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Highlights

Electrical signals enable diagnostics of screw
wear in extrusion.

Time—frequency analysis reveals wear-related
signal patterns.

CNN classifies screw condition using CWT
scalograms.

Current signals show higher diagnostic
sensitivity than voltage.

Method demonstrates potential for predictive

maintenance systems.
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1. Introduction

Abstract

This study presents a hybrid diagnostic approach combining the
Continuous Wavelet Transform (CWT) and Convolutional Neural
Networks (CNN) for assessing screw wear in a single-screw extruder
operating under controlled conditions. Electrical current signals from the
drive motor were analyzed to identify changes associated with the
degradation of working components. CWT scalograms were used as
time—frequency inputs for a CNN classifier, achieving a classification
accuracy of 92.3% in distinguishing between new and worn screw states.
Principal Component Analysis (PCA) confirmed clear separability of
operating conditions, with the first two components explaining over 99%
of the total variance. The results indicate that electrical signals contain
diagnostically relevant information and that their combined analysis
using CWT and CNN enables automated, non-invasive condition
assessment with potential applicability in predictive maintenance
systems without additional sensors.

Keywords
predictive diagnostics, screw extruder, CWT, CNN, deep learning, signal
analysis.

the geometry of the screw, the condition of the barrel, and the

Extrusion is among the most versatile processing techniques
applied in the food, feed, and polymer sectors, as it enables the
formation of product structure, improvement of digestibility,
and modification of physicochemical properties [1]. Due to its
flexibility and energy efficiency, extrusion has found broad
application not only in food engineering but also in materials
and chemical technologies. The overall efficiency of the process

depends on multiple design and operational parameters, such as
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frictional interaction between the rotating screw, processed
material, and the internal surface of the cylinder [2].

In single-screw extruders, material flow is mainly driven by
friction and pressure gradients along the screw channel. The
rheological characteristics of the processed material, together
with the geometry of the screw elements, determine process
stability and energy efficiency [3,4]. The presence of grooves

on the inner surface of the barrel enhances friction, limits
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slippage, and improves the uniformity of material conveyance.
Over time, however, wear of the screw flights and degradation
of barrel grooves lead to increased clearances, backflow, and
deterioration of flow conditions [5,6].

The progressive wear of the screw and barrel negatively
influences both energy efficiency and operational reliability. As
these components degrade, power demand, pressure
fluctuations, and temperature irregularities within the
plasticizing section tend to increase, resulting in higher overall
energy consumption [7]. For this reason, there is a growing need
for methods that enable continuous, non-invasive monitoring of
the technical condition of extruder components without
disrupting production.

Conventional diagnostic techniques—such as monitoring
motor load or production rate—provide only indirect
information and often require operator supervision. In contrast,
non-destructive approaches based on electrical signal analysis
allow continuous, automated assessment of machine load.
Time—frequency methods like the Continuous Wavelet
Transform (CWT) enable the identification of non-stationary
variations in these signals, which can serve as indicators of wear
in mechanical components [8]. When combined with artificial
intelligence techniques, particularly Convolutional Neural
Networks (CNN), such analysis allows automatic recognition of
characteristic patterns associated with specific technical
conditions [9,10].

Modern diagnostic strategies increasingly integrate signal
analysis with machine learning, consistent with the concepts of
predictive maintenance and Industry 4.0. Through the analysis
of current, voltage, and power signals, it is possible to construct
predictive models capable of detecting early symptoms of wear
or process anomalies [11,12]. Applying CWT—CNN methods in
single-screw extruder diagnostics therefore represents
a significant advancement toward intelligent monitoring
systems that minimize maintenance costs, enhance process
stability, and improve the reliability of technological lines.

Unlike the approach presented by Danielak et al. [8], which
relied mainly on wavelet-based statistical interpretation of
current signals, this study introduces a hybrid CWT—-CNN
model that combines automated feature extraction and
classification of screw wear states. This integrated methodology

enhances diagnostic autonomy, scalability, and repeatability

while reducing the dependence on expert-driven signal
interpretation. Moreover, it fits naturally into the framework of
predictive maintenance and Industry 4.0 by converting raw
electrical data into diagnostic knowledge through deep learning
mechanisms.

