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1. Introduction

Abstract

Machine diagnostics is essential in maintaining high operational
efficiency and minimizing machinery downtime. One way to achieve
this goal is by implementing automated diagnostic systems. This paper
presents a multi-sensor mapping system developed on a quadruped
robotic platform. The robot combines diagnostic data from thermal and
acoustic sensors with LIDAR data to create a 3D map of the working
environment. Anomalous readings of temperature and sound pressure
levels are identified and indicated on a 3D map with distinct color values
through data fusion. Validation tests performed in a laboratory
environment confirmed the feasibility of this approach by correctly
identifying simulated cases of malfunctioning machinery. The system
robustness was evaluated through repeatability tests. The proposed
multi-modal mapping solution enables reliable monitoring of the
technical state of machinery in complex environments.

Keywords
technical diagnostics, data fusion, quadruped robot, multi-modal
mapping, robot perception

Machine diagnostics is essential in preventing severe machine
faults and reducing downtimes [17]. Early detection of
malfunctioning machinery helps to improve safety and
effectiveness of the production process [12,22]. Currently, on-
demand nondestructive evaluation (NDE) involve trained
human personnel and are usually performed during planned
machinery downtimes [1]. Such a solution increases operational
efficiency by avoiding unplanned downtimes caused by
unpredictable  machine failures. However, scheduled
maintenance periods are still required to allow human personnel

to perform the necessary inspections in a safe working
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environment, which negatively affects overall operational
efficiency. To resolve this issue, a robot might be applied to
perform the inspection in an automated manner during the
regular operation of the machinery. Employing a mobile robotic
platform to perform inspection tasks should enhance the
diagnostic process by making it more time-efficient [5] and
objective due to its reduced dependency on human factors [13].
Moreover, inspections carried out by humans are often limited
to one modality at a time, while a robot can simultaneously
carry and control multiple sensors and process the

measurements at the same time. Certainly, human inspectors
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also rely on their own senses, which might help discover
abnormal events in the field. However, the performance of
hearing and eyesight is limited, person-specific, and did not
evolve for anomaly detection in industrial environments.
Acoustic symptoms of machinery failure often extend beyond
the audible range, and thermal symptoms are too subtle to be
detected by humans from afar.

Developing an autonomous robotic system to perform
diagnostics, however, is a complicated task. Robot navigation
in a complex environment is itself a complex matter that
requires solving the obstacle avoidance [18], SLAM
(simultaneous localization and mapping) [15] and path planning
[19,24]. In addition to sensing and navigating through the
environment, the robot needs to collect and process diagnostic
data, which further increases the overall complexity.

A mobile robot suitable for operating in industrial
environments can be customized for nondestructive inspections.
Acquiring multi-sensory diagnostic data while navigating
through an industrial environment delivers an abundance of
information that allows for the identification of anomalous
states of the machinery. It is essential to process and interpret
this data so that the anomalies can be detected and localized
with reference to the global frame of reference. This requires
efficient geometrical mapping of the working environment in
3D and fusing this information with diagnostic data.

In this article, we propose a diagnostic method designed for
automated mapping and inspection of industrial environment.
The approach integrates multi-sensor data fusion to identify and
localize anomalous states of machinery during autonomous
missions in complex settings. The main novelty of this paper
lies in presenting diagnostic data as a point cloud representation,
enabling spatially accurate visualization of anomalies within the
3D environment. The proposed technique is validated in
a laboratory environment simulating real industrial conditions,
demonstrating its capability to provide comprehensive anomaly

indications through multi-modal sensing.
2. Related Work

Autonomous diagnostics plays a crucial role in enhancing
efficiency, safety, and reduce costs [7]. Although the solution to
the problem strongly relies on the field and application, several

studies have been performed in the area of robotic inspections.

Different types of robots have been developed and adapted to
meet the diverse operational demands of diagnostics, including
ground-based robots [14,27], aerial drones [16,20,29], climbing
robots [25], and underwater vehicles [21]. Each platform type
presents distinct advantages depending on the environment,
inspection modality, and surface accessibility. Recent studies
emphasize the growing relevance of quadruped robots in the
field of NDE [8,26]. Recent implementations demonstrate that
these robots can reliably carry thermal [4], visual and other
sensors, supporting multi-modal NDE inspections without
significant compromise in mobility or battery life.

