we limited the 

working area to a single-level environment of an industrial 

robots laboratory. To access the room, the robot had to traverse 

a corridor and walk down the stairs. To mimic the industrial 

environment, robotic manipulators and auxiliary equipment 

present in the laboratory were actively operating during the test. 

A view  of the scene is shown in Fig. 2. 

  
Figure 2. Test environment illustrating a quadruped robot equipped with an inspection system and a malfunction-simulation board. 
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To enable simulation of 4 pneumatic and 8 electrical 

malfunctions, a test board shown in Fig. 3 was prepared. The 

setup is controlled with a Raspberry Pi microcomputer, which    

can activate faulty modules to intentionally generate acoustic 

and thermal responses on demand. These signals are 

subsequently interpreted by the robot’s diagnostic sensors as 

indicators of malfunction.

 

Figure 3. Pneumatic and electrical test board used to simulate malfunctions in selected nodes of the system. 

(a) 

 
(b) 

 

Figure. 4 Map of the scene obtained from the robot’s cameras (a) point cloud (b) 2D map with waypoints indicated as red squares. 
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3.3. Autonomous inspection 

The mobile platform features Autowalk® capability. In this 

mode, the robot moves autonomously without the operator’s 

supervision. To realize this task, visual reference markers called 

fiducials must be placed around the environment, and the 

operator has to plan the robot’s path and actions in advance. 

When performing a mission, the robot repeats prerecorded 

moves, undertaking necessary modifications in response to the 

changes to the environment. During the recording, the 

environment representation is gathered for further self-reliant 

navigation. The map in the form of a point cloud is obtained 

with the robot’s depth cameras and mostly contains 

characteristic visual features such as edges of the objects in the 

surroundings. The map of the test field, acquired using the 

robot’s built-in cameras, is shown in Fig. 4a. This map is 

obtained through a separate SLAM process, as a built-in robot 

function. The map is used for navigation in Autowalk®, but is 

not further utilized in our diagnostic mapping process.   

Besides acquiring the map, the robot stores information on 

the route, the waypoints it is supposed to cross, fiducials, and 

localizations where it should reach the previously determined 

pose to steer the diagnostic sensors towards the board. The 

waypoints are visualized on 2D map for better clarity in Fig. 4b.  

The 2D map is created by projection of all points from 3D map 

obtained from robot’s cameras (Fig. 4a) to the XY plane. The 

waypoints are recorded during Autowalk® mission planning 

and the robot moves from a waypoint to waypoint during 

operation. The depth camera map and waypoints are used for 

navigation solely because the method is not sufficiently 

accurate for diagnostic mapping. The data from all sensors 

mounted on the robot was gathered in Autowalk® mode while 

performing a mission without the operator’s supervision. The 

mission was repeated 5 times in order to assess the repeatability 

of the inspection process in the view of external disturbances. 

4. Multi-sensor mapping of the environment 

This section is focused on a diagnostic mapping solution that 

combines a LiDAR sensor with thermal and acoustic detections. 

The multi-sensor mapping method, proposed in the study, is 

performed by first projecting thermal and acoustic images onto 

point cloud, which involves obtaining coordinate 

transformation of sensors, described in section 4.1. The next 

stage, described in section 4.2, requires pose estimation of 

consecutive point clouds. Multi-sensor diagnostics (section 4.3) 

are done through anomaly-based coloring. Finally, multi-sensor 

map of the area is obtained through combining thermal and 

acoustic maps, which is described in section 4.4.  

4.1. Coordinate Transformation for Diagnostic Imaging 

The first step of our proposed framework is thermal and 

acoustic image projection to corresponding point cloud data. 

Data frames are matched based on timestamp difference. Given 

the time acquisition difference lower than 0.05 s, the data is 

considered to be gathered at the same time. Further step 

involves image projection to a point cloud within the same time 

stamp taking into account corresponding orientation of the 

sensing devices. Exemplary sensor alignment on the robot is 

visualized in Fig. 5. 

