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1. Introduction

Abstract

Light-emitting diodes (LEDs) have become indispensable in modern
applications owing to their high energy efficiency, long lifespan, and
robustness compared to conventional light sources. Given these
attributes, the reliability of LEDs has become a crucial factor, directly
influencing the ability of systems and devices to perform their intended
functions over time. However, variations in materials, structures, and
manufacturing processes introduce heterogeneity in their degradation
behaviour, even under identical operating conditions. In applications
demanding brightness stability, colour rendering, and reliability
prediction, degradation homogeneity is crucial, making the analysis of
LED heterogeneity essential. This article investigates such heterogeneity
using feature extraction methods, kernel density estimation, and
divergence measures based on degradation data obtained from optimized
step-stress accelerated tests. The proposed approach is used to quantify
and evaluate LED degradation variability and has clear implications for
reliability assessment and predictive modelling.

Keywords
light emitting diode, reliability, degradation process, step-stress
accelerated test, degradation heterogeneity

Light sources play a fundamental role across diverse domains,
including engineering, economics, medicine, and daily life
applications. Their wide applicability has driven continuous
research and development to meet the growing demand for
efficiency, durability, and sustainability. Among modern
lighting technologies, LEDs have emerged as the dominant

solution, offering significant advantages over conventional light
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sources. These advantages include high luminous efficiency,

compact design, ease of replacement, reduced energy
consumption, and an extended operational lifetime of up to
50,000 hours under standard conditions [1]. Given these
attributes, the reliability of LEDs has become a crucial factor,
directly influencing the ability of systems and devices to

perform their intended functions over time.
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Advances in sensor technologies and measurement systems
have enabled monitoring of degradation for reliability
assessment based on collected data [2], rather than waiting for
failures. However, obtaining reliability data under normal
conditions is time-consuming and costly, especially for long-
lived, highly reliable products such as LEDs [3]. Accelerated
testing (AT) addresses this challenge by applying harsher
stresses or higher loads to shorten test duration, and provide
insights into degradation mechanisms and facilitating lifetime
prediction [4]. Existing standard [5] provided frameworks to
conduct ATs for LED, while [6] provide a framework to enable
lifetime assessment. In practice, Zhang et al. [7] applied
constant electrical stresses to multiple LED groups, monitoring
lumen depreciation with probabilistic lifetime models, whereas
Herzog et al. [8] examined spectral degradation of high-power
COB LEDs under prolonged constant thermal stress. Similarly,
Alsharabi et al. [9] evaluated InGaN blue LEDs under
simultaneous thermal, electrical, and humidity stresses. In
another related investigation, Fan et al. [10] adopted stochastic
degradation models to predict lifetime of UV LEDs based on
data from constant stress and step stress degradation tests, and
Lokesh [11] conducted ATs for cool white LEDs under three
thermal stress level and constant drive current and proposed
a colorimetric approach based on chromaticity shifts. In parallel,
Xia et al. [12] explored gamma irradiation effects on UVC
LEDs, while Yan et al. [13] conducted highly accelerated
electrical stressing at low temperatures for GaN-based LEDs.
More complex multi-stress tests, including thermal—electrical
cycling, have been reported in [14-16]. Collectively, these
studies demonstrate the diversity of AT designs and highlight
the importance of selecting stress profiles, reflecting practical
operating conditions.

Among the ATs, step-stress accelerated degradation testing
(SSADT) significantly reduces the time and cost required to
collect reliability data, especially for highly reliable products
that take a long time to fail under normal conditions. By
subjecting units to successively increasing stress levels, the
method ensures that degradation at lower stress levels is
captured prior to overstressing while subsequently accelerating
the failure process at higher stress levels, allowing long-term
reliability estimates to be made in a much shorter timeframe

[17]. In LED reliability research, SSADT has become an

important approach for collecting degradation data efficiently.
Do et al. [18] conducted an SSADT to monitor optical intensity
of medical LEDs, while Zhang et al. [19] employed constant-
stress and step-stress electrical tests to obtain OLED brightness
degradation and proposed a statistical method for lifetime
estimation. Moreover, Jing et al. [20] collected emission-power
degradation data for UV LEDs under thermal and stepped
electrical stresses and analysed the resulting trajectories using
TM-21 and an asymptotic Wiener-process framework for
remaining useful life (RUL) estimation. In another aspect, Cai
et al. [21] introduced a highly accelerated decay testing
procedure to identify thermal-stress limits under humidity
constraints and validated the degradation mechanism through
SSADT. Additional SSADT-based studies can be found in
[10,22].

Despite its flexibility, the informativeness of SSADT data
strongly depends on the selected stress sequence, duration, and
transition points. Suboptimal choices may limit the amount of
usable degradation information, inflate parameter uncertainty,
or violate the assumed acceleration mechanism. Therefore,
a rigorously designed test plan is required. Nelson et al. [4]
provides a foundational framework for constructing optimal test
plans using statistical modelling, Fisher information, and
sensitivity analysis, emphasizing that stress levels, durations,
and sample allocation should be chosen to maximize
information about acceleration-model parameters. Building on
this principle, Wang et al. [23] proposed an optimization scheme
for Wiener-process-based SSADTs by enforcing mechanism
equivalence across stress levels. Their algorithm extracts valid
degradation information and employs an M-optimality criterion
to identify optimal transition times for LED thermal-stress
SSADTs. In another approach, Sun et al. [24] developed an
SSADT optimization method for the Birnbaum—Saunders
model, aimed at minimizing prediction mean squared error
under cost constraints via Monte Carlo simulation, leading to
optimal decisions on sample size and measurement scheduling.
Meanwhile, Liu et al. [25] further advanced SSADT
optimization using a hybrid neural-network—genetic-algorithm
strategy, allowing simultaneous optimization of stress levels,
durations, and other design parameters while accounting for
both accelerated-stress effects and measurement error.

Sensitivity analyses in their work highlight key parameters
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influencing design robustness. The above analysis shows that
designing an optimized SSADT for LEDs is crucial. This
ensures that the collected degradation data are both statistically
informative and physically representative, enabling accurate
reliability assessment and precise lifetime prediction under
realistic operating conditions.