Robotic multi-modal perception allows to wuse the
advantages of multiple sources and compensate for single
sensor limitations by enhancing measurements through sensor
fusion. In literature, combining heterogenous sensors on robots
has been utilized mainly for simultaneous localization and
mapping (SLAM) to improve accuracy and robustness of pose
estimation [6,9,11].

The use of sensor fusion can provide reliable pose
estimation on various mobile platforms, including legged robots.
For example Belter and Nowicki [2] proposed a fusion of robot
odometry and RGB-D cameras to enhance pose estimation of
walking robots. Through a combination of visual SLAM and
legged odometry, optimisation-based motion estimation was
used as a feedback, making the algorithm robust to rapid
movements. Another approach, Multi-Modal SLAM (MIMOSA)
[10] was proposed to enhance robustness of pose estimation in
GPS-denied environments depending on odometry, point cloud
data and IMU readings. The data was fused through first
estimating the position from each sensor separately and then
performing factor graph optimization.

More recent works have explored the use of unconventional
sensors like thermal cameras for pose estimation. The work of
Bultmann et. al. [3] proposed a combination of LIDAR, RGB
camera and thermal data. The authors prepared a CNN-based
neural network to acquire semantic information. The solution
prepared in the study allowed to mitigate domain adaptation
issue.

Ongoing investigations are focused on sensor fusion to
acquire a higher level of perception to the extent of panoptic
segmentation. In [28], instance recognition is obtained through

fusion of depth, geometric information and semantic labels.
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Sensor fusion in the field of mobile robotics is usually
considered for improvement of localization and mapping.
Despite different data characteristics, these measurements are
often used to acquire the same information, which is pose
estimation. In our work, we explore the possibility of combining
autonomously acquired diagnostic data from sources that
contain non-overlapping information. Acoustic and thermal
data can complement each other’s measurements by providing
independent assessment of level of threat severity. Creating
a fused diagnostic system aims to construct a comprehensive

view on the occurrence of anomalies in the environment.
3. Experimental setup
3.1. Inspection system

The following section describes the hardware and software
components of the diagnostic system mounted on the quadruped
robot shown in Fig. 1. The inspection payload consisted of
a thermal camera FLIR A70, an acoustic camera Sorama
L642v+, a LIDAR sensor Ouster OS-1 with 32 channels, and an
on-board computer NVIDIA Jetson Orin Nano. The system was
running on Ubuntu 20.04 Focal and ROS Noetic. The FLIR A70
thermal camera had a field of view of hFOV x vFOV = 51° x
39° and spatial resolution of width x height = 640 x 480 pixels.
The Sorama L642v+ acoustic camera was set to record
frequency bandwidth from 5000 to 10000 Hz, and its field of
view was hFOV x vFOV = 90° x 51°. The thermal camera
captures  radiometric =~ images, enabling temperature
measurement in each pixel with a 2 Kelvin accuracy, and stores
it in the form of a matrix. An acoustic camera delivers a visual
image of the environment with a color scale overlay of the

sound pressure level values, representing the sound sources.

v

LiDAR sensor allows for the capture of a spatia

S i y \ N
Figure 2. Test environment illustrating a quadruped robot equipped with an inspection system and a malfunction-simulation board.

1 representation

of the environment in the form of a point cloud. In this study, X,
Y, and Z coordinates of points are collected. LIDAR does not
capture color values.

The inspection payload was mounted on a quadruped mobile
robot. The mobile platform, Spot, from Boston Dynamics, has
five stereo cameras that are employed for obstacle avoidance
and are used to handle rough terrain or stairs. The advantage of
using a legged robot instead of a wheeled platform is its
capability to move in complicated environments with uneven

ground.

Figure 1. Mobile platform equipped with diagnostic system.
3.2. Test Field Configuration

The mobile platform can perform autonomous missions in large,
complex, multilevel environments. In this work, we limited the
working area to a single-level environment of an industrial
robots laboratory. To access the room, the robot had to traverse
a corridor and walk down the stairs. To mimic the industrial
environment, robotic manipulators and auxiliary equipment

present in the laboratory were actively operating during the test.