Thermal cameras measure thermal radiation emitted within 

their field of view. Temperature distribution is given across the 

image.  

To obtain a combination of thermal data and LiDAR scans  

a point cloud in 3D space is defined as P = {pi ∈ R3}. Each point 

pi, represented through x, y, z coordinates, is projected onto the 

projection plane Π in accordance to equations 1 to 4. 

𝛱(𝑝𝑖) =  (
𝑢′

𝑤
 ,

𝑣′

𝑤
 ),  (1) 

where u and v represent the pixel format on x and y 

dimensions and w is the distance from the projection plane. The 

values are expressed as: 

[
𝑢′
𝑣′
𝑤

] =  𝑲 ∙ 𝑹 ∙ (𝑝𝑖 − 𝑡)  (2) 

where t is a translation from laser scanner to thermal camera 

given as [dx dy dz]. R is rotation matrix of the cameras 

regarding to the point cloud coordinate system (see Fig 5b) 

expressed as: 

𝑹𝟑𝒙𝟑 = [
−1 0 0
0 0 −1
0 −1 0

]  (3) 

K is a camera calibration matrix given as: 

𝑲𝟑𝒙𝟑 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] =  

[
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2 tan (
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2
)
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2
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ℎ𝑒𝑖𝑔ℎ𝑡
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0 0 1 ]
 
 
 
 

  (4) 
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This step is followed by checking the constraints given by 

the image frame expressed as: 

 u ∈ <umin, umax>, v∈ <vmin, vmax>, z > 0, (5) 

where umin, umax, vmin, vmax are image pixel limits and z above 

0 filters points that lie behind the camera.  

Consecutive step involves assigning the temperature value 

given the projected coordinates: 

𝑇(𝑝𝑖
′) = 𝐼𝑚(𝛱(𝑝𝑖

′)) = 𝐼𝑚(𝑢, 𝑣).  (6) 

Acoustic cameras acquire intensity of sound sources within 

the frame. The camera acquires Acoustic cameras capture the 

intensity of sound sources within their field of view. They 

provide both the spatial localization of each source and its 

corresponding sound intensity. The data acquired by an acoustic 

camera are represented as an image that depicts the spatial 

distribution of sound sources across a specified frequency range. 

The projection of an acoustic image is generated using  

a procedure analogous to that employed for thermal image 

projection. Note, however, that these two systems are not 

necessarily synchronized, moreover they can operate at two 

different intervals. Therefore, the thermal and acoustic point 

clouds may be created from different, independent LiDAR 

scans. 

(a) 

 

(b) 

 

 

 

Figure 5. (a) Sensor alignment on the robot, (b) spatial alignment of the sensor coordinates.

4.2. Pose estimation 

Pose estimation for each data snapshot is achieved through point 

cloud registration, which aligns spatial data across successive 

scans to determine the robot’s position within the environment. 

At each measurement location, the local LiDAR point cloud is 

preprocessed by filtering points based on their Z-axis values, 

effectively removing ceiling and floor data to facilitate 

subsequent registration. In the consecutive step, the quaternion 

data is extracted from LiDAR’s built-in IMU, and initial point 

cloud alignment is performed using the IMU data. In the final 

stage, ICP (Iterative Closest Point) [23] is performed to match 

consecutive point clouds. Based on the registration, a relative 

transformation is found and applied to update the robot’s global 

pose. The process is repeated for each LiDAR scan.  

4.3. Multi-sensor diagnostic 

To distinguish individual sources of diagnostic indications on 

the resulting unified map, classification scheme organized into 

two distinct damage type is introduced. These indications are 

used next to apply coloring of the point cloud. Standard 24-bit 

encoding is utilized to represent three separate color channels: 

red, green, and blue, each corresponding to specific diagnostic 

modalities. 

The thermal indications are coded in a red channel by linear 

mapping temperatures from 0˚C up to an alarm level set above 

50˚C. The threshold value can be adjusted to the tested object in 

the range from 0˚C to 250˚C.  