The purpose of this research is to develop and
experimentally validate a method for assessing screw wear in
single-screw extruders using electrical signal analysis supported
by wavelet transformation and convolutional neural networks.
The proposed approach enables real-time detection of
component wear without interfering with process operation,
thereby contributing to improved understanding of energy
efficiency and system reliability.

This interdisciplinary research merges aspects of
mechanical engineering, tribology, and artificial intelligence. It
provides a comprehensive understanding of how mechanical
degradation of the extruder’s working parts affects the electrical
behavior of the drive system. The Continuous Wavelet
Transform offers insight into the time—frequency nature of these
dynamic phenomena, while CNN-based models enable
automated pattern recognition that surpasses traditional feature-
engineering approaches. Consequently, the developed
diagnostic framework advances condition monitoring in
extrusion systems and contributes to the broader field of data-

driven maintenance for industrial machinery.
2. Materials and Methods
2.1. Object of the study and extruder configuration

The study was carried out on a laboratory single-screw extruder
METALCHEM E-75 (AgroFeedingTech, Polska) equipped
with a 7.5 kW squirrel-cage induction motor (400 V, 50 Hz) and
an intermediate gearbox ensuring stable screw rotational speed.
The screw, with a length of L = 25D and a nominal diameter of
75 mm, cooperated with a barrel containing twelve longitudinal
grooves in the feeding zone. The grooves had a depth of 2.5 mm,
a width of 4 mm, and an attack angle of 30°. Two sets of screws
were used in the experiment (Figure 1):
e N (new) — a factory-new screw after 8 hours of run-in
operation,
e W (worn) — an operationally worn screw with visible
edge degradation, deformation of flight profile, and
reduced ridge height.
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Figure 1. Comparison of the new (N) and worn (W) screw.

Photographs of the screws in both states and the wear

description were used as a reference during signal interpretation.

2.2. Raw material and process parameters

The raw material was wheat with a moisture content of 15%,
originating from a single storage batch to minimize variability
in rheological properties. The process was carried out under
constant technological parameters:

e  screw speed: 500 rpm,

e  temperature in the final barrel zone: ~115 °C,

e  die diameter: 8 mm,

e  L:D ratio of the plasticizing system: 5:1.
All measurements were performed under steady-state

conditions in separate sessions for the N and W screw states.
2.3. Data acquisition and recording system

Three-phase  RMS current signals were recorded using
a METREL MI 2883 Energy Master power analyzer equipped
with A1227 current clamps (up to 1000 A, accuracy 1%). The
system complies with EN 61000 4-30 Class S. The following
quantities were measured:

e  phase current (A),

e  voltage (V),

e instantaneous power consumption (W),

e cumulative energy consumption (Wh),

e  barrel temperature (°C).
Recording parameters:

e  raw signal sampling frequency: 7 kHz,

e averaged data frequency: 1 Hz,

e  RMS measurement accuracy: +1.5%.

The dataset consisted of 1429 signal segments extracted
from continuous electrical measurements acquired under
steady-state extrusion conditions. Each sample represents a time
window of the recorded signal rather than an independent
experimental run. Data acquisition and subsequent processing,

including statistical analysis, time—frequency transformation,

and neural model development, were performed using
MATLAB.

2.4. Data preprocessing

Collected data were subjected to:
e  quality control,
. removal of outliers,
e  z-score normalization,
e  verification of sampling uniformity,
. calculation of descriptive statistics (mean, median, min,
max, standard deviation).
Kolmogorov—Smirnov normality tests were performed, and
the Pearson correlation matrix was calculated to assess linear

relationships.
2.5. Time—frequency analysis (CWT)

For power and phase current signals, the Continuous Wavelet
Transform (CWT) was calculated to obtain scalograms
representing changes in signal energy as a function of time and
frequency.