At this point, it is also important to consider heterogeneity,
which plays a key role in reliability assessment. In the context
of LED degradation, heterogeneity refers to significant
variations in degradation rates, lifetime, and overall reliability
among nominally identical units under identical operating
conditions. Such variability arises from manufacturing
imperfections, material inconsistencies, and minor deviations in
operating modes [26]. Numerous studies have highlighted the
impact of unit-to-unit heterogeneity on reliability. For example,
Zheng et al. [27] employed an inverse Gaussian process with
Gamma-distributed random effects to capture heterogeneity in
torsion springs and integrated circuits, while Junxing et al. [28]
extended Wiener-based stochastic models to account for
variability across units. Wen et al. [29] focused on multiphase
degradation processes separated by change points rather than
unit heterogeneity. In LEDs, where precise brightness and color
rendering are critical, capturing heterogeneity is essential.
Veloso et al. [30] applied Bayesian dynamic linear degradation
models to infrared LEDs, and Hoang et al. [14] introduced a
Wiener-based model incorporating unit-to-unit covariates for
high-power LEDs. Complementary studies [31,32] further
explored heterogeneity under varying currents, optical
conditions, and junction temperature measurements. These
findings collectively indicate that heterogeneity, both across
units and within multiphase degradation, is inherent to LED
degradation and must be explicitly incorporated into reliability
modelling, yet quantitative investigations remain limited.

Heterogeneity in degradation of LEDs is widely recognised,
quantitative assessment of heterogeneity remains limited, which
can compromise the accuracy and reliability of lifetime
predictions. While optical metrics such as luminous flux and
colour shift are commonly used in standards like TM-21 [33],
electrical parameters, particularly forward voltage, provide
a complementary perspective on degradation and allow
a continuous, high-resolution indicator for quantifying

degradation across units [ 14, 34]. SSADT, potentially combined

with optimised test plans, enables efficient collection of
degradation trajectories that support rigorous, quantitative
evaluation of heterogeneity. This motivates the need for
a systematic assessment of degradation heterogeneity in LED
reliability studies through voltage degradation data from
SSADT. This study does not address heterogeneity across
different types of LEDs or across varying stress conditions or
causes of heterogeneity. Instead, the focus is on the inherent unit
heterogeneity observed within a group of LEDs of the same type,
tested under identical experimental conditions. The main
research gaps have been covered, with the following main
contributions:

e  An optimised accelerated step-thermal stress test under
constant current is conducted to obtain forward-voltage
degradation data of LEDs, enabling efficient acquisition
of multi-temperature degradation behaviour and
reducing the total testing time.

e  Empirical Mode Decomposition (EMD) is applied to
extract degradation-informative features, with intrinsic
mode functions classified using statistical tests to
separate noise from meaningful voltage trends.

e  Cross-device degradation heterogeneity is assessed
using kernel density estimation (KDE) and quantified via
Jensen—Shannon divergence (JSD), Wasserstein distance
(WD), and Maximum Mean Discrepancy (MMD),
enabling a principled evaluation of variability in LED
degradation behaviour.

The remainder of this article is organized follows. Section
2 provides the information of tested LEDs, experiment
involving the test set up, devices, and test rigs. The basic theory
of EDM, KDE and divergence measures is given in Section
3. Section 4 presents the results and discussions. Finally,

Section 5 concludes the article.
2. Experimental setup and data acquisition

In this study, an ADT test was conducted on a 10 W/700 Im
high-power white LED [35]. The schematic structure, physical
dimensions, and technical specifications of the device under test
are presented in Figure 1 and Table 1.

In our experiment, temperature was selected as the sole
accelerating stress, while other environmental factors were

controlled. A three-step thermal stress profile was applied,
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consisting of temperature levels 71<7><T3 with corresponding
duration’s t;, t, and t;. The first stress level 7 was fixed at
+60 °C, corresponding to the maximum rated operating
temperature of the LED (Table 1) and ensuring consistency with
the field degradation mechanism. The highest temperature 73
was set to +80 °C, providing sufficient acceleration while
preventing thermal overstress based on the maximum allowable
junction temperature of +115 °C [6]. The intermediate level 7>
was assigned as +70 °C. Based on the rated forward current
(Table 1), three LED groups (10 samples per group) were tested
at drive currents of (i) 1050 mA, (ii) 525 mA, and (iii) 210 mA.
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Figure 1. The dimensions of the tested LED GT-
P10WW339910700 and its internal circuit diagram [35].

Table 1. The technical characteristics of tested LED [35].

Parameters Values Unit
Luminous flux 700 Im

Correlated colour
temperature/ Wavelength 2900 ~ 3200 K/nm

Forward voltage 9~11 v
Forward current 1050 mA
Thermal resistance 12 °C/W
Junction temperature 115 °C

-40 ~ 60 °C

To allocate the optimal durations for the stepwise

Operating temperature

temperature profile, a simulation-based design optimization
framework was employed. The method integrates Monte-Carlo
simulation, maximum likelihood estimation (MLE) under right-
censoring, and a genetic algorithm to optimize the SSALT plan.

This framework follows classical reliability design principles

[4,36] and incorporates modern extensions for nonlinear and
multi-stress models [37]. The framework offers several
advantages over conventional SSALT planning. First, it does
not require closed-form Fisher information, which is often
unavailable for nonlinear acceleration models or censored step-
stress structures. Instead, the statistical precision of the lifetime
estimator is evaluated directly through replicated Monte-Carlo
analysis, enabling application to any parametric lifetime model.
Second, because the objective function is defined as the
empirical variance of the log-median lifetime, the optimization
targets the true estimation uncertainty rather than analytical
approximations. Third, the use of GA provides global search
capability, improving robustness in non-convex design spaces.
As a result, the optimized plan (i) preserves the underlying
failure mechanism, (ii) reduces total testing time, and (iii)
enhances extrapolation accuracy under use conditions.