An acoustic camera, used in our study, returns 

monochromatic images highlighting areas with sound sources. 
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The raw acoustic indication is linearly mapped with an alarm 

level set above 50dB. The resulting acoustic indications were 

marked on a channel encoding blue color. The threshold value 

can be adjusted to the tested object in the range from 0dB to 

120dB. 

The green channel is left to represent common parts, i.e., 

areas with temperature and sound level exceeding the set 

threshold at the same time. These areas are interpreted as 

abnormal system operation. To determine the intersection of the 

areas where thermal and acoustic alarms are raised, it is 

necessary to project diagnostic information onto the point cloud. 

4.4. Area mapping 

The 3D model of the environment is created form a point cloud 

obtained from a single scan captured at the same localization as 

the corresponding thermal and acoustic images. The images are 

projected onto the point cloud collected at a given measurement 

location. This projection is performed by computing the image 

coordinates for each point in the scan. Each point in in the point 

cloud is subsequently annotated with diagnostic data extracted 

from the corresponding pixels in the thermal and acoustic 

images.  

Once this step is completed global mapping is performed. 

Pose estimation is used to calculate the transformation matrices 

for the consecutive measurement areas yielding independent 

thermal and acoustic maps of the entire area. Multi-sensor maps 

are created by transforming the point clouds with diagnostic 

data to KDTrees of the voxel size of 0.01 m. The points in the 

acoustic point cloud localized inside the voxels in the thermal 

KDTree, that has a temperature above the alarm level, are 

marked green. Similarly, the points in the thermal point cloud 

that are localized inside the voxels of the acoustic KDTree, with 

a raised acoustic alarm, also marked green. 

5. Experimental Results 

In this section, we describe the prepared diagnostic mobile 

system as well as the measurements conducted in a test field. 

Moreover, the results obtained are presented and discussed.  

Section 5.2 presents exemplary results as well as potential false 

alarms generated by individual sensors. The mapping procedure, 

detailed in Section 5.3, emphasizes the integration of data into 

a unified representation. Section 5.4 discusses the evaluation of 

the system within the context of a repeatability experiment. 

5.1. Scene mapping  

Registered point clouds sequence counts 1100 scans of the 

environment. Consecutive scans transformations are computed 

with ICP method described in section 4.2 and scans are finally 

aligned into the single dense point cloud. 

The map containing all scans aligned within a common 

reference frame is shown in Fig. 6. 

 

Figure 6. Aligned LiDAR scans of the test scene based on pose estimation. Colors indicate height ramp. 
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5.2. Sensor response  

Examples of test-board operation can be seen in Fig. 7 and Fig. 

9, where acoustic and thermal anomalies are visible.   

 

Figure 7. Acoustic camera indication of compressed air leak 

detection from the pneumatic tube. 

Acoustic indicators are also visible in Fig. 8. They occur 

because the industrial manipulators are equipped with 

pneumatic suction cups to move objects in their operational 

fields. The flat walls in the laboratory are effective reflectors for 

acoustic waves, thus, few indications of the sound sources on 

the walls are also registered. These features are discarded from 

anomaly detections, as they origin form normal operation 

behavior. 

 

Figure 8. Acoustic camera readings from manipulators with 

pneumatic end effector. 

Thermal camera provides information on the temperature 

distribution in its field of view. Fig. 9 presents the testing board 

with temperature exceeding 35˚C (in the center of the image) 

and a computer display operating in the temperature range of 

approximately 40˚C. 

 

Figure 9. Thermal anomaly detection from the test case. (1) 

thermal malfunction of a relay switch simulated on testing 

board. (2) thermal signature of a correctly operating element. 

In the collected data, none of the environment parts in the 

inspected environment indicated faults in both modalities 

simultaneously, however many elements exceeded one of the 

alarm thresholds. The testing board is prepared to be the only 

element that exceeds both thermal and acoustic alarm levels 

simultaneously. The combined information from the two fields 

is necessary to distinguish the true damage indications. 