Equation (1) defines the continuous wavelet transform of a

signal x(?) using a wavelet y(?):
W(ab) = [7 x(®O v (52) dt €)

Parameter a controls scale (stretching or compression of the
wavelet), while b corresponds to time shift. The result W(a, b)
represents wavelet coefficients that capture local variations in
signal energy across time and frequency domains.

The Morse wavelet was used as the mother wavelet due to
its good resolution properties for non-stationary mechanical
signals.

Two representations were obtained:

e  CWT-N - ssignal during operation with a new screw,
e  CWT-W - signal during operation with a worn screw.
Scalograms were subsequently used as input images for the

convolutional neural network.
2.6. Feature extraction and PCA analysis

Based on the normalized signals, Principal Component Analysis
(PCA) was performed. Mathematically, PCA solves:

T = XW 2)
where T is the score matrix and W contains eigenvectors of the
covariance matrix.

The following were determined:
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e  cigenvalues,

e  cigenvectors,
e  percentage contribution of components to total variance.
The first two components (PC1 and PC2) explained more
than 99% of data variance, allowing dimensionality reduction

and visualization of differences between N and W classes.
2.7. Convolutional neural network (CNN) architecture

The input data for the CNN model consisted of images obtained
from the CWT of current signals recorded for two extruder
operation configurations:
e New screw (N) — 1429 samples,
e  Worn screw (W) — 1400 samples.
From each time record, fixed-length segments were

extracted and transformed into CWT scalograms (Morlet

MaxPooling2D(2, 2)

Kernel Relu

NI ION
Dropout (0.2)

feature extraction

MoxPooling2D(2, 2)

wavelet). A total of 2850 CWT images were created (1425 per
class, N and W). The images were saved in .png format at
224x%224 px resolution and used as CNN input data.
The CNN model (Figure 2) developed for screw condition
classification (N/W) consisted of:
e input layer: 224x224x3 (RGB images),
. first convolutional layer: 32 filters 3x3, stride = 1, ReLU
activation,
e second convolutional layer: 64 filters 3x3, stride = 1,
ReLU activation,
e  max-pooling layer: 2x2,
e fully connected (FC) layer: 128 neurons, ReLU
activation,

e  output layer (Softmax): 2 classes (N and W).

MoxPooling2D(2, 2)

Conv2D (128, (3, 3))

»‘ H L fully connected layer
1T

clossification

probabilistic
distribution

Figure 2. Architecture of the multi-layer CNN.

Dropout regularization (0.3) was applied to prevent
overfitting.
Training was performed in Python (TensorFlow/Keras)
using GPU (NVIDIA RTX 3060):
e number of epochs: 50,
e  batch size: 32,
e loss function: categorical cross-entropy,
e  optimizer: Adam,
e  learning rate: 0.001,
e  single iteration training time: ~45 s, total training time:
~38 min.
Data were split into 70% training, 15% validation, and 15%
testing sets. Early stopping was used to prevent overtraining

once the loss function stabilized.

2.8. Model validation and quality metrics

The classifier performance was evaluated using:
. confusion matrix,
e  accuracy,
e  sensitivity and specificity,
. F1-score,
e AUCROC.
For the regression part (ANN-based power prediction):
e  coefficient of determination (R?),
e  root mean square error (RMSE),
e  mean absolute error (MAE).
Model evaluation was performed on both test and

independent datasets.
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2.9. Software and computational environment 3. Results

Computations were carried out using the following 3.1. Analysis of supply voltage waveforms
environments: In the first stage of the study, the interphase voltage waveforms
*  MATLAB 2023b - signal analysis, PCA, CWT, ANN, recorded during extruder operation were analyzed for the new
*  Python 3.11 / TensorFlow — CNN implementation, (N) and worn (W) screw. Figures 3 and 4 present changes in the
*  OpenCV + NumPy — scalogram image processing, U12(Avg) voltage over time for both variants.
e  Scikit-learn — classification metrics.
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Figure 3. Time series of the interphase voltage U12(Avg) during extrusion using the new screw (N). The horizontal axis represents

consecutive samples recorded at a frequency of 1 Hz.
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Figure 4. Time series of the interphase voltage U12(Avg) obtained with the worn screw (W). The horizontal axis represents

consecutive samples recorded at a frequency of 1 Hz.
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For the new screw, the voltage signal was characterized by
high stability and low fluctuation amplitude. The waveform
corresponds to expected behavior under nominal operating
conditions and serves as a reference for evaluating extruder
performance.

