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Highlights  Abstract  

▪ Electrical signals enable diagnostics of screw 

wear in extrusion. 

▪ Time–frequency analysis reveals wear-related 

signal patterns. 

▪ CNN classifies screw condition using CWT 

scalograms. 

▪ Current signals show higher diagnostic 

sensitivity than voltage. 

▪ Method demonstrates potential for predictive 

maintenance systems. 

 This study presents a hybrid diagnostic approach combining the 

Continuous Wavelet Transform (CWT) and Convolutional Neural 

Networks (CNN) for assessing screw wear in a single-screw extruder 

operating under controlled conditions. Electrical current signals from the 

drive motor were analyzed to identify changes associated with the 

degradation of working components. CWT scalograms were used as 

time–frequency inputs for a CNN classifier, achieving a classification 

accuracy of 92.3% in distinguishing between new and worn screw states. 

Principal Component Analysis (PCA) confirmed clear separability of 

operating conditions, with the first two components explaining over 99% 

of the total variance. The results indicate that electrical signals contain 

diagnostically relevant information and that their combined analysis 

using CWT and CNN enables automated, non-invasive condition 

assessment with potential applicability in predictive maintenance 

systems without additional sensors. 
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1. Introduction 

Extrusion is among the most versatile processing techniques 

applied in the food, feed, and polymer sectors, as it enables the 

formation of product structure, improvement of digestibility, 

and modification of physicochemical properties [1]. Due to its 

flexibility and energy efficiency, extrusion has found broad 

application not only in food engineering but also in materials 

and chemical technologies. The overall efficiency of the process 

depends on multiple design and operational parameters, such as 

the geometry of the screw, the condition of the barrel, and the 

frictional interaction between the rotating screw, processed 

material, and the internal surface of the cylinder [2]. 

In single-screw extruders, material flow is mainly driven by 

friction and pressure gradients along the screw channel. The 

rheological characteristics of the processed material, together 

with the geometry of the screw elements, determine process 

stability and energy efficiency [3,4]. The presence of grooves 

on the inner surface of the barrel enhances friction, limits 
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slippage, and improves the uniformity of material conveyance. 

Over time, however, wear of the screw flights and degradation 

of barrel grooves lead to increased clearances, backflow, and 

deterioration of flow conditions [5,6]. 

The progressive wear of the screw and barrel negatively 

influences both energy efficiency and operational reliability. As 

these components degrade, power demand, pressure 

fluctuations, and temperature irregularities within the 

plasticizing section tend to increase, resulting in higher overall 

energy consumption [7]. For this reason, there is a growing need 

for methods that enable continuous, non-invasive monitoring of 

the technical condition of extruder components without 

disrupting production. 

Conventional diagnostic techniques—such as monitoring 

motor load or production rate—provide only indirect 

information and often require operator supervision. In contrast, 

non-destructive approaches based on electrical signal analysis 

allow continuous, automated assessment of machine load. 

Time–frequency methods like the Continuous Wavelet 

Transform (CWT) enable the identification of non-stationary 

variations in these signals, which can serve as indicators of wear 

in mechanical components [8]. When combined with artificial 

intelligence techniques, particularly Convolutional Neural 

Networks (CNN), such analysis allows automatic recognition of 

characteristic patterns associated with specific technical 

conditions [9,10]. 

Modern diagnostic strategies increasingly integrate signal 

analysis with machine learning, consistent with the concepts of 

predictive maintenance and Industry 4.0. Through the analysis 

of current, voltage, and power signals, it is possible to construct 

predictive models capable of detecting early symptoms of wear 

or process anomalies [11,12]. Applying CWT–CNN methods in 

single-screw extruder diagnostics therefore represents  

a significant advancement toward intelligent monitoring 

systems that minimize maintenance costs, enhance process 

stability, and improve the reliability of technological lines. 