The typical ambient temperature for LED operation is
assumed to be +25 °C [38]. The lifetime distribution was
modelled using a Weibull distribution with parameters f=14.72
and #=2706.25, referenced from equivalent LED data [34]. The
practical service lifetime was set to 30.5360 years (=269,991 h)
[34]. Because the stress involves temperature and drive current,
the Arrhenius model and inverse power law [5] were used to
establish the life—stress relationship. The optimization objective
was to minimize the variance of the log-median lifetime. After
optimization, the optimized test durations at +60 °C, +70 °C,
and +80 °C were 1113.26, 871.10, and 478.64 hours,
respectively. For practical implementation and smoother stress
transitions, these durations were adjusted to 1080, 840, and 480
hours, respectively. The final test plan is illustrated in Figure 2.

During the test, a thermal chamber, DC power supplies, data
loggers, and a central monitoring computer (see Figure 3) were
employed to ensure (i) stable and accurate current supply to
each LED, (ii) controlled thermal stress conditions, and (iii)
continuous real-time measurement and recording of voltage
degradation data. The temperature inside the thermal chamber
is stably set and controlled through dedicated software. This
temperature is continuously monitored and automatically

adjusted to maintain the prescribed thermal conditions. All
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LEDs in a group are mounted on a common aluminium plate,
which has high thermal conductivity and minimizes the
temperature difference between devices. Therefore, the LEDs in
a group are subjected to approximately the same effective
thermal stress, ensuring that relative differences in degradation

behaviour can be evaluated.
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Figure 2. The experimental temperature profile for the ATs of

LEDs.

In this experiment, we focused on obtaining the voltage

variation of LEDs. The test terminated when the test time set
above was reached. Voltage was continuously monitored and
recorded every 10 minutes, yielding up to approximately 6400,
5000, and 2800 samples per group corresponding to stress levels
+60, +70, and +80 °C, respectively. This acquisition provides
high-frequency data and sufficiently long and valuable time
series for statistical analysis. The raw voltage data for the three

current groups are shown in Figure 4 and Table 2.

DC powersupplies” Climate chamber || Central computer | Data logger
=

Figure 3. The test rigs of the experiment including thermal
climate chamber, DC power supplies, central computer and

data logger.
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Figure 4. Graphical plots of the raw voltage data of tested LEDs at the current levels of 1050 mA (left), 525 mA (middle) and 210

mA (right) under a step thermal stress AT.

Table 2. An example of the raw voltage data of tested LEDs under a step thermal stress AT.

Time [hour] Voltage [V] (1050 mA) Voltage [V] (525 mA) Voltage [V] (210 mA)

T =+ 60°C

0 8.746509 8.244681 7.905493

0.16 8.746468 8.24464 7.90555

0.33 8.746386 8.244632 7.905526
T =+70°C

1080 8.722047 8.221457 7.879998

1080.16 8.721571 8.220637 7.879325

1080.33 8.721309 8.220276 7.879129
T =+ 80°C

1920 8.69469 8.194896 7.853354

1920.16 8.693624 8.194437 7.852887

1920.33 8.693772 8.19456 7.852887
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To properly assess the heterogeneity in degradation
behaviour, the degradation data were analysed separately for
each temperature level and drive-current group. Thermal stress
and electrical stress influence LED degradation through
different physical mechanisms, temperature accelerates defect
generation and material ageing, while higher drive current
increases junction temperature via self-heating. When
observations across different stress conditions are pooled, the
resulting dataset becomes a mixture of trajectories governed by
different effective stress levels, obscuring systematic
differences in degradation rates, bias statistical inference on the
shape and scale of the degradation distribution, and violate key
assumptions of accelerated testing. From a modelling
perspective, mixing heterogeneous degradation paths leads to
distorted estimates of critical parameters: (i) the slope and
curvature of the degradation trend, (ii) the variance structure of
the data component, and (iii) the parameters of the assumed
lifetime distribution. Analysing within each temperature—
current subgroup therefore, ensures that degradation dynamics,
acceleration factors, and distributional parameters are estimated
consistently under homogeneous stress conditions, enabling
meaningful comparisons across groups and preserving the

physical interpretability of the accelerated test results.

3. Methodology for analysis of LED degradation
heterogeneity

Degradation behaviour analysis is a key aspect of LED
reliability research. The main task is to address how LEDs
degrade under various test conditions and how the resulting
variability can be quantified. In reliability studies, the
degradation of LEDs can be represented by a common
degradation trajectory model, in which the observed
degradation signal of each unit is decomposed into a systematic
trend component and stochastic deviations reflecting
measurement noise and intrinsic variability. Formally, the
degradation of the i-th LED at time ¢ can be expressed as:

Y,(t) = fi(8,1) + &(t) (1)
where fi(0,7) denotes the underlying degradation trend, 0 is the
set of degradation parameters, and &i(f) captures random
fluctuations and intrinsic variability. Intrinsic variability is
understood as the inherent fluctuations or differences of the
degradation process itself, arising from the material

characteristics and operating mechanism of each LED.

In this study, the heterogeneity in the degradation trend
fi(0,7) is evaluated using the degradation slope, estimated from
the main trend extracted via EMD. Meanwhile, heterogeneity in
the intrinsic variability is assessed based on the combination of
the EMD with KDE and quantifies distributional divergences
through JSD, WD, and MMD. This dual-level assessment of
heterogeneity in trend and intrinsic variability is crucial. By
quantifying the sources of heterogeneity, it provides the
information for developing reliable accelerated degradation
models and for accurately predicting RUL under varying stress

conditions.
3.1. Kernel Density Estimation

Density distribution analysis is a widely used method in data
science, and is especially suitable for time series data. KDE
method is especially beneficial when the underlying distribution
of the data is unknown or uncertain. The KDE is
a nonparametric density estimation technique used to estimate
the probability density function (PDF) of a random variable [39].