For the worn screw, local disturbances and slightly higher
signal variability were observed, resulting from deteriorated
material transport and increased frictional resistance. These

effects indicate higher mechanical loading of the drive system.
3.2. Statistical characteristics of process parameters

To quantitatively assess the changes in extruder operation,

statistical analysis of the recorded process parameters was
performed. The results are presented in Table 1.

Temperature signals exhibited the lowest variability (SD =
4.93 °C), whereas power and energy consumption showed the
widest range of values. The most significant difference between
the N and W conditions was observed for power consumption,
whose large amplitude variations indicate a dynamic effect of
screw wear on the energy efficiency of the system.

The correlation matrix (Table 2) revealed a strong positive
relationship between power and energy (» > 0.99), confirming

their functional interdependence.

Table 1. Descriptive statistics of recorded extrusion process parameters.

Variable Mean Stapdgrd Min Max Median
deviation
Temperature [°C] 115.68 4.93 105.45 124.22 115.58
Power consumption [W] 5339.20 1223.80 26.21 9046.30 5179.00
Energy consumption [Wh] 1.4831 0.3400 0.007 2.513 1.439
Table 2. Correlation matrix of process parameters.
Temperature Power Energy
Temperature 1.00000 0.65075 0.65074
Power 0.65075 1.00000 1.00000
Energy 0.65074 1.00000 1.00000

A moderate correlation between temperature and energy-
related parameters (r = 0.65) reflects increased friction and
mechanical load associated with deteriorated material transport
typical of worn components.

The Kolmogorov—Smirnov (KS) test confirmed that all
analyzed variables deviate significantly from the normal
distribution (p < 0.001), justifying the use of nonlinear and

time—frequency methods in subsequent analyses.
3.3. Time—frequency analysis of load signal (CWT)

To capture non-stationary patterns resulting from frictional and
flow-related changes, the power-consumption signal was
analyzed using the Continuous Wavelet Transform (CWT).
Scalograms are shown in Figures 5 (new screw) and 6 (worn
screw).

The dominant frequency bands in the current signal were
found in the range of 60—-300 Hz, corresponding to mechanical
vibration harmonics related to screw rotation and material
compression. The scalogram for the new screw exhibits

dominance of the low-frequency spectrum and a uniform energy

distribution, indicating stable operation of the system.
Compared to the new screw condition, the worn screw
exhibited an increased concentration of signal energy in the 60—
300 Hz frequency range, indicating elevated dynamic load and
friction-related phenomena. In this case, more intensive mid-
and high-frequency components, local energy peaks, and
increased signal irregularity were observed. These distinct
differences confirm that the CWT enables effective separation
of extruder operating states and provides a suitable data

representation for CNN-based classification.
3.4. Dimensionality reduction using PCA

Principal Component Analysis (PCA) showed that the first two
components (PC1 and PC2) explained over 99% of the total
variance. PCA was applied to RMS values of three-phase
interphase voltages (U12, U23, U31). The first principal
component (PC1) represents the combined variance associated
with the overall electrical load of the drive system, while the
second component (PC2) reflects secondary thermo-mechanical

variations.

Eksploatacja i Niezawodno$¢ — Maintenance and Reliability Vol. 28, No. 3, 2026




60

50

40

Scale

30

20

10

0 200 400 600 800 1000 1200 1400
Sample

Figure 5. CWT scalogram of the power consumption signal for the new screw (N).
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Figure 6. CWT scalogram of the power consumption signal for the worn screw (W).
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PCA performed on three-phase voltages (U12, U23, U31)
for both screw conditions (N and W), with projection onto the
PC1-PC2 plane, is shown in Figure 7.