5.3. Multi-sensor mapping 

The measurements obtained from the diagnostic payloads are 

fused to create the multi-sensor map. Thermal and acoustic 

indications are separately projected onto the map of the scene. 

The result of thermal mapping is shown in Fig. 10. The points 

with temperature above 35 ˚C are marked with red color. The 

rest of the point cloud without anomaly indication is colored 

black. As expected, the indications originate from the test stand.   

 Acoustic mapping marked more areas than thermal 

mapping, as shown in Fig. 11. Identified acoustic anomalies are 

marked with blue color. The field consisted of a few acoustic 

sources. Additionally, the reflections from walls were also 

detected by the camera and are present on the point cloud.  

Thermal and acoustic maps were combined to create a multi-

sensor representation of the environment. The result of data 

fusion is shown in Fig. 12. Red indicates thermal-only 

anomalies, blue indicates acoustic-only anomalies, and 

detections recorded by both sensors are colored green.  
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Figure 10. Thermal mapping. The acquired point cloud has black coloring in regions where no anomaly occurred. Points with 

thermal anomaly indication are marked red. Detected thermal anomalies shown next to the point cloud were testing board and 

laboratory equipment present in the environment. 

 

Figure 11. Acoustic mapping. The acquired point cloud has black coloring in regions where no anomaly occurred. Points with 

acoustic anomaly indication are marked blue. The main sources of acoustic signal are shown next to the point cloud.  
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Figure 12. Multi-sensor map. The point cloud is a result of fusing thermal and acoustic map. Red color indicates the presence of 

thermal anomaly, blue acoustic and green both. 

 

Figure 13. Point cloud showing the anomalies only. Red color indicates the presence of thermal anomaly, blue acoustic and green 

both. The bounding box shows the dimensions of the room.
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For clarity, anomalies only are shown in Fig. 13. The 

diagnostic data indicated on the map can be utilized to 

determine areas that require further inspections.   

5.4. Repeatability tests 

The robustness of the system was assessed through repeatability 

tests. The experiment was conducted 5 times by making the 

robot repeat the same mission path and gather data during the 

mission execution. Number of points in point clouds for each 

repetition averaged to 1.32 ± 0.3 mil. Time for one repetition 

averaged to 71.2 ± 9 s. 

As the diagnostic information stems from exceeded 

temperature or sound indications maximum values of these 

quantities were extracted from subsequent acquisition results 

and illustrated in Fig. 14a and b respectively. In the case of 

thermal results, the maximum values were detected on the 

testing board in proximity to the ground truth location. In the 

case of acoustic data, however, only 2 of 5 maximal indications 

were located close to the leaking actuator. This result can be 

explained by other sound sources, e.g. vacuum suction cups on 

robotic manipulators operating in the inspected room. 

(a) 

 
(b) 

 

Figure 14. Distribution of diagnostic values obtained for repetition test. (a) Thermal data. (b) Acoustic data.  
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5.5. Reprojection error calculation 

To evaluate the accuracy of the LiDAR-camera extrinsic 

calibration, a reprojection error analysis was conducted using  

a dedicated calibration target observed simultaneously by the 

LiDAR sensor and thermal and acoustic cameras. Due to the 

lack of distinctive point features that can be automatically 

extracted from the LiDAR point cloud, the reference points on 

the calibration target were manually annotated.  

For each experimental configuration, three corresponding 

points were identified in the LiDAR point cloud that correspond 

to automatically detected points on a specifically prepared 

calibration board in the thermal images. The calibration target 

was positioned at multiple distances and orientations with 

respect to the sensor’s placement in order to assess the stability 

of the calibration under varying geometric conditions as shown 

in Figure 15. The evaluated configurations included target 

distances of 1.0 m, 1.5 m, and 2.0 m, as well as target 

displacement to match azimuth of −15° and +15° from the 

center of the image at a distance of 2.0 m.  