For a given dataset ¥ = (Y,, Y>,...,Y,) , the estimated density
at an observation point y is computed as the average of kernels

centred at each sample point, and is mathematically defined as:

fO)=m WS K (1) —m <y <4 @)

where f(y)denotes the estimated density at point y; m is the
number of observations of Y; % is the bandwidth parameter that
controls the smoothness of the density estimation; K(*) is the
kernel function, which is typically a symmetric PDF; and Y;
represents each data point in the sample.

In KDE, two key considerations are the choice of kernel
function and the selection of bandwidth. The classical kernel
estimation can be found in [40]. The kernel determines how data
around each observation is smoothed, with the Gaussian kernel
being widely used due to its smoothness and theoretical
foundation. However, prior study [39] emphasise that the
bandwidth plays a more critical role, as it directly controls the
smoothness of the estimated density. Several methods exist for
bandwidth selection, including rule-of-thumb approaches,
cross-validation, and the Sheather—Jones (SJ) method. Among
these, the SJ method for estimating bandwidth in KDE [41] is
particularly favoured for its accuracy and stability across a wide
range of distributions, making it the default choice in many

statistical applications. This method is proposed to select
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bandwidth by minimizing the approximate mean square integral

error:
AMISE() =" 4+ Ly, 10?n*R(FY - 9)
where
RUK) = 17 K@2du iy (K) = [u?K(Wdu ()
and
R(F™) = [(f'®)) dy 5)
The theoretical optimal bandwidth is then determined by:
1/5
=) ©

Since R(f") is unknown, SJ uses the estimation plug-in:
estimates f" through KDE with pilot bandwidth, then
substitutes it into the above formula. The result is a nonlinear
equation that needs to be solved numerically to get the optimal
bandwidth.

3.2. Empirical Mode Decomposition

Feature extraction transforms complex raw data into concise,
meaningful representations by reducing noise and
dimensionality, thereby improving modelling, prediction, and
classification performance. EMD method, proposed by Huang
et al. [42], decomposes a nonlinear and no stationary signal into
a set of Intrinsic Mode Functions (IMFs) and a residual, as
presented in Equation (7). Each IMF captures oscillations at
a specific time scale, revealing the underlying dynamical
structure without prior assumptions on stationary or functional
form. Unlike traditional methods such as Fourier or Wavelet
Transform, EMD is fully adaptive and data-driven, making it
particularly effective for analysing nonlinear, non-standard, and
time-varying signals. An IMF is defined by two conditions: (1)
the number of zero crossings and extrema differ at most by one,
and (2) the mean of the upper and lower envelopes is zero at all
times [43].
Y(t) = Xy IMF(t) +7(t) %)
where Y(?) is obtained time-domain data, IMF(t) is the ith
IMF, n is the number of IMFs, extracted from original data and
r(f) is residual data, which is main trend of Y(¢). The main
process of the EDM for degradation data of equipment in each
stage is summarized below:

e [Initialize the degradation data Y(7)

e  Find the upper and lower extrema eypper, €lower points of ¥
and calculate the mean of upper and lower envelopes

using p-chip interpolation:
eyuppertelower
I(t) = Y (t) — 2= ®)

1(¢) is the 1* IMF if two conditions are satisfied, if not the step
(2) are repeated until two conditions are met and /(¢) is regarded
the 15 IMF.
e  Calculate r(t) = Y(t) — IMF,(t), and set r(¢) as the new
Y@).
e  Repeat the step (2), (3) until 7(#) becomes a monotonic
function.

By using the EMD, the LED degradation data are
decomposed into multiple IMFs and residual components. In the
composite degradation trajectory, the residual component is
regarded as the main degradation trend [44], while the IMFs
capture different layers of intrinsic variability superimposed on
the main degradation trend. High-frequency IMFs generally
reflect measurement noise or rapid fluctuations, while lower-
frequency IMFs reflect slower variations [42] that are not part
of the long-term trend and are treated as representations of
intrinsic variability, capturing local oscillations and micro-
fluctuations in the degradation process. By isolating these
components, the IMFs help quantify the within-path variability
and clarify the heterogeneity in degradation behaviour across
LEDs, allowing the degradation process to be analysed more

reliably.
3.3. Quantification of distributional divergences

Quantifying divergences between distributions is an important
step in data analysis, helping to assess the variability and
heterogeneity between data sets that traditional summary
statistics such as mean or variance do not adequately capture. In
the context of degradation data analysis, comparing
distributions of different samples allows for the identification of
unusual samples and the assessment of uniformity during
degradation.

Let (X, B) be a measurable space, where X is the sample
space and B is a c-algebra on X. Given observed data Y,
Y>,...,Yy are random variables defined on X with the respective
independently and identically distributed (i.i.d.) {PI, P2,..,
PN} € P(X) defined on (X, B). For any two probability

distributions P;, P;, a divergence measure is a nonnegative
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functional:
D(P, P;): P(X) X P(X) - Ry 9)
Such that D(P;,P;) =0 & P, = P;

Given the collection of N probability distributions
{P,,P,,.., Py}, the global heterogeneity index is the empirical
mean of pairwise divergences is given:

Hy({P,,Py,...,Py) = Eq p[D(P,P)]  (10)
where the expectation is taken with respect to the uniform
distribution over unordered pairs (I,]),1 # J.