A view of the scene is shown in Fig. 2.
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To enable simulation of 4 pneumatic and 8 electrical and thermal responses on demand. These signals are
malfunctions, a test board shown in Fig. 3 was prepared. The subsequently interpreted by the robot’s diagnostic sensors as
setup is controlled with a Raspberry Pi microcomputer, which indicators of malfunction.

can activate faulty modules to intentionally generate acoustic

Figure 3. Pneumatic and electrical test board used to simulate malfunctions in selected nodes of the system.

(a)

(b)

Figure. 4 Map of the scene obtained from the robot’s cameras (a) point cloud (b) 2D map with waypoints indicated as red squares.
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3.3. Autonomous inspection

The mobile platform features Autowalk® capability. In this
mode, the robot moves autonomously without the operator’s
supervision. To realize this task, visual reference markers called
fiducials must be placed around the environment, and the
operator has to plan the robot’s path and actions in advance.
When performing a mission, the robot repeats prerecorded
moves, undertaking necessary modifications in response to the
changes to the environment. During the recording, the
environment representation is gathered for further self-reliant
navigation. The map in the form of a point cloud is obtained
with the robot’s depth cameras and mostly contains
characteristic visual features such as edges of the objects in the
surroundings. The map of the test field, acquired using the
robot’s built-in cameras, is shown in Fig. 4a. This map is
obtained through a separate SLAM process, as a built-in robot
function. The map is used for navigation in Autowalk®, but is
not further utilized in our diagnostic mapping process.

Besides acquiring the map, the robot stores information on
the route, the waypoints it is supposed to cross, fiducials, and
localizations where it should reach the previously determined
pose to steer the diagnostic sensors towards the board. The
waypoints are visualized on 2D map for better clarity in Fig. 4b.
The 2D map is created by projection of all points from 3D map
obtained from robot’s cameras (Fig. 4a) to the XY plane. The
waypoints are recorded during Autowalk® mission planning
and the robot moves from a waypoint to waypoint during
operation. The depth camera map and waypoints are used for
navigation solely because the method is not sufficiently
accurate for diagnostic mapping. The data from all sensors
mounted on the robot was gathered in Autowalk® mode while
performing a mission without the operator’s supervision. The
mission was repeated 5 times in order to assess the repeatability

of the inspection process in the view of external disturbances.
4. Multi-sensor mapping of the environment

This section is focused on a diagnostic mapping solution that
combines a LiDAR sensor with thermal and acoustic detections.
The multi-sensor mapping method, proposed in the study, is
performed by first projecting thermal and acoustic images onto
involves coordinate

point cloud, which obtaining

transformation of sensors, described in section 4.1. The next

stage, described in section 4.2, requires pose estimation of
consecutive point clouds. Multi-sensor diagnostics (section 4.3)
are done through anomaly-based coloring. Finally, multi-sensor
map of the area is obtained through combining thermal and

acoustic maps, which is described in section 4.4.
4.1. Coordinate Transformation for Diagnostic Imaging

The first step of our proposed framework is thermal and
acoustic image projection to corresponding point cloud data.
Data frames are matched based on timestamp difference. Given
the time acquisition difference lower than 0.05 s, the data is
considered to be gathered at the same time. Further step
involves image projection to a point cloud within the same time
stamp taking into account corresponding orientation of the
sensing devices. Exemplary sensor alignment on the robot is
visualized in Fig. 5.

Thermal cameras measure thermal radiation emitted within
their field of view. Temperature distribution is given across the
image.