For each target configuration, the reprojection error was 

evaluated using three manually annotated point 

correspondences. The average root mean square error was 

computed separately for each configuration. The table 1 

summarizes the reprojection error for all evaluated 

configurations. 

(a) 

 

(b) 

 

Figure 15. Thermal image from configuration (a) distance 1 meter, (b) distance 2 meters and azimuth 15° from the sensor. Blue plus 

sign denotes object centers detected on the image Green plus sign denotes projection of corresponding point cloud points onto an 

image plane. Calibration board consists of 3 thermal sources arranged in 3 square’s corners spaced 60mm from the neighboring 

heater. 

Table 1. Average RMSE of reprojection error for 5 tested thermal configurations. 

1 m azimuth: 0° 1.5 m azimuth: 0° 2 m azimuth: 0° 2 m azimuth: 15° 2 m azimuth: -15° 

4.9105 px 5.1575 px 3.4097 px 2.4027 px 5.3821 px 

(a) 

 

(b) 

 

Figure 16. Acoustic pressure spatial distribution form configuration (a) distance 2m azimuth 0°, (b) distance 2m azimuth 15°.
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The same reprojection error analysis procedure was repeated 

for acoustic camera with LiDAR setup using pneumatic test 

board presented in Fig 3 with single acoustic source. Testing 

scenarios were chosen the same as in the case of thermal camera 

and exemplary scenario of raw acoustic distribution image is 

presented in Figure 16. 

For each tested scenario root mean square error was 

calculated between center of the detection and projection of the 

closes point from point cloud.  

Above evaluation presented a reprojection error analysis for 

validating the LiDAR–camera extrinsic calibration. The error 

values above expectation in some experimental scenarios are 

caused by limited vertical resolution of the LiDAR sensor and 

manual annotation. The results demonstrate that the estimated 

transformation achieves consistent reprojection accuracy across 

multiple target distances and orientations, confirming its 

suitability for multimodal sensor fusion tasks.  

The presented reprojection error analysis is subject to 

several limitations. First, the number of evaluated point 

correspondences is limited due to the manual annotation 

required for LiDAR point cloud labeling. Second, the reported 

reprojection error includes uncertainty introduced by the 

manual annotation process and by the spatial resolution of the 

LiDAR sensor. 

Despite these limitations, the analysis provides a meaningful 

validation of the calibration accuracy under varying geometric 

conditions relevant to the intended application.

Table 2. RMSE of reprojection error for 5 tested acoustic configurations. 

1 m azimuth: 0° 1.5 m azimuth: 0° 2 m azimuth: 0° 2 m azimuth: 15° 2 m azimuth: -15° 

4.9299 px 7.1036 px 21.3143 px 16.4053px 7.9080 px 

6. Discussion 

While the repeatability analysis confirmed consistent thermal 

source localization, the acoustic anomaly was correctly flagged 

on the test table only 2 times out of 5 repetitions. This result 

suggests that the current acoustic diagnostic logic requires 

further extension to improve robustness and reduce false 

indications under realistic scene variability. At the same time, 

this limitation does not compromise the proposed multi-modal 

mapping pipeline reliably co-registers and visualizes 

heterogeneous thermal and acoustic cues in a common 3D 

representation, enabling consistent spatial interpretation and 

providing a foundation for future improvements of the decision-

level diagnostic algorithms. To reduce false positive indications, 

further acoustic noise mitigation could be implemented e.g. 

spatial clustering such as DBSCAN. Clustering detected 

anomalies in 3D space could enhance the recognition of false 

positives, including reflections. Spatial clustering could allow 

to detect relocation of cluster centers, which could enable 

differentiation between reflections and true indications.  