Visualization in the PC1-PC2 space revealed clear

separation of the N and W clusters, indicating notable structural

differences in the signals. Quantitatively, PC1 explained 98.2%
and PC2 1.3% of total variance, confirming that over 99% of
the information about system dynamics was retained in the two-

dimensional feature space.

New
1.0} Worn
051
oN
4
0.0r
_05 -
_10 L 1 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3 4 5

PC1

Figure 7. Projection of the data onto the first two PCA components.

3.5. Classification of screw condition using CNN

The CWT scalograms were used as input images for the
convolutional neural network. The model achieved high
classification accuracy for the two classes: N (new screw) and
W (worn screw).

The confusion matrix (Figure 8) shows a high true-positive
rate for both classes, with only a small number of
misclassifications between N and W. Most errors occurred near
the transition between partial and advanced wear.

The quantitative evaluation of the CNN classifier showed an
overall classification accuracy of 92.3% on the independent test
dataset, with an F1-score of 0.91, indicating good generalization
performance of the model under the considered experimental
conditions. Additionally, a comparative analysis of current- and
voltage-based inputs revealed that the model trained on current-
based CWT scalograms achieved higher accuracy (92.3%) than
the model based on voltage signals (88.7%). This result
indicates that current signals more effectively reflect dynamic

changes associated with tribological wear of the screw and

barrel elements.

True New |

True Worn

Pred New Pred Worn

Figure 8. Confusion matrix of the CNN classifier for
distinguishing between new (N) and worn (W) screw
conditions.
A complete list of the obtained performance metrics is

provided in Table 3.
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The CNN effectively distinguished between the two
operating states, and misclassifications were rare, occurring
mainly for borderline signal patterns between classes.
Compared with the model proposed by Danielak et al. (2023),
which achieved 89.5% accuracy using statistical features, the

Table 3. Quantitative evaluation metrics for the CNN classifier.

CWT-CNN approach improved classification performance by
approximately 3 percentage points. This result indicates the
potential advantage of combining time—frequency analysis with
deep feature extraction for screw-wear diagnostics based on

electrical signals.

Metric Training Validation Test
Accuracy [%] 94.8 92.3 92.3
Precision [%] 93.7 91.5 91.0

Recall [%] 94.1 92.0 91.2
Fl-score 0.94 0.91 0.91

3.6. Prediction of energy load — ANN model
To complement the analysis, the prediction of instantaneous
power consumption was performed using an artificial neural
network (ANN). Model evaluation was conducted on the test
dataset, yielding a determination coefficient of R? = 0.71. This

result indicates a moderate yet practically useful predictive

3931

392t

391

3901

Predicted U12(Avg) [V]

3891

3887

387

quality.

The plot (Figure 9) illustrates the correlation between
estimated and measured data points, confirming that the
developed ANN model effectively captures the main trends in
energy-load variation, despite local deviations resulting from

the nonlinear dynamics of the extrusion process.

388 389 390

391 392 393 394

Actual U12(Avg) [V]

Figure 9. Correlation between predicted and measured power consumption values for the test dataset obtained from the ANN

regression model.

The obtained results demonstrate that:
1. Power-consumption signals can serve as a sensitive
indicator of screw condition.
2. CWT methods enable graphical identification of wear-
related signal patterns.

3. PCA confirms the separability of new (N) and worn (W)

screw states in the feature space.
4. CNN enables effective classification of screw condition
based on CWT scalograms.
5. ANN allows prediction of the extruder’s energy load.
Overall, the findings indicate the feasibility of using electrical

signals in combination with deep learning methods for
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condition monitoring of working components in single-screw
extruders.