To obtain a combination of thermal data and LiDAR scans
a point cloud in 3D space is defined as P = {p; € R*}. Each point
pi, represented through x, y, z coordinates, is projected onto the

projection plane IT in accordance to equations 1 to 4.

ne) = (2.2), (1

w o w

where u# and v represent the pixel format on x and y
dimensions and w is the distance from the projection plane. The

values are expressed as:

u
v
w

where ¢ is a translation from laser scanner to thermal camera

=K-R-(p;—t) 2

given as [dx dy dz]. R is rotation matrix of the cameras
regarding to the point cloud coordinate system (see Fig 5b)

expressed as:

-1 0 O
R*3¥=10 0 -1 (3)
0 -1 0
K is a camera calibration matrix given as:
width 0 width
2 tan (hFOV —
K33 = [0 fy cyl height _ height | (4)
2 tan (UFOV) 2
0 1
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This step is followed by checking the constraints given by
the image frame expressed as:
U € <Umin, Umax>, VE <Vmin, Vmax>, 2 > 0, (5)
where Umin, Umax, Vmin, Vmax are image pixel limits and z above
0 filters points that lie behind the camera.
Consecutive step involves assigning the temperature value
given the projected coordinates:
T(p;") = Im(l1(p;")) = Im(w,v). (6)
Acoustic cameras acquire intensity of sound sources within
the frame. The camera acquires Acoustic cameras capture the

intensity of sound sources within their field of view. They

(2)

provide both the spatial localization of each source and its
corresponding sound intensity. The data acquired by an acoustic
camera are represented as an image that depicts the spatial
distribution of sound sources across a specified frequency range.
The projection of an acoustic image is generated using
a procedure analogous to that employed for thermal image
projection. Note, however, that these two systems are not
necessarily synchronized, moreover they can operate at two
different intervals. Therefore, the thermal and acoustic point

clouds may be created from different, independent LiDAR

(b)

scans.
100
LiDAR
—_ X
E o
N Acoustic cam.
-100 /\ %

Thermal cam.
0 AX

100 <
200 P
300 s

X (mm) 400 -200 Y (mm)

Figure 5. (a) Sensor alignment on the robot, (b) spatial alignment of the sensor coordinates.

4.2. Pose estimation

Pose estimation for each data snapshot is achieved through point
cloud registration, which aligns spatial data across successive
scans to determine the robot’s position within the environment.
At each measurement location, the local LIDAR point cloud is
preprocessed by filtering points based on their Z-axis values,
effectively removing ceiling and floor data to facilitate
subsequent registration. In the consecutive step, the quaternion
data is extracted from LiDAR’s built-in IMU, and initial point
cloud alignment is performed using the IMU data. In the final
stage, ICP (Iterative Closest Point) [23] is performed to match
consecutive point clouds. Based on the registration, a relative
transformation is found and applied to update the robot’s global

pose. The process is repeated for each LiDAR scan.

4.3. Multi-sensor diagnostic

To distinguish individual sources of diagnostic indications on
the resulting unified map, classification scheme organized into
two distinct damage type is introduced. These indications are
used next to apply coloring of the point cloud. Standard 24-bit
encoding is utilized to represent three separate color channels:
red, green, and blue, each corresponding to specific diagnostic
modalities.

The thermal indications are coded in a red channel by linear
mapping temperatures from 0°C up to an alarm level set above
50°C. The threshold value can be adjusted to the tested object in
the range from 0°C to 250°C.

An acoustic camera, used in our study, returns

monochromatic images highlighting areas with sound sources.
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The raw acoustic indication is linearly mapped with an alarm
level set above 50dB. The resulting acoustic indications were
marked on a channel encoding blue color. The threshold value
can be adjusted to the tested object in the range from 0dB to
120dB.

The green channel is left to represent common parts, i.e.,
areas with temperature and sound level exceeding the set
threshold at the same time. These areas are interpreted as
abnormal system operation. To determine the intersection of the
arcas where thermal and acoustic alarms are raised, it is

necessary to project diagnostic information onto the point cloud.
4.4. Area mapping

The 3D model of the environment is created form a point cloud
obtained from a single scan captured at the same localization as
the corresponding thermal and acoustic images. The images are
projected onto the point cloud collected at a given measurement
location. This projection is performed by computing the image
coordinates for each point in the scan. Each point in in the point
cloud is subsequently annotated with diagnostic data extracted
from the corresponding pixels in the thermal and acoustic
images.