Unlike the approach presented by Danielak et al. [8], which 

relied mainly on wavelet-based statistical interpretation of 

current signals, this study introduces a hybrid CWT–CNN 

model that combines automated feature extraction and 

classification of screw wear states. This integrated methodology 

enhances diagnostic autonomy, scalability, and repeatability 

while reducing the dependence on expert-driven signal 

interpretation. Moreover, it fits naturally into the framework of 

predictive maintenance and Industry 4.0 by converting raw 

electrical data into diagnostic knowledge through deep learning 

mechanisms. 

The purpose of this research is to develop and 

experimentally validate a method for assessing screw wear in 

single-screw extruders using electrical signal analysis supported 

by wavelet transformation and convolutional neural networks. 

The proposed approach enables real-time detection of 

component wear without interfering with process operation, 

thereby contributing to improved understanding of energy 

efficiency and system reliability. 

This interdisciplinary research merges aspects of 

mechanical engineering, tribology, and artificial intelligence. It 

provides a comprehensive understanding of how mechanical 

degradation of the extruder’s working parts affects the electrical 

behavior of the drive system. The Continuous Wavelet 

Transform offers insight into the time–frequency nature of these 

dynamic phenomena, while CNN-based models enable 

automated pattern recognition that surpasses traditional feature-

engineering approaches. Consequently, the developed 

diagnostic framework advances condition monitoring in 

extrusion systems and contributes to the broader field of data-

driven maintenance for industrial machinery. 

2. Materials and Methods 

2.1. Object of the study and extruder configuration  

The study was carried out on a laboratory single-screw extruder 

METALCHEM E-75 (AgroFeedingTech, Polska) equipped 

with a 7.5 kW squirrel-cage induction motor (400 V, 50 Hz) and 

an intermediate gearbox ensuring stable screw rotational speed. 

The screw, with a length of L = 25D and a nominal diameter of 

75 mm, cooperated with a barrel containing twelve longitudinal 

grooves in the feeding zone. The grooves had a depth of 2.5 mm, 

a width of 4 mm, and an attack angle of 30°. Two sets of screws 

were used in the experiment (Figure 1): 

• N (new) – a factory-new screw after 8 hours of run-in 

operation, 

• W (worn) – an operationally worn screw with visible 

edge degradation, deformation of flight profile, and 

reduced ridge height. 
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Figure 1. Comparison of the new (N) and worn (W) screw. 

Photographs of the screws in both states and the wear 

description were used as a reference during signal interpretation.  

2.2. Raw material and process parameters  

The raw material was wheat with a moisture content of 15%, 

originating from a single storage batch to minimize variability 

in rheological properties. The process was carried out under 

constant technological parameters: 

• screw speed: 500 rpm, 

• temperature in the final barrel zone: ~115 °C, 

• die diameter: 8 mm, 

• L:D ratio of the plasticizing system: 5:1. 

All measurements were performed under steady-state 

conditions in separate sessions for the N and W screw states. 

2.3. Data acquisition and recording system 

Three-phase RMS current signals were recorded using  

a METREL MI 2883 Energy Master power analyzer equipped 

with A1227 current clamps (up to 1000 A, accuracy 1%). The 

system complies with EN 61000 4-30 Class S. The following 

quantities were measured: 

• phase current (A), 

• voltage (V), 

• instantaneous power consumption (W), 

• cumulative energy consumption (Wh),  

• barrel temperature (°C). 

Recording parameters: 

• raw signal sampling frequency: 7 kHz, 

• averaged data frequency: 1 Hz,  

• RMS measurement accuracy: ±1.5%. 

The dataset consisted of 1429 signal segments extracted 

from continuous electrical measurements acquired under 

steady-state extrusion conditions. Each sample represents a time 

window of the recorded signal rather than an independent 

experimental run. Data acquisition and subsequent processing, 

including statistical analysis, time–frequency transformation, 

and neural model development, were performed using 

MATLAB. 

2.4. Data preprocessing 

Collected data were subjected to: 

• quality control, 

• removal of outliers, 

• z-score normalization,  

• verification of sampling uniformity, 

• calculation of descriptive statistics (mean, median, min, 

max, standard deviation). 

Kolmogorov–Smirnov normality tests were performed, and 

the Pearson correlation matrix was calculated to assess linear 

relationships. 