Let 2 = {(i,j): 1 < i < j < N}. The number of such unordered

N(N-1)

pairs is |2| = . The empirical mean of pairwise

divergences is computed by definition of uniform expectation:
1
EaplD(PP)] = 5 Zapea D(PL ) (1D)

N(N-1)
2

Substituting |2| = gives:

Eap[D(P,Py)] = ,\,(N#_l)z(i.j)eaD(Pi'Pj) (12)

Therefore, the global heterogeneity index associated with D(-)

is defined as the average pairwise divergence:

2
HD({PlvPZ'---'PN}) :W_DZuisjsND(Pi:Pj) (13)

The index quantifies the global dispersion or dissimilarity of the
family {P;, P, .., Py} in the divergence-induced geometry. For
a single distribution P;, a local heterogeneity index related to P;

can be defined by:

1
Hp(P|{Py, Py, ..., Py}) = ~= 31 D(P, Py) (14)

j#i
which measures the average divergence between P; and all
other distribution. Both global and local indices can be used to
quantify distributional heterogeneity in multi-sample or
federated learning contexts. In the multi-scale case, suppose that
at “scale” m each device i gives a distribution P;,. We define

the heterogeneity index at scale m:

m) _ __ 2
Hy™ = N(N-1)

Yosicj<n D(Pims Pim) (15)
Therefore, the composite multi-scale index is defined by:
Hp =Y WmHL()m) (16)
where wy is weighted by the importance of the scale.
In this study, JSD, WD, and MMD were employed as

quantitative measures of divergence to assess heterogeneity in

LED degradation across different temperature and drive-current

groups. Meanwhile, the Kullback—Leibler divergence (KLD) is
often insensitive to tail differences [45] and may be undefined
when the distributions have non-overlapping support.
Parametric tests such as the chi-square test rely on restrictive
assumptions (e.g., sample-size requirements, independence) [46]
that are rarely satisfied in degradation data. Likewise, the
Kolmogorov—Smirnov test shows low sensitivity to differences
in higher-order moments or tail behaviour [47]. The JSD is
a symmetric, bounded measure derived from the KLD. It
quantifies the similarity between probability distributions in
a way that is robust to zero-probability bins, making it suitable
for discrete or histogram-based representations of degradation
signals [48]. The WD, also known as the Earth Mover’s
Distance, evaluates the minimal “effort” required to transform
one distribution into another, incorporating the geometry of the
support space. The WD is particularly advantageous when the
distributions exhibit shifts or scale differences [49]. The MMD
is a kernel-based measure that captures higher-order differences
between distributions, including differences in moments and
shapes, and is well-suited for non-parametric settings where the
distributions may not follow standard theoretical forms [50].

By combining these three measures, the study leverages
a multi-faceted evaluation of divergence: JSD captures overall
probabilistic similarity, the WD emphasizes the geometric or
structural difference, and the MMD detects subtle differences in
higher-order statistics. This integrated approach ensures
a robust assessment of heterogeneity in LED degradation,
accounting for variations in both central tendency and
distributional shape across stress groups.

The JSD is a symmetric and differentiable measure for
comparing the differences between two probability distributions,
built on the KLD but overcomes the disadvantages such as:
being asymmetric and possibly infinite when the two
distributions do not have the same support. For any two

probability distributions P;, P;, the JSD is defined by [48]:

Dys(PIP) = Du (PilIMy) +5 Do (PilIMy) — (17)
where M;; = %(PL- + P;) is mixture probability of P;, P;; and
D (PNIP) = Xk pix log ;’—ﬂ’z is the KLD.

The JSD can be represented in detail as:
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1
Dys(PilIP;) =53 yex Pi(x) log

Meanwhile, the WD measures the “minimum cost” of
transforming a distribution P; into a distribution P;, where cost
is understood as “mass x distance travelled”. In other words, it
describes the minimum amount of work needed to “move the
soil” (probability mass) from shape P; to shape P;. WD order p
(p= 1) is defined by [49]:

1

Wp(Pl-.P,-)=< inf )fxxxd(x,y)pdy(x.y)> (19)

yer(Pyp;
The first order WD:

wi(P,P) = inf [, d@y)dy(xy) (20)
yer(Pi,Pj)

where I' (Pl-,P]-) is the set of joint distribution which

marginal distributions are P;, P;, d(x, y) is the Euclidean distance,

Pi(y)
M;;(y)

Pi(y)
M;i;(y)

+-Yrex () log (18)

and y(x, y) is the method to distribute mass to convert P; to P;.

In another approach, the MMD is a widely used non-
parametric distance measure for comparing two probability
distributions. The core idea of the MMD is to map data from the
observation space to the Recurrent Hilbert Space through a
feature kernel, and then measure the distance between the mean
vectors in this space. Because it does not require any
assumptions about the distribution shape and is scalable to high-
dimensional data, the MMD has been applied in many fields
such as non-parametric hypothesis testing, generative anomaly
modelling evaluation, domain adaptation, and degenerative data
analysis to determine the homogeneity of samples. MMD?

between any two distributions P;, P}, is defined by [50]:

2
MMD?(Py,B;) = || Ex,ep, [$ (1] = Exop [(H)] | @1
2
MMD?(P, Py) = || e, = e, |+ teyi = Exop [0(¥D) € H (22)
where ¢ is the feature mapping defined by the kernel k(Yi, Yj) =
((l)(Yl-), ¢(Y])) The biased estimator of MMD? is defined by:
MMD?(P, P;) = niizZa 2 kKYias Yin) + ninga Yo k(i vjp) — %ana Yo k(i vjp) (23)

4. Results and discussion

In this study, the high-frequency voltage data were used directly
for EMD without down-sampling or explicit noise filtering. The
adaptive nature of EMD allows the decomposition of non-linear
and non-stationary signals IMFs, which separate high-
frequency components, often corresponding to measurement
noise or transient fluctuations, from lower-frequency modes
that reflect the underlying degradation dynamics. The
combination of high-resolution data and EMD facilitates both
precise extraction of degradation trends and comparative
statistical evaluation across stress conditions, improving the
interpretability and reliability of accelerated degradation
analyses. In this section, the evaluation results of LED
degradation heterogeneity are presented. The analysis is
performed for LEDs under identical test conditions and
operating modes. We perform the analysis on two main aspects:
i) analysis of degradation heterogeneity and ii) testing of the

homogeneity hypothesis. The KDE method is applied with

a Gaussian kernel, and the bandwidth is optimized using the SJ
plug-in method [41]. In addition, the MMD measure is used
with a Gaussian kernel, in which the bandwidth is determined
using the median heuristic method [51]. The weights of the

IMFs are determined based on their energy levels.
4.1. Analysis of degradation heterogeneity of LEDs

To analyse heterogeneity in the LED degradation process, the
degradation data of LEDs were first grouped according to their
temperature and drive-current conditions to ensure that each
dataset represented a homogeneous degradation mechanism, as
mentioned in Section 2. The grouped degradation data were then
decomposed into a main degradation trend and a set of
oscillatory components using EMD, forming the composite
degradation trajectory. Figure 5 illustrates the first five IMFs of
LED 1 operated at 1050 mA and +60 °C as an example.