Once this step is completed global mapping is performed.
Pose estimation is used to calculate the transformation matrices
for the consecutive measurement areas yielding independent

thermal and acoustic maps of the entire area. Multi-sensor maps

are created by transforming the point clouds with diagnostic
data to KDTrees of the voxel size of 0.01 m. The points in the
acoustic point cloud localized inside the voxels in the thermal
KDTree, that has a temperature above the alarm level, are
marked green. Similarly, the points in the thermal point cloud
that are localized inside the voxels of the acoustic KDTree, with

a raised acoustic alarm, also marked green.
5. Experimental Results

In this section, we describe the prepared diagnostic mobile
system as well as the measurements conducted in a test field.
Moreover, the results obtained are presented and discussed.
Section 5.2 presents exemplary results as well as potential false
alarms generated by individual sensors. The mapping procedure,
detailed in Section 5.3, emphasizes the integration of data into
a unified representation. Section 5.4 discusses the evaluation of

the system within the context of a repeatability experiment.
5.1. Scene mapping

Registered point clouds sequence counts 1100 scans of the
environment. Consecutive scans transformations are computed
with ICP method described in section 4.2 and scans are finally
aligned into the single dense point cloud.

The map containing all scans aligned within a common

reference frame is shown in Fig. 6.

Figure 6. Aligned LiDAR scans of the test scene based on pose estimation. Colors indicate height ramp.
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5.2. Sensor response

Examples of test-board operation can be seen in Fig. 7 and Fig.

9, where acoustic and thermal anomalies are visible.

Figure 7. Acoustic camera indication of compressed air leak
detection from the pneumatic tube.

Acoustic indicators are also visible in Fig. 8. They occur
because the industrial manipulators are equipped with
pneumatic suction cups to move objects in their operational
fields. The flat walls in the laboratory are effective reflectors for
acoustic waves, thus, few indications of the sound sources on
the walls are also registered. These features are discarded from
anomaly detections, as they origin form normal operation

behavior.

Figure 8. Acoustic camera readings from manipulators with

pneumatic end effector.
Thermal camera provides information on the temperature
distribution in its field of view. Fig. 9 presents the testing board
with temperature exceeding 35°C (in the center of the image)

and a computer display operating in the temperature range of

approximately 40°C.

Temperature (°C)

Figure 9. Thermal anomaly detection from the test case. (1)
thermal malfunction of a relay switch simulated on testing
board. (2) thermal signature of a correctly operating element.

In the collected data, none of the environment parts in the
inspected environment indicated faults in both modalities
simultaneously, however many elements exceeded one of the
alarm thresholds. The testing board is prepared to be the only
element that exceeds both thermal and acoustic alarm levels
simultaneously. The combined information from the two fields

is necessary to distinguish the true damage indications.
5.3. Multi-sensor mapping

The measurements obtained from the diagnostic payloads are
fused to create the multi-sensor map. Thermal and acoustic
indications are separately projected onto the map of the scene.
The result of thermal mapping is shown in Fig. 10. The points
with temperature above 35 °C are marked with red color. The
rest of the point cloud without anomaly indication is colored
black. As expected, the indications originate from the test stand.
Acoustic mapping marked more areas than thermal
mapping, as shown in Fig. 11. Identified acoustic anomalies are
marked with blue color. The field consisted of a few acoustic
sources. Additionally, the reflections from walls were also
detected by the camera and are present on the point cloud.
Thermal and acoustic maps were combined to create a multi-
sensor representation of the environment. The result of data
fusion is shown in Fig. 12. Red indicates thermal-only
anomalies, blue indicates acoustic-only anomalies, and

detections recorded by both sensors are colored green.
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Temperature (°C)

Temperature (°C)

3.5

Figure 10. Thermal mapping. The acquired point cloud has black coloring in regions where no anomaly occurred. Points with
thermal anomaly indication are marked red. Detected thermal anomalies shown next to the point cloud were testing board and

laboratory equipment present in the environment.

Figure 11. Acoustic mapping. The acquired point cloud has black coloring in regions where no anomaly occurred. Points with

acoustic anomaly indication are marked blue. The main sources of acoustic signal are shown next to the point cloud.
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3.5
Figure 12. Multi-sensor map. The point cloud is a result of fusing thermal and acoustic map. Red color indicates the presence of

thermal anomaly, blue acoustic and green both.