2.5. Time–frequency analysis (CWT) 

For power and phase current signals, the Continuous Wavelet 

Transform (CWT) was calculated to obtain scalograms 

representing changes in signal energy as a function of time and 

frequency. 

Equation (1) defines the continuous wavelet transform of a 

signal x(t) using a wavelet ψ(t): 

𝑊(𝑎, 𝑏) = ∫ 𝑥(𝑡) 𝜓∗  (
𝑡−𝑏

𝑎
)  𝑑𝑡

∞

−∞
  (1) 

Parameter a controls scale (stretching or compression of the 

wavelet), while b corresponds to time shift. The result W(a, b) 

represents wavelet coefficients that capture local variations in 

signal energy across time and frequency domains. 

The Morse wavelet was used as the mother wavelet due to 

its good resolution properties for non-stationary mechanical 

signals. 

Two representations were obtained: 

• CWT–N – signal during operation with a new screw, 

• CWT–W – signal during operation with a worn screw. 

Scalograms were subsequently used as input images for the 

convolutional neural network. 

2.6. Feature extraction and PCA analysis 

Based on the normalized signals, Principal Component Analysis 

(PCA) was performed. Mathematically, PCA solves: 

𝑇 =  𝑋𝑊   (2) 

where T is the score matrix and W contains eigenvectors of the 

covariance matrix. 

The following were determined: 
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• eigenvalues, 

• eigenvectors, 

• percentage contribution of components to total variance. 

The first two components (PC1 and PC2) explained more 

than 99% of data variance, allowing dimensionality reduction 

and visualization of differences between N and W classes. 

2.7. Convolutional neural network (CNN) architecture 

The input data for the CNN model consisted of images obtained 

from the CWT of current signals recorded for two extruder 

operation configurations: 

• New screw (N) – 1429 samples, 

• Worn screw (W) – 1400 samples. 

From each time record, fixed-length segments were 

extracted and transformed into CWT scalograms (Morlet 

wavelet). A total of 2850 CWT images were created (1425 per 

class, N and W). The images were saved in .png format at 

224×224 px resolution and used as CNN input data. 

The CNN model (Figure 2) developed for screw condition 

classification (N/W) consisted of: 

• input layer: 224×224×3 (RGB images), 

• first convolutional layer: 32 filters 3×3, stride = 1, ReLU 

activation, 

• second convolutional layer: 64 filters 3×3, stride = 1, 

ReLU activation, 

• max-pooling layer: 2×2, 

• fully connected (FC) layer: 128 neurons, ReLU 

activation, 

• output layer (Softmax): 2 classes (N and W). 

 

 

Figure 2. Architecture of the multi-layer CNN. 

Dropout regularization (0.3) was applied to prevent 

overfitting. 

Training was performed in Python (TensorFlow/Keras) 

using GPU (NVIDIA RTX 3060): 

• number of epochs: 50, 

• batch size: 32, 

• loss function: categorical cross-entropy, 

• optimizer: Adam, 

• learning rate: 0.001, 

• single iteration training time: ~45 s, total training time: 

~38 min. 

Data were split into 70% training, 15% validation, and 15% 

testing sets. Early stopping was used to prevent overtraining 

once the loss function stabilized. 

2.8. Model validation and quality metrics 

The classifier performance was evaluated using: 

• confusion matrix, 

• accuracy, 

• sensitivity and specificity, 

• F1-score, 

• AUC ROC. 

For the regression part (ANN-based power prediction): 

• coefficient of determination (R²), 

• root mean square error (RMSE), 

• mean absolute error (MAE). 

Model evaluation was performed on both test and 

independent datasets. 
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2.9. Software and computational environment 

Computations were carried out using the following 

environments: 

• MATLAB 2023b – signal analysis, PCA, CWT, ANN, 

• Python 3.11 / TensorFlow – CNN implementation, 

• OpenCV + NumPy – scalogram image processing, 

• Scikit-learn – classification metrics. 

3. Results 

3.1. Analysis of supply voltage waveforms 

In the first stage of the study, the interphase voltage waveforms 

recorded during extruder operation were analyzed for the new 

(N) and worn (W) screw. Figures 3 and 4 present changes in the 

U12(Avg) voltage over time for both variants. 