In practice, measurement data are inevitably contaminated
by white noise, and thus not all IMFs obtained from EMD

decomposition are meaningful. To separate voltage degradation
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trend from high-frequency noise or transient fluctuations, we
applied a multi-criteria IMF selection and denoising procedure
following EMD. As EMD is fully data-adaptive, initial high-
frequency IMFs may be noise-dominated, necessitating robust
filtering. First, each IMF was subjected to a Ljung—Box Q-test
[52], and those failing to reject the white-noise hypothesis at 5%
significance were excluded, preventing residual noise from
contaminating the degradation trend [42,53]. Surviving IMFs
were further filtered based on relative energy (<5% of total) and
high-frequency content, following established EMD denoising
practices [54]. Finally, monotonicity was assessed using the
Mann—Kendall trend test [55,56] or linear regression slope
analysis [57], retaining only IMFs with statistically significant
trends (p < 0.05) and slope magnitudes above 5% of the IMF

margin, ensuring that oscillatory or quasi-periodic components
are not misinterpreted as long-term degradation. Figure 6
illustrates the time series, autocorrelation, histogram, and power
spectrum of an example IMF, providing evidence for the IMF
classification procedure. This hybrid approach, combining
EMD with statistical tests and energy/frequency-based
thresholding, offers several advantages: it reduces spurious
high-frequency noise and mode-mixing artefacts, preserves
components that reliably represent the underlying degradation,
and allows threshold validation via sensitivity analysis to ensure
reproducibility. After filtering, the “denoised” degradation
signal was reconstructed by summing only the retained IMFs

and the residual component.
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Figure 5. Illustration of EMD of degradation voltage data of LED1 under temperature of +60 °C at current of 1050 mA.
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To ensure the rigour and representativeness of the extracted
degradation trend, the residual component was subjected to the
same testing procedure as described above, followed by
a dedicated monotonicity assessment. Monotonicity was
evaluated by computing the first-order differences between
consecutive samples, Ar(t;) = r(t;4,) — r(t;). This criterion
ensures that the residual indeed represents a meaningful, slowly
varying trajectory suitable for subsequent statistical modelling
of the degradation process. A residual path was considered
effectively monotonic if the vast majority of Ar(t;) values
shared the same sign. Visual inspection and statistical
evaluation both confirmed the absence of oscillatory behaviour
incompatible with an underlying degradation trend. Thereby,
this residual component is regarded as the main degradation
trend. The IMFs capture different layers of intrinsic variability
superimposed on this main degradation trend.

In this study, degradation heterogeneity is examined from
two complementary perspectives: (i) heterogeneity in the main
degradation trends, which reflects differences in initial
degradation levels and long-term degradation rates; and (ii)
heterogeneity in the oscillatory components (IMFs), which

represent fluctuations around the trend and capture intrinsic

103 T=+60°C

variability within the degradation process.

Figure 7 shows the adjusted main degradation trends, of
LEDs operated at 1050 mA (top), 525 mA (middle), and 210 mA
(bottom). These trends are normalised by subtracting their
initial degradation values so that all trajectories start at zero,
thereby allowing a clearer visual comparison of their
degradation slopes. Tables 3—5 report the initial degradation
values and degradation slopes derived from the EMD-extracted
residuals. The slopes were estimated using MLE to ensure
statistical efficiency and robustness. Table 6 provides the
average junction temperature difference of the LEDs between
different thermal stresses determined based on the slope of the
degradation curve and the Arrhenius [5]. As shown in Figure 8
and Tables 3-5, LED degradation heterogeneity manifests in
two complementary dimensions: (1) absolute degradation levels
(differences in initial voltage values), and (2) degradation
kinetics (differences in slope). The results reported in Table 6
confirms that the estimated junction temperature differences
closely align with the temperature steps applied in the tests,
demonstrating that the degradation slopes reliably reflect the

actual thermal stress conditions.
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Figure 7. The graphical plots of the adjusted degradation trends from EMD analysis of LEDs at the current level of 1050 mA (top),
525 mA (middle) and 210 mA (bottom).
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Table 3. The initial degradation values and slope of degradation trend of LED at current level of 1050 mA.

LED-ID T = +60 °C T =+70 °C T = +80 °C

Initial voltage [V] Drift [V/h] Initial voltage [V] Drift [V/h] Initial voltage [V] Drift [V/h]

1 8.679766 -3.33:10°¢ 8.654863 -7.66-10¢ 8.627157 -1.89-10°

2 8.745670 -2.10-10°¢ 8.719252 -5.64-10¢ 8.692112 -1.33-10°

3 8.743251 -2.28-10°¢ 8.715490 -5.36-10¢ 8.688151 -1.30-10°

4 8.675236 -3.19:10°¢ 8.650314 -7.49-10¢ 8.623475 -1.89-10°

5 8.721904 -3.27-10°¢ 8.693562 -7.56-10¢ 8.666620 -1.85-10°

6 8.741322 -2.27-10°¢ 8.715616 -5.66-10¢ 8.688586 -1.42-10°

7 8.697613 -2.68-10°¢ 8.671483 -6.78:10¢ 8.645520 -1.61-10°

8 8.742674 -2.07-107 8.715497 -6.55-10¢ 8.689359 -1.60-10°

9 8.665605 -2.64-10°¢ 8.639678 -6.37-10¢ 8.610254 -1.68:10°

10 8.721637 -2.44-10°¢ 8.693179 -5.75-10¢ 8.667198 -1.43-10°

Table 4. The initial degradation values and slope of degradation trend of LED at current level of 525 mA.