Figure 13. Point cloud showing the anomalies only. Red color indicates the presence of thermal anomaly, blue acoustic and green

both. The bounding box shows the dimensions of the room.
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For clarity, anomalies only are shown in Fig. 13. The
diagnostic data indicated on the map can be utilized to

determine areas that require further inspections.
5.4. Repeatability tests

The robustness of the system was assessed through repeatability
tests. The experiment was conducted 5 times by making the
robot repeat the same mission path and gather data during the
mission execution. Number of points in point clouds for each
repetition averaged to 1.32 + 0.3 mil. Time for one repetition

averaged to 71.2 £ 9 s.

(a)

(b)

As the diagnostic information stems from exceeded
temperature or sound indications maximum values of these
quantities were extracted from subsequent acquisition results
and illustrated in Fig. 14a and b respectively. In the case of
thermal results, the maximum values were detected on the
testing board in proximity to the ground truth location. In the
case of acoustic data, however, only 2 of 5 maximal indications
were located close to the leaking actuator. This result can be
explained by other sound sources, e.g. vacuum suction cups on

robotic manipulators operating in the inspected room.

*  point cloud
*  detection maximum
ground truth

—— e N '.n\,\(;'.\'xhjl: l;"-) iYL S S
. A § A

= detection maximum
®  ground truth

Figure 14. Distribution of diagnostic values obtained for repetition test. (a) Thermal data. (b) Acoustic data.
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5.5. Reprojection error calculation

To evaluate the accuracy of the LiDAR-camera extrinsic
calibration, a reprojection error analysis was conducted using
a dedicated calibration target observed simultaneously by the
LiDAR sensor and thermal and acoustic cameras. Due to the
lack of distinctive point features that can be automatically
extracted from the LiDAR point cloud, the reference points on
the calibration target were manually annotated.

For each experimental configuration, three corresponding
points were identified in the LIDAR point cloud that correspond
to automatically detected points on a specifically prepared

calibration board in the thermal images. The calibration target

was positioned at multiple distances and orientations with
respect to the sensor’s placement in order to assess the stability
of the calibration under varying geometric conditions as shown
in Figure 15. The evaluated configurations included target
distances of 1.0 m, 1.5 m, and 2.0 m, as well as target
displacement to match azimuth of —15° and +15° from the
center of the image at a distance of 2.0 m.

For each target configuration, the reprojection error was
evaluated using three manually annotated point
correspondences. The average root mean square error was
computed separately for each configuration. The table 1

summarizes the reprojection error for all evaluated

configurations.

Figure 15. Thermal image from configuration (a) distance 1 meter, (b) distance 2 meters and azimuth 15° from the sensor. Blue plus

sign denotes object centers detected on the image Green plus sign denotes projection of corresponding point cloud points onto an

image plane. Calibration board consists of 3 thermal sources arranged in 3 square’s corners spaced 60mm from the neighboring

heater.

Table 1. Average RMSE of reprojection error for 5 tested thermal configurations.

1 m azimuth: 0° 1.5 m azimuth: 0°

2 m azimuth: 0°

2 m azimuth: 15° 2 m azimuth: -15°

4.9105 px 5.1575 px

3.4097 px

2.4027 px 5.3821 px

56
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Figure 16. Acoustic pressure spatial distribution form configuration (a) distance 2m azimuth 0°, (b) distance 2m azimuth 15°.
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The same reprojection error analysis procedure was repeated
for acoustic camera with LiDAR setup using pneumatic test
board presented in Fig 3 with single acoustic source. Testing
scenarios were chosen the same as in the case of thermal camera
and exemplary scenario of raw acoustic distribution image is
presented in Figure 16.

For each tested scenario root mean square error was
calculated between center of the detection and projection of the
closes point from point cloud.

Above evaluation presented a reprojection error analysis for
validating the LiDAR—camera extrinsic calibration. The error
values above expectation in some experimental scenarios are
caused by limited vertical resolution of the LiDAR sensor and

manual annotation. The results demonstrate that the estimated

transformation achieves consistent reprojection accuracy across
multiple target distances and orientations, confirming its
suitability for multimodal sensor fusion tasks.