 

Figure 3. Time series of the interphase voltage U12(Avg) during extrusion using the new screw (N). The horizontal axis represents 

consecutive samples recorded at a frequency of 1 Hz. 

 

Figure 4. Time series of the interphase voltage U12(Avg) obtained with the worn screw (W). The horizontal axis represents 

consecutive samples recorded at a frequency of 1 Hz.
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For the new screw, the voltage signal was characterized by 

high stability and low fluctuation amplitude. The waveform 

corresponds to expected behavior under nominal operating 

conditions and serves as a reference for evaluating extruder 

performance. 

For the worn screw, local disturbances and slightly higher 

signal variability were observed, resulting from deteriorated 

material transport and increased frictional resistance. These 

effects indicate higher mechanical loading of the drive system. 

3.2. Statistical characteristics of process parameters 

To quantitatively assess the changes in extruder operation, 

statistical analysis of the recorded process parameters was 

performed. The results are presented in Table 1. 

Temperature signals exhibited the lowest variability (SD = 

4.93 °C), whereas power and energy consumption showed the 

widest range of values. The most significant difference between 

the N and W conditions was observed for power consumption, 

whose large amplitude variations indicate a dynamic effect of 

screw wear on the energy efficiency of the system. 

The correlation matrix (Table 2) revealed a strong positive 

relationship between power and energy (r > 0.99), confirming 

their functional interdependence. 

Table 1. Descriptive statistics of recorded extrusion process parameters. 

Variable Mean 
Standard 

deviation 
Min Max Median 

Temperature [°C] 115.68 4.93 105.45 124.22 115.58 

Power consumption [W] 5339.20 1223.80 26.21 9046.30 5179.00 

Energy consumption [Wh] 1.4831 0.3400 0.007 2.513 1.439 

Table 2. Correlation matrix of process parameters. 

 Temperature Power Energy 

Temperature 1.00000 0.65075 0.65074 

Power 0.65075 1.00000 1.00000 

Energy 0.65074 1.00000 1.00000 

A moderate correlation between temperature and energy-

related parameters (r ≈ 0.65) reflects increased friction and 

mechanical load associated with deteriorated material transport 

typical of worn components. 

The Kolmogorov–Smirnov (KS) test confirmed that all 

analyzed variables deviate significantly from the normal 

distribution (p < 0.001), justifying the use of nonlinear and 

time–frequency methods in subsequent analyses. 

3.3. Time–frequency analysis of load signal (CWT) 

To capture non-stationary patterns resulting from frictional and 

flow-related changes, the power-consumption signal was 

analyzed using the Continuous Wavelet Transform (CWT). 

Scalograms are shown in Figures 5 (new screw) and 6 (worn 

screw). 

The dominant frequency bands in the current signal were 

found in the range of 60–300 Hz, corresponding to mechanical 

vibration harmonics related to screw rotation and material 

compression. The scalogram for the new screw exhibits 

dominance of the low-frequency spectrum and a uniform energy 

distribution, indicating stable operation of the system. 

Compared to the new screw condition, the worn screw 

exhibited an increased concentration of signal energy in the 60–

300 Hz frequency range, indicating elevated dynamic load and 

friction-related phenomena. In this case, more intensive mid- 

and high-frequency components, local energy peaks, and 

increased signal irregularity were observed. These distinct 

differences confirm that the CWT enables effective separation 

of extruder operating states and provides a suitable data 

representation for CNN-based classification. 

3.4. Dimensionality reduction using PCA 

Principal Component Analysis (PCA) showed that the first two 

components (PC1 and PC2) explained over 99% of the total 

variance. PCA was applied to RMS values of three-phase 

interphase voltages (U12, U23, U31). The first principal 

component (PC1) represents the combined variance associated 

with the overall electrical load of the drive system, while the 

second component (PC2) reflects secondary thermo-mechanical 

variations. 
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Figure 5. CWT scalogram of the power consumption signal for the new screw (N). 