The algorithm proposed in the study does not address the 

issues with projection in complex scenarios where sight is 

obstructed by an object visible only by one of the sensors. For 

example, if parts of the environment are visible by thermal 

camera and invisible by LiDAR, it can result in omitting points 

on thermal map. To resolve this issue, further work regarding 

geometric verification is required. Using line-of-sight or 

acoustic ray-tracing could help distinguish true anomaly 

sources. However, these methods were not implemented in this 

work because they could significantly increase computational 

complexity. The presented projection algorithm allows for 

computationally efficient framework and can scale to large 

environments.   

Another limitation of our work can be seen in acoustic 

mapping result. Acoustic map has a slightly inaccurate 

indication locations near pneumatic manipulators between 

acoustic heatmap and LiDAR point cloud due to presence of 

acoustic reflections in consecutive frames. This effect mitigates 

the precision of source localization across acoustic map. In 

future works, further measurements oriented in the area based 

on acoustic map should be performed to find the accurate 

location of anomaly source and not the region. 

The method presented in the paper relies on the intersection 

of diagnostic indications, which can result in ignoring 

anomalies that are producing only one sensing modality. This 

approach was selected to reduce false alarms and ensure that 

found anomalies are highly reliable in noisy industrial 

environments. In the future, other sensor fusion methods, such 

as probabilistic fusion, could be implemented to handle non-
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overlapping indications better.  

The method proposed in this paper uses fixed thresholds 

selected by the expert knowledge of the system to recognize 

anomalies. Instead of this approach, adaptive thresholding 

could be deployed. However, presented approach focuses on 

recognizing all anomalies above a significant minimum level. 

This approach allows to ensure consistent and interpretable 

indications within the map. 

7. Conclusions and Future Work 

In this work, we presented a multi-sensor mapping based on  

a combined LiDAR, thermal, and acoustic mapping of the 

environment. The proposed solution is suitable for complex 3D 

environments, and it enhances the cognitive abilities of a mobile 

platform for machinery diagnostics. 

Spatial diagnostic representation is achieved by fusing three 

separate heterogeneous data sources. Combining different types 

of information into one consistent data format provides 

comprehensive information on severity level of anomalies and 

their locations within the environment. The multi-sensor 

mapping process enhances the usefulness of the data as 

composing a 3D map can contribute to increasing understanding 

of the environment. 

Our approach allows creating a map of the environment with 

anomaly indications. Applying a threshold enables automatic 

differentiation of anomalies from parts of the environment. 

Repeatability analysis confirmed the credibility of obtained 

results. Acoustic measurements provided higher variation in 

standard deviation, which reflects the problem with noise 

generated in real industrial environments, which hinders the 

detection of acoustic anomalies. In future works, semantic 

segmentation could be additionally performed to recognize false 

positives. 

The technique can be further improved to actively act on the 

identified anomalies and perform additional actions, such as in-

depth analysis of the identified areas to determine in more detail 

the sources and the severity of the problem. The method can be 

also used to prevent failures of devices by sending the 

information on detection to the operator or by performing fixes 

with a manipulator that can be installed on top of the robot.  

Our approach features partial autonomy. The robot moves 

independently across the environment by repeating a pre-

recorded route and adjusting behavior to emerging obstacles 

including dynamic objects e.g. humans or other mobile robots. 

Despite the autonomous mission manner, the autonomy level 

could be increased in the future. Future works could improve 

the system by adjusting behavior to the environment or 

detections up to extending inspection to exploration of unknown 

terrains. 

Acknowledgment 

The work has been financed from the research subsidy no. 16.16.130.942 by Department of Robotics and Mechatronics, AGH 

University of Krakow. 

References 

1. Abdo S, Hovanec M, Korba P, Svab P. Utilization of NDT methods in aircraft maintenance. 2021 New Trends in Aviation Development 

(NTAD), Košice, Slovakia, IEEE: 2021: 9–12, https://doi.org/10.1109/NTAD54074.2021.9746505. 