The moderate prediction accuracy reflects the nonlinear and
multi-factor nature of the extrusion process and indicates the

need for extended datasets in future studies.
4, Discussion

The results obtained in this study demonstrate that electrical
signal analysis provides an effective foundation for diagnosing
wear of the working components in single-screw extruders. The
observed variations in voltage and power waveforms between
the new and worn screw states correspond closely to the
physical mechanisms described in earlier research. Progressive
deterioration of screw flights and barrel grooves increases flow
resistance, alters pressure and temperature profiles in the
plasticizing section, and amplifies dynamic loads on the drive
system [3-6]. These effects manifest as larger amplitude
fluctuations and irregular energy variations in the electrical
signal spectra.

The distinct patterns observed in the CWT scalograms for
new (N) and worn (W) screws confirm that wavelet-based
analysis is highly effective in detecting non-stationary behavior
associated with frictional and impact phenomena in the screw—
barrel assembly. The predominance of low-frequency
components in the N condition, contrasted with the higher share
of mid- and high-frequency bands in the W state, reflects the
transition from stable to unstable flow regimes. Such spectral
changes are consistent with findings from studies on polymer
and food extrusion processes [8,13,20]. Comparable effects
have also been documented in rotating machinery and induction
motors, where mechanical wear, rotor imbalance, or bearing
degradation cause transient disturbances and local increases in
spectral energy [17,18].

Principal Component Analysis (PCA) offered both
qualitative and quantitative validation of the separability of
operating conditions. The first two principal components (PC1
and PC2) accounted for more than 99% of total variance,
confirming strong correlations among measured parameters.
This aligns with prior research that applied PCA for process
monitoring and early fault detection in manufacturing systems
[10,17,19]. The visualization in the PC1-PC2 plane revealed

distinct clustering of data corresponding to the N and W

conditions, illustrating that even reduced-dimensional
representations can effectively capture machine-state
information.

The convolutional neural network (CNN) used for
classification of CWT scalograms demonstrated high
classification performance, achieving over 90% accuracy. This
confirms that deep learning can autonomously extract
discriminative features associated with different wear levels.
Similar outcomes have been reported for the diagnostics of
tribological systems and industrial drives, where CNN models
have shown higher classification performance and accuracy
than traditional methods such as SVM or k-NN [9,11,12,16].
The superior performance of CNNs results from their capacity
to model complex, nonlinear dependencies and to capture
hidden time—frequency structures within signals [17,18,19].

Although the dataset employed in this study was relatively
small (1429 samples), the achieved classification accuracy
highlights the practical applicability of the proposed approach.
Further improvement could be achieved by enlarging the dataset
or employing hybrid architectures such as CNN-LSTM or
Autoencoder—-CNN, which integrate spatial and temporal
feature extraction [17,19]. The regression analysis based on an
artificial neural network (ANN) further confirmed the
feasibility of predicting power consumption from current
signals. The determination coefficient of R* = 0.71 indicates
satisfactory predictive capability and aligns with other studies
emphasizing the nonlinear influence of temperature, friction,
and material rheology on process energy demand [12,19].
Importantly, the CNN and ANN address different diagnostic
objectives: binary wear-state classification versus continuous
power prediction. Their performance measures (accuracy/F1 vs.
R?) quantify different aspects, and the moderate R? reflects the
multi-factor and nonlinear nature of the extrusion energy load.

From an industrial perspective, the proposed CWT—-CNN
diagnostic framework is fully compatible with predictive
maintenance and the Industry 4.0 concept. Because it relies
solely on electrical data available through standard control
systems (PLC or SCADA), it allows for low-cost, non-invasive
implementation without additional sensors. Similar sensorless
approaches have been effectively used in the diagnostics of
pumps, gearboxes, and electric drives [8,10].

Integrating signal-processing techniques (CWT, PCA) with

Eksploatacja i Niezawodno$¢ — Maintenance and Reliability Vol. 28, No. 3, 2026




deep-learning models (CNN, ANN) provides a comprehensive
and scalable platform for monitoring the technical condition of
extrusion machinery. This integration enables automatic feature

extraction, classification, and energy-load prediction, forming

the basis for an intelligent diagnostic ecosystem.
To position the proposed CWT—CNN model relative to other
machine learning approaches, a comparative overview is

presented below.