 

Figure 6. CWT scalogram of the power consumption signal for the worn screw (W). 
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PCA performed on three-phase voltages (U12, U23, U31) 

for both screw conditions (N and W), with projection onto the 

PC1–PC2 plane, is shown in Figure 7. 

Visualization in the PC1–PC2 space revealed clear 

separation of the N and W clusters, indicating notable structural 

differences in the signals. Quantitatively, PC1 explained 98.2% 

and PC2 1.3% of total variance, confirming that over 99% of 

the information about system dynamics was retained in the two-

dimensional feature space. 

 

Figure 7. Projection of the data onto the first two PCA components. 

3.5. Classification of screw condition using CNN 

The CWT scalograms were used as input images for the 

convolutional neural network. The model achieved high 

classification accuracy for the two classes: N (new screw) and 

W (worn screw). 

The confusion matrix (Figure 8) shows a high true-positive 

rate for both classes, with only a small number of 

misclassifications between N and W. Most errors occurred near 

the transition between partial and advanced wear. 

The quantitative evaluation of the CNN classifier showed an 

overall classification accuracy of 92.3% on the independent test 

dataset, with an F1-score of 0.91, indicating good generalization 

performance of the model under the considered experimental 

conditions. Additionally, a comparative analysis of current- and 

voltage-based inputs revealed that the model trained on current-

based CWT scalograms achieved higher accuracy (92.3%) than 

the model based on voltage signals (88.7%). This result 

indicates that current signals more effectively reflect dynamic 

changes associated with tribological wear of the screw and 

barrel elements.  

 

Figure 8. Confusion matrix of the CNN classifier for 

distinguishing between new (N) and worn (W) screw 

conditions. 

A complete list of the obtained performance metrics is 

provided in Table 3. 
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The CNN effectively distinguished between the two 

operating states, and misclassifications were rare, occurring 

mainly for borderline signal patterns between classes. 

Compared with the model proposed by Danielak et al. (2023), 

which achieved 89.5% accuracy using statistical features, the 

CWT–CNN approach improved classification performance by 

approximately 3 percentage points. This result indicates the 

potential advantage of combining time–frequency analysis with 

deep feature extraction for screw-wear diagnostics based on 

electrical signals. 

Table 3. Quantitative evaluation metrics for the CNN classifier. 

Metric Training Validation Test 

Accuracy [%] 94.8 92.3 92.3 

Precision [%] 93.7 91.5 91.0 

Recall [%] 94.1 92.0 91.2 

F1-score 0.94 0.91 0.91 

3.6. Prediction of energy load — ANN model 

To complement the analysis, the prediction of instantaneous 

power consumption was performed using an artificial neural 

network (ANN). Model evaluation was conducted on the test 

dataset, yielding a determination coefficient of R² = 0.71. This 

result indicates a moderate yet practically useful predictive 

quality. 

The plot (Figure 9) illustrates the correlation between 

estimated and measured data points, confirming that the 

developed ANN model effectively captures the main trends in 

energy-load variation, despite local deviations resulting from 

the nonlinear dynamics of the extrusion process. 

 

Figure  9. Correlation between predicted and measured power consumption values for the test dataset obtained from the ANN 

regression model.

The obtained results demonstrate that: 

1. Power-consumption signals can serve as a sensitive 

indicator of screw condition. 

2. CWT methods enable graphical identification of wear-

related signal patterns. 

3. PCA confirms the separability of new (N) and worn (W) 

screw states in the feature space. 

4. CNN enables effective classification of screw condition 

based on CWT scalograms. 

5. ANN allows prediction of the extruder’s energy load. 

Overall, the findings indicate the feasibility of using electrical 

signals in combination with deep learning methods for 
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condition monitoring of working components in single-screw 

extruders. 

The moderate prediction accuracy reflects the nonlinear and 

multi-factor nature of the extrusion process and indicates the 

need for extended datasets in future studies. 