2. Belter D, Nowicki M R. Optimization-based legged odometry and sensor fusion for legged robot continuous localization. Robotics and 

Autonomous Systems 2019; 111: 110–124, https://doi.org/10.1016/j.robot.2018.10.013. 

3. Bultmann S, Quenzel J, Behnke S. Real-time multi-modal semantic fusion on unmanned aerial vehicles with label propagation for cross-

domain adaptation. Robotics and Autonomous Systems 2023; 159: 104286, https://doi.org/10.1016/j.robot.2022.104286. 

4. Chagoya J, Patel S, Koduru C et al. Data Collection, Heat Map Generation for Crack Detection Using Robotic Dog Fused with FLIR 

Sensor. SoutheastCon 2024, Atlanta, GA, USA, IEEE: 2024: 824–829, https://doi.org/10.1109/SoutheastCon52093.2024.10500184. 

5. Cheng L, Gao H, Sun W et al. An Integrated Method for Predictive State Assessment and Path Planning for Inspection Robots in Island-

Based Unmanned Substations. Eksploatacja i Niezawodność – Maintenance and Reliability 2025. doi:10.17531/ein/203994, 

https://doi.org/10.17531/ein/203994. 

6. Dobrev Y, Flores S, Vossiek M. Multi-modal sensor fusion for indoor mobile robot pose estimation. 2016 IEEE/ION Position, Location 

and Navigation Symposium (PLANS), Savannah, GA, IEEE: 2016: 553–556, https://doi.org/10.1109/PLANS.2016.7479745. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 3, 2026 

 

7. Fischer G K J, Bergau M, Gómez-Rosal D A et al. Evaluation of a Smart Mobile Robotic System for Industrial Plant Inspection and 

Supervision. IEEE Sensors Journal 2024; 24(12): 19684–19697, https://doi.org/10.1109/JSEN.2024.3390622. 

8. Hamrani A, Rayhan M M, Mackenson T et al. Smart quadruped robotics: a systematic review of design, control, sensing and perception. 

Advanced Robotics 2025; 39(1): 3–29, https://doi.org/10.1080/01691864.2024.2411684. 

9. Khattak S, Nguyen H, Mascarich F et al. Complementary Multi–Modal Sensor Fusion for Resilient Robot Pose Estimation in Subterranean 

Environments. 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, IEEE: 2020: 1024–1029, 

https://doi.org/10.1109/ICUAS48674.2020.9213865. 

10. Khedekar N, Kulkarni M, Alexis K. MIMOSA: A Multi-Modal SLAM Framework for Resilient Autonomy against Sensor Degradation. 

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, IEEE: 2022: 7153–7159, 

https://doi.org/10.1109/IROS47612.2022.9981108. 

11. Kubelka V, Reinstein M, Svoboda T. Improving multimodal data fusion for mobile robots by trajectory smoothing. Robotics and 

Autonomous Systems 2016; 84: 88–96, https://doi.org/10.1016/j.robot.2016.07.006. 

12. Mączak J, Więcławski K, Szczurowski K. New approach of model based detection of early stages of fuel injector failures. Eksploatacja i 

Niezawodność – Maintenance and Reliability 2023. doi:10.17531/ein.2023.1.6, https://doi.org/10.17531/ein.2023.1.6. 

13. Magalhaes P, Ferreira N. Inspection Application in an Industrial Environment with Collaborative Robots. Automation 2022; 3(2): 258–

268, https://doi.org/10.3390/automation3020013. 

14. Montes De Oca-Mora N J, Woo-Garcia R M, Juarez-Aguirre R et al. Mobile robot with failure inspection system for ferromagnetic 

structures using magnetic memory method. SN Applied Sciences 2021; 3(12): 853, https://doi.org/10.1007/s42452-021-04833-9. 

15. Nam D V, Danh P T, Park C H, Kim G-W. Fusion consistency for industrial robot navigation: An integrated SLAM framework with 

multiple 2D LiDAR-visual-inertial sensors. Computers and Electrical Engineering 2024; 120: 109607, 

https://doi.org/10.1016/j.compeleceng.2024.109607. 