The presented reprojection error analysis is subject to
several limitations. First, the number of evaluated point
correspondences is limited due to the manual annotation
required for LiDAR point cloud labeling. Second, the reported
reprojection error includes uncertainty introduced by the
manual annotation process and by the spatial resolution of the
LiDAR sensor.

Despite these limitations, the analysis provides a meaningful
validation of the calibration accuracy under varying geometric

conditions relevant to the intended application.

Table 2. RMSE of reprojection error for 5 tested acoustic configurations.

1 m azimuth: 0° 1.5 m azimuth: 0°

2 m azimuth: 0°

2 m azimuth: 15° 2 m azimuth: -15°

4.9299 px 7.1036 px

21.3143 px

16.4053px 7.9080 px

6. Discussion

While the repeatability analysis confirmed consistent thermal
source localization, the acoustic anomaly was correctly flagged
on the test table only 2 times out of 5 repetitions. This result
suggests that the current acoustic diagnostic logic requires
further extension to improve robustness and reduce false
indications under realistic scene variability. At the same time,
this limitation does not compromise the proposed multi-modal
mapping pipeline reliably co-registers and visualizes
heterogeneous thermal and acoustic cues in a common 3D
representation, enabling consistent spatial interpretation and
providing a foundation for future improvements of the decision-
level diagnostic algorithms. To reduce false positive indications,
further acoustic noise mitigation could be implemented e.g.
spatial clustering such as DBSCAN. Clustering detected
anomalies in 3D space could enhance the recognition of false
positives, including reflections. Spatial clustering could allow
to detect relocation of cluster centers, which could enable
differentiation between reflections and true indications.

The algorithm proposed in the study does not address the
issues with projection in complex scenarios where sight is
obstructed by an object visible only by one of the sensors. For
example, if parts of the environment are visible by thermal

camera and invisible by LiDAR, it can result in omitting points

on thermal map. To resolve this issue, further work regarding
geometric verification is required. Using line-of-sight or
acoustic ray-tracing could help distinguish true anomaly
sources. However, these methods were not implemented in this
work because they could significantly increase computational
complexity. The presented projection algorithm allows for
computationally efficient framework and can scale to large
environments.

Another limitation of our work can be seen in acoustic
mapping result. Acoustic map has a slightly inaccurate
indication locations near pneumatic manipulators between
acoustic heatmap and LiDAR point cloud due to presence of
acoustic reflections in consecutive frames. This effect mitigates
the precision of source localization across acoustic map. In
future works, further measurements oriented in the area based
on acoustic map should be performed to find the accurate
location of anomaly source and not the region.

The method presented in the paper relies on the intersection
of diagnostic indications, which can result in ignoring
anomalies that are producing only one sensing modality. This
approach was selected to reduce false alarms and ensure that
found anomalies are highly reliable in noisy industrial
environments. In the future, other sensor fusion methods, such

as probabilistic fusion, could be implemented to handle non-
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overlapping indications better.

The method proposed in this paper uses fixed thresholds
selected by the expert knowledge of the system to recognize
anomalies. Instead of this approach, adaptive thresholding
could be deployed. However, presented approach focuses on
recognizing all anomalies above a significant minimum level.
This approach allows to ensure consistent and interpretable

indications within the map.
7. Conclusions and Future Work

In this work, we presented a multi-sensor mapping based on
a combined LiDAR, thermal, and acoustic mapping of the
environment. The proposed solution is suitable for complex 3D
environments, and it enhances the cognitive abilities of a mobile
platform for machinery diagnostics.

Spatial diagnostic representation is achieved by fusing three
separate heterogeneous data sources. Combining different types
of information into one consistent data format provides
comprehensive information on severity level of anomalies and
their locations within the environment. The multi-sensor
mapping process enhances the usefulness of the data as
composing a 3D map can contribute to increasing understanding
of the environment.

Our approach allows creating a map of the environment with

anomaly indications. Applying a threshold enables automatic
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