4. Discussion 

The results obtained in this study demonstrate that electrical 

signal analysis provides an effective foundation for diagnosing 

wear of the working components in single-screw extruders. The 

observed variations in voltage and power waveforms between 

the new and worn screw states correspond closely to the 

physical mechanisms described in earlier research. Progressive 

deterioration of screw flights and barrel grooves increases flow 

resistance, alters pressure and temperature profiles in the 

plasticizing section, and amplifies dynamic loads on the drive 

system [3-6]. These effects manifest as larger amplitude 

fluctuations and irregular energy variations in the electrical 

signal spectra. 

The distinct patterns observed in the CWT scalograms for 

new (N) and worn (W) screws confirm that wavelet-based 

analysis is highly effective in detecting non-stationary behavior 

associated with frictional and impact phenomena in the screw–

barrel assembly. The predominance of low-frequency 

components in the N condition, contrasted with the higher share 

of mid- and high-frequency bands in the W state, reflects the 

transition from stable to unstable flow regimes. Such spectral 

changes are consistent with findings from studies on polymer 

and food extrusion processes [8,13,20]. Comparable effects 

have also been documented in rotating machinery and induction 

motors, where mechanical wear, rotor imbalance, or bearing 

degradation cause transient disturbances and local increases in 

spectral energy [17,18]. 

Principal Component Analysis (PCA) offered both 

qualitative and quantitative validation of the separability of 

operating conditions. The first two principal components (PC1 

and PC2) accounted for more than 99% of total variance, 

confirming strong correlations among measured parameters. 

This aligns with prior research that applied PCA for process 

monitoring and early fault detection in manufacturing systems 

[10,17,19]. The visualization in the PC1–PC2 plane revealed 

distinct clustering of data corresponding to the N and W 

conditions, illustrating that even reduced-dimensional 

representations can effectively capture machine-state 

information. 

The convolutional neural network (CNN) used for 

classification of CWT scalograms demonstrated high 

classification performance, achieving over 90% accuracy. This 

confirms that deep learning can autonomously extract 

discriminative features associated with different wear levels. 

Similar outcomes have been reported for the diagnostics of 

tribological systems and industrial drives, where CNN models 

have shown higher classification performance and accuracy 

than traditional methods such as SVM or k-NN [9,11,12,16]. 

The superior performance of CNNs results from their capacity 

to model complex, nonlinear dependencies and to capture 

hidden time–frequency structures within signals [17,18,19]. 

Although the dataset employed in this study was relatively 

small (1429 samples), the achieved classification accuracy 

highlights the practical applicability of the proposed approach. 

Further improvement could be achieved by enlarging the dataset 

or employing hybrid architectures such as CNN–LSTM or 

Autoencoder–CNN, which integrate spatial and temporal 

feature extraction [17,19]. The regression analysis based on an 

artificial neural network (ANN) further confirmed the 

feasibility of predicting power consumption from current 

signals. The determination coefficient of R² = 0.71 indicates 

satisfactory predictive capability and aligns with other studies 

emphasizing the nonlinear influence of temperature, friction, 

and material rheology on process energy demand [12,19]. 

Importantly, the CNN and ANN address different diagnostic 

objectives: binary wear-state classification versus continuous 

power prediction. Their performance measures (accuracy/F1 vs. 

R²) quantify different aspects, and the moderate R² reflects the 

multi-factor and nonlinear nature of the extrusion energy load. 

From an industrial perspective, the proposed CWT–CNN 

diagnostic framework is fully compatible with predictive 

maintenance and the Industry 4.0 concept. Because it relies 

solely on electrical data available through standard control 

systems (PLC or SCADA), it allows for low-cost, non-invasive 

implementation without additional sensors. Similar sensorless 

approaches have been effectively used in the diagnostics of 

pumps, gearboxes, and electric drives [8,10]. 

Integrating signal-processing techniques (CWT, PCA) with 
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deep-learning models (CNN, ANN) provides a comprehensive 

and scalable platform for monitoring the technical condition of 

extrusion machinery. This integration enables automatic feature 

extraction, classification, and energy-load prediction, forming 

the basis for an intelligent diagnostic ecosystem. 

To position the proposed CWT–CNN model relative to other 

machine learning approaches, a comparative overview is 

presented below. 