Table 4. Comparison of selected machine learning methods applied in machinery diagnostics (classification and regression tasks).

Reported

Limitation
performance

Main Advantage

Method Task Input Features
SVM (Support Vector  Classification Statistical
Machine) indicators (RMS,
kurtosis,
skewness)
LSTM (Long Short-  Classification Time-domain
Term Memory) sequences
CNN (Convolutional  Classification =~ CWT scalograms
Neural Network, this (time—frequency
study) images)
ANN (Artificial Regression Current-based

Neural Network, this electrical features

study)

Simple, interpretable,
and computationally

Requires manual
feature extraction

80-85% (typ.)
efficient
Captures temporal

dependencies and
dynamic behavior

Demands large
datasets and long
training time

85-90% (typ.)

Automatic feature Moderate data Accuracy =
learning, robust to noise requirement 92.3%
(F1=0.91)
Predicts energy-load Moderate accuracy; R2=10.71

trends sensitive to process

variability

As shown in Table 4, the proposed CWT—-CNN model
achieves high classification accuracy and automation level
while maintaining moderate computational complexity. The
regression task addressed with ANN is evaluated using different
metrics (R? =0.71) and is therefore reported separately, as it is
not directly comparable to classification accuracy.

Compared with the study by Danielak et al. [8], which
achieved 89.5% accuracy using statistical features, the current
CWT-CNN approach improved classification performance by
approximately three percentage points, confirming the
advantage of deep time—frequency feature extraction for precise
screw-wear diagnostics.

Future development should focus on incorporating transfer
learning techniques and digital twin solutions to enhance the
adaptability of this method and support the evolution of

intelligent diagnostic and predictive maintenance systems for

extrusion equipment [11,12].
5. Conclusions

1. The developed hybrid diagnostic approach integrating

the Continuous Wavelet Transform (CWT) and
Convolutional Neural Networks (CNN) enables accurate
identification of screw wear in single-screw extruders
based on motor electrical signals under the investigated

operating conditions. The proposed model achieved

a classification accuracy of 92.3%, indicating the
diagnostic usefulness of time—frequency representations
for wear assessment.

2. Analysis of CWT scalograms revealed distinct

differences between operating states. The new screw

condition was characterized by a stable, low-frequency

energy distribution, whereas the worn screw exhibited

intensified mid- and high-frequency components
associated with disturbed material flow and increased
mechanical load.

3. Current-based CWT analysis demonstrated higher
diagnostic sensitivity compared to voltage-based signals,
indicating that motor current is a more suitable indicator
for assessing wear-related changes in extrusion systems.

4.  Principal Component Analysis (PCA) confirmed clear
separability between new and worn screw conditions,
with the first two components explaining over 99% of
the total variance. This result demonstrates that reduced-
dimensional representations of electrical parameters can
effectively differentiate machine operating states.

6. The Artificial Neural Network (ANN) regression model
achieved a coefficient of determination of R? = 0.71,
indicating the feasibility of predicting power

consumption trends from current signals and reflecting

the nonlinear relationship between energy load and wear
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progression.

The proposed integration of signal analysis and deep
learning methods enables non-invasive condition
monitoring of extrusion systems without the need for
additional sensors, supporting potential implementation
within standard PLC or SCADA-based industrial control
environments.

Compared with traditional diagnostic approaches based
on statistical signal features, the CWT—CNN framework

demonstrated improved classification performance and a

higher level of automation, indicating its potential
applicability in predictive maintenance systems.

The methodology developed in this study may contribute
to improved reliability, reduced unplanned downtime,
and enhanced energy efficiency of extrusion processes.
Future research should focus on extended datasets and
hybrid model architectures (e.g., CNN-LSTM) to
support advanced diagnostic tasks, including Remaining

Useful Life (RUL) prediction of working components.
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