16. Nooralishahi P, Ibarra-Castanedo C, Deane S et al. Drone-Based Non-Destructive Inspection of Industrial Sites: A Review and Case Studies. 

Drones 2021; 5(4): 106, https://doi.org/10.3390/drones5040106. 

17. Nooralishahi P, Rezayiye R K, López F, Maldague X P V. PHM-IRNET: Self-training thermal segmentation approach for thermographic 

inspection of industrial components. NDT & E International 2023; 138: 102884, https://doi.org/10.1016/j.ndteint.2023.102884. 

18. Ospina R, Itakura K. Obstacle detection and avoidance system based on layered costmaps for robot tractors. Smart Agricultural Technology 

2025: 100973, https://doi.org/10.1016/j.atech.2025.100973. 

19. Ozdemir K, Tuncer A. Navigation of autonomous mobile robots in dynamic unknown environments based on dueling double deep q 

networks. Engineering Applications of Artificial Intelligence 2025; 139: 109498, https://doi.org/10.1016/j.engappai.2024.109498. 

20. Pfändler P, Bodie K, Crotta G et al. Non-destructive corrosion inspection of reinforced concrete structures using an autonomous flying 

robot. Automation in Construction 2024; 158: 105241, https://doi.org/10.1016/j.autcon.2023.105241. 

21. Pi R, Cieślak P, Esteba J et al. Compliant Manipulation With Quasi-Rigid Docking for Underwater Structure Inspection. IEEE Access 

2023; 11: 128957–128969, https://doi.org/10.1109/ACCESS.2023.3332486. 

22. Sabry A H, Ungku Amirulddin U A B. A review on fault detection and diagnosis of industrial robots and multi-axis machines. Results in 

Engineering 2024; 23: 102397, https://doi.org/10.1016/j.rineng.2024.102397. 

23. Segal A, Haehnel D, Thrun S. Generalized-ICP. Robotics: Science and Systems V, Robotics: Science and Systems Foundation: 2009. 

doi:10.15607/RSS.2009.V.021, https://doi.org/10.15607/RSS.2009.V.021. 

24. Szczepanski R, Tarczewski T, Erwinski K. Energy Efficient Local Path Planning Algorithm Based on Predictive Artificial Potential Field. 

IEEE Access 2022; 10: 39729–39742, https://doi.org/10.1109/ACCESS.2022.3166632. 

25. Toman R, Rogala T, Synaszko P, Katunin A. Robotized Mobile Platform for Non-Destructive Inspection of Aircraft Structures. Applied 

Sciences 2024; 14(22): 10148, https://doi.org/10.3390/app142210148. 

26. Tsenis T, Tromaras A, Kappatos V. NDE Using Quadruped Robotic Platform for Renewable Energy Producing Infrastructures. 2024 IEEE 

8th Energy Conference (ENERGYCON), Doha, Qatar, IEEE: 2024: 1–6, https://doi.org/10.1109/ENERGYCON58629.2024.10488808. 

27. Wang B, Zhang L, Kim J. Fault Detection and Diagnosis of Three-Wheeled Omnidirectional Mobile Robot Based on Power Consumption 

Modeling. Mathematics 2024; 12(11): 1731, https://doi.org/10.3390/math12111731. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 3, 2026 

 

28. Zhang J, Yuan X, Wang C et al. RF-Fusion: Robust and fine-grained volumetric panoptic mapping system with multi-level data fusion for 

robots. Information Fusion 2025; 122: 103209, https://doi.org/10.1016/j.inffus.2025.103209. 

29. Zhao J, Xiao Z, Bai B et al. Defect Recognition of Transmission Line Unmanned Aerial Vehicle Inspection Images Based on Cascade R-

CNN Algorithm. Eksploatacja i Niezawodność – Maintenance and Reliability 2025, https://doi.org/10.17531/ein/207303. 

 