LED-ID T = +60 °C T =+70 °C T =+80 °C

Initial voltage [V] Drift [V/h] Initial voltage [V] Drift [V/h] Initial voltage [V] Drift [V/h]

11 8.244681 -4.97-107 8.221457 -1.11-10¢ 8.192814 -2.40-10°¢

12 8.275884 -6.25-107 8.254341 -1.43-10°¢ 8.225152 -3.50-10°¢

13 8.244878 -5.05-107 8.224604 -1.14-10¢ 8.197039 -2.60-10°¢

14 8.287069 -5.70-107 8.262460 -1.29-10°¢ 8.232587 -2.98-10°¢

15 8.286594 -5.30-107 8.263626 -1.18-10°¢ 8.236210 -2.87-10°¢

16 8.246887 -4.59-107 8.224983 -1.05-10¢ 8.195997 -2.26-10°¢

17 8.282296 -5.55-107 8.258310 -1.11-10°¢ 8.229401 -2.48-10°¢

18 8.276884 -5.52-107 8.250610 -1.21-10°¢ 8.220710 -2.76-10°¢

19 8.240925 -6.60-1077 8.220424 -1.58-10°¢ 8.192204 -3.44-10°¢

20 8.274162 -5.05-107 8.252952 -1.29-10¢ 8.223991 -2.91-10¢

Table 5. The initial degradation values and slope of degradation trend of LED at current level of 210 mA.

LED-ID T =+60 °C T =470 °C T =+80 °C

Initial voltage [V] Drift [V/h] Initial voltage [V] Drift [V/h] Initial voltage [V] Drift [V/h]

21 7.905493 -3.65-107 7.87970 -8.18-107 7.851761 -1.80-10¢

22 7.901959 -4.03-107 7.87654 -8.73-107 7.849277 -1.89-10¢

23 7.903845 -4.04-107 7.87805 -8.79-107 7.850245 -2.01-10¢

24 7.904837 -3.31-107 7.87893 -7.51-107 7.850680 -1.74-10¢

25 7.907469 -4.01-107 7.88178 -8.58-107 7.853968 -2.01-10¢

26 7.909987 -3.75-107 7.88486 -7.83-107 7.857737 -1.87-10¢

27 7.906010 -3.52-107 7.88006 -7.50-107 7.851834 -1.73-10¢

28 7.905747 -4.07-107 7.87941 -8.58-107 7.852589 -2.05-10°¢

29 7.909454 -3.40-107 7.88331 -7.16-107 7.855621 -1.58-10¢

30 7.917753 -4.20-107 7.89198 -8.76-107 7.863932 -2.14-10°¢

To further analyse heterogeneity, it is essential to examine
the distributional characteristics of the individual IMFs that
compose composite degradation trajectory. Variations in
amplitude, shape, or kinetics of the IMFs across LEDs can
reveal whether heterogeneity arises from local fluctuations or

from systematic differences in the degradation mechanism.

Accounting for IMF-level distributional heterogeneity thus
strengthens the robustness of reliability models and enhances
confidence in accelerated lifetime testing and predictive
analyses. To quantify this heterogeneity, global (GHI) and local
heterogeneity indices (LHI) were computed from pairwise
divergences using formulas (11), (12), and (14), derived from

the IMFs and their KDEs. Two complementary analyses were

Eksploatacja i Niezawodno$¢ — Maintenance and Reliability Vol. 28, No. 3, 2026




performed: (i) a distribution shape-only assessment using
normalised IMFs, which isolates distribution-shape differences,
and (ii) a raw-distribution assessment using unnormalized IMFs,
which captures differences in mean, variance, and shape.

Comparing the two sets of indices helps identify the dominant

source of variability: larger discrepancies in the raw-distribution
indices indicate heterogeneity driven mainly by degradation
magnitude, whereas larger discrepancies in the distribution
shape-only indices reflect differences in shape and degradation

kinetics.

Table 6. The average junction temperature difference of the LEDs between different thermal stresses.

LED- 1050 mA LED- 525 mA LED- 210 mA
ID 60 °C-70 °C 70 °C-80 °C ID 60 °C-70 °C 70 °C-80 °C ID 60 °C-70 °C 70 °C-80 °C
1 12.04 13.04 11 11.41 11.29 21 11.64 11.38
2 14.24 12.35 12 11.94 12.92 22 11.16 11.16
3 12.34 12.79 13 11.77 11.86 23 11.23 11.87
4 12.34 13.32 14 11.75 12.10 24 11.82 12.12
5 12.09 12.90 15 11.59 12.76 25 11.01 12.22
6 13.22 13.23 16 11.95 11.03 26 10.61 12.56
7 13.38 12.43 17 11.38 11.58 27 10.93 12.06
8 12.76 12.87 18 11.31 11.92 28 10.76 12.56
9 12.72 13.98 19 12.56 11.27 29 10.75 11.44
10 12.40 13.12 20 12.33 11.73 30 10.61 12.90

To further analyse heterogeneity, it is essential to examine
the distributional characteristics of the individual IMFs that
compose composite degradation trajectory. Variations in
amplitude, shape, or kinetics of the IMFs across LEDs can
reveal whether heterogeneity arises from local fluctuations or
from systematic differences in the degradation mechanism.
Accounting for IMF-level distributional heterogeneity thus
strengthens the robustness of reliability models and enhances
confidence in accelerated lifetime testing and predictive
analyses. To quantify this heterogeneity, global (GHI) and local
heterogeneity indices (LHI) were computed from pairwise
divergences using formulas (11), (12), and (14), derived from
the IMFs and their KDEs. Two complementary analyses were
performed: (i) a distribution shape-only assessment using
normalised IMFs, which isolates distribution-shape differences,
and (ii) a raw-distribution assessment using unnormalized IMFs,
which captures differences in mean, variance, and shape.
Comparing the two sets of indices helps identify the dominant
source of variability: larger discrepancies in the raw-distribution
indices indicate heterogeneity driven mainly by degradation
magnitude, whereas larger discrepancies in the distribution
shape-only indices reflect differences in shape and degradation
kinetics.

Tables 7-9 present the computed GHI and LHI and highlight
LED pairwise comparisons whose dispersion exceeds the 2c

threshold of global heterogeneity, based on the classified IMFs.