Table 4. Comparison of selected machine learning methods applied in machinery diagnostics (classification and regression tasks). 

Method Task Input Features Main Advantage Limitation 
Reported 

performance 

SVM (Support Vector 

Machine) 

Classification Statistical 

indicators (RMS, 

kurtosis, 

skewness) 

Simple, interpretable, 

and computationally 

efficient 

Requires manual 

feature extraction 

80–85% (typ.) 

LSTM (Long Short-

Term Memory) 

Classification Time-domain 

sequences 

Captures temporal 

dependencies and 

dynamic behavior 

Demands large 

datasets and long 

training time 

85–90% (typ.) 

CNN (Convolutional 

Neural Network, this 

study) 

Classification CWT scalograms 

(time–frequency 

images) 

Automatic feature 

learning, robust to noise 

Moderate data 

requirement 

Accuracy = 

92.3% 

(F1 = 0.91) 

ANN (Artificial 

Neural Network, this 

study) 

Regression Current-based 

electrical features 

Predicts energy-load 

trends 

Moderate accuracy; 

sensitive to process 

variability 

R² = 0.71 

  

As shown in Table 4, the proposed CWT–CNN model 

achieves high classification accuracy and automation level 

while maintaining moderate computational complexity. The 

regression task addressed with ANN is evaluated using different 

metrics (R² = 0.71) and is therefore reported separately, as it is 

not directly comparable to classification accuracy. 

Compared with the study by Danielak et al. [8], which 

achieved 89.5% accuracy using statistical features, the current 

CWT–CNN approach improved classification performance by 

approximately three percentage points, confirming the 

advantage of deep time–frequency feature extraction for precise 

screw-wear diagnostics. 

Future development should focus on incorporating transfer 

learning techniques and digital twin solutions to enhance the 

adaptability of this method and support the evolution of 

intelligent diagnostic and predictive maintenance systems for 

extrusion equipment [11,12]. 

5. Conclusions 

1. The developed hybrid diagnostic approach integrating 

the Continuous Wavelet Transform (CWT) and 

Convolutional Neural Networks (CNN) enables accurate 

identification of screw wear in single-screw extruders 

based on motor electrical signals under the investigated 

operating conditions. The proposed model achieved  

a classification accuracy of 92.3%, indicating the 

diagnostic usefulness of time–frequency representations 

for wear assessment. 

2. Analysis of CWT scalograms revealed distinct 

differences between operating states. The new screw 

condition was characterized by a stable, low-frequency 

energy distribution, whereas the worn screw exhibited 

intensified mid- and high-frequency components 

associated with disturbed material flow and increased 

mechanical load. 

3. Current-based CWT analysis demonstrated higher 

diagnostic sensitivity compared to voltage-based signals, 

indicating that motor current is a more suitable indicator 

for assessing wear-related changes in extrusion systems. 

4. Principal Component Analysis (PCA) confirmed clear 

separability between new and worn screw conditions, 

with the first two components explaining over 99% of 

the total variance. This result demonstrates that reduced-

dimensional representations of electrical parameters can 

effectively differentiate machine operating states. 

6. The Artificial Neural Network (ANN) regression model 

achieved a coefficient of determination of R² = 0.71, 

indicating the feasibility of predicting power 

consumption trends from current signals and reflecting 

the nonlinear relationship between energy load and wear 
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progression. 

7. The proposed integration of signal analysis and deep 

learning methods enables non-invasive condition 

monitoring of extrusion systems without the need for 

additional sensors, supporting potential implementation 

within standard PLC or SCADA-based industrial control 

environments. 

8. Compared with traditional diagnostic approaches based 

on statistical signal features, the CWT–CNN framework 

demonstrated improved classification performance and a 

higher level of automation, indicating its potential 

applicability in predictive maintenance systems. 

9. The methodology developed in this study may contribute 

to improved reliability, reduced unplanned downtime, 

and enhanced energy efficiency of extrusion processes. 

Future research should focus on extended datasets and 

hybrid model architectures (e.g., CNN–LSTM) to 

support advanced diagnostic tasks, including Remaining 

Useful Life (RUL) prediction of working components. 
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