In these tables, lowercase values correspond to distribution
shape-only indices, whereas bold values represent raw
distribution indices incorporating amplitude and variance.
Overall, most LEDs within each group exhibit consistent
degradation trends, although some units show deviations. The
observed divergence tends to decrease with increasing
temperature and/or decreasing current (Figure 8).

A more detailed examination reveals that, at a drive current
of 1050 mA, heterogeneity is predominantly governed by
amplitude differences across temperatures (Table 7). For LEDs
operating at 525 mA, early-stage heterogeneity is mainly
amplitude-driven, whereas later-stage differences reflect
variations in shape and degradation kinetics (Table 8). At the
lowest current level of 210 mA, heterogeneity is consistently
dominated by shape and kinetics throughout the degradation
process (Table 9). These results indicate a clear dependence of
heterogeneity on operating conditions: at high currents and low
temperatures, differences in degradation magnitude dominate,
while at low currents and high temperatures, variations in the
distribution shape and kinetics become the primary source of
heterogeneity. Collectively, the GHI and LHI analyses provide
quantitative evidence that the nature of LED degradation
heterogeneity shifts from amplitude-driven to shape/kinetics-
driven as operating stress decreases, highlighting the
importance of considering both global and local heterogeneity

in reliability assessment.
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Table 7. The heterogeneity indices of LEDs at the current level of 1050 mA.

LED-ID T=+60 °C T=+70 °C T=+80 °C
JSD WD MMD? JSD WD MMD? JSD wD MMD?
Global index 0.0137(.*) 0.0068 0.0024 0.0171 0.0073 0.0043 0.0141 0.0084 0.0027
0.0169¢" 0.0127 0.0056 0.0173 0.0110 0.0051 0.0156 0.0132 0.0042

Local index
1 0.0119 0.0056 0.0015 0.0208 0.0084 0.0075 0.0110 0.0066 0.0021
0.0160 0.0135 0.0078 0.0178 0.0115 0.0051 0.0139 0.0133 0.0048
) 0.0122 0.0064 0.0026 0.0146 0.0058 0.0029 0.0131 0.0086 0.0025
0.0129 0.0105 0.0037 0.0128 0.0080 0.0029 0.0133 0.0117 0.0035
3 0.0134 0.0065 0.0025 0.0197 0.0079 0.0065 0.0120 0.0073 0.0020
0.0146 0.0094 0.0031 0.0149 0.0084 0.0032 0.0137 0.0105 0.0027
4 0.0126 0.0057 0.0020 0.0142 0.0059 0.0031 0.0129 0.0078 0.0028
0.0142 0.0112 0.0049 0.0139 0.0088 0.0040 0.0133 0.0108 0.0029
5 0.0126 0.0062 0.0019 0.0154 0.0061 0.0032 0.0118 0.0069 0.0020
0.0161 0.0116 0.0045 0.0170 0.0099 0.0051 0.0133 0.0105 0.0030
6 0.0118 0.0063 0.0020 0.0153 0.0072 0.0039 0.0155 0.0087 0.0036
0.0160 0.0133 0.0067 0.0178 0.0120 0.0068 0.0163 0.0135 0.0044
7 0.0120 0.0056 0.0015 0.0142 0.0060 0.0033 0.0124 0.0066 0.0018
0.0193 0.0128 0.0059 0.0179 0.0116 0.0066 0.0150 0.0123 0.0039
g 0.0125 0.0062 0.0022 0.0139 0.0058 0.0027 0.0126 0.0070 0.0022
0.0153 0.0118 0.0064 0.0151 0.0100 0.0049 0.0139 0.0112 0.0043
9 0.0129 0.0062 0.0026 0.0135 0.0066 0.0030 0.0135 0.0085 0.0028
0.0130 0.0095 0.0029 0.0135 0.0081 0.0029 0.0130 0.0101 0.0028
10 0.0120 0.0063 0.0024 0.0120 0.0061 0.0025 0.0121 0.0074 0.0025
0.0149 0.0108 0.0042 0.0148 0.0103 0.0047 0.0149 0.0153 0.0053
Outliers 2,9 1,2,3 2,3,4,6,9
1,5,6,7,8 1,5,6,7 1,2,7,8,10
® Distribution shape-only indices, ) Raw distribution indices
Table 8. The heterogeneity indices of LEDs at the current level of 525 mA.

LED-ID T=+60 °C T=+70 °C T=+80 °C
JSD WD MMD? JSD WD MMD? JSD WD MMD?
Global index 0.0129™ 0.0072 0.0026 0.0136 0.0044 0.0029 0.0210 0.0060 0.0049
0.0178¢" 0.0121 0.0065 0.0144 0.0063 0.0035 0.0203 0.0067 0.0042

Local index

1 0.0115 0.0070 0.0027 0.0112 0.0038 0.0022 0.0179 0.0054 0.0044
0.0152 0.0108 0.0063 0.0114 0.0050 0.0026 0.0176 0.0058 0.0045
12 0.0124 0.0063 0.0025 0.0116 0.0041 0.0021 0.0185 0.0050 0.0045
0.0157 0.0107 0.0053 0.0133 0.0058 0.0032 0.0158 0.0051 0.0033
13 0.0109 0.0070 0.0022 0.0139 0.0047 0.0032 0.0170 0.0051 0.0036
0.0140 0.0119 0.0048 0.0129 0.0059 0.0028 0.0160 0.0058 0.0030
14 0.0115 0.0064 0.0025 0.0124 0.0035 0.0028 0.0203 0.0056 0.0045
0.0139 0.0097 0.0047 0.0130 0.0052 0.0028 0.0186 0.0068 0.0032
15 0.0124 0.0065 0.0025 0.0129 0.0038 0.0031 0.0208 0.0055 0.0055
0.0168 0.0104 0.0061 0.0120 0.0053 0.0027 0.0168 0.0054 0.0026
16 0.0106 0.0059 0.0020 0.0135 0.0042 0.0035 0.0199 0.0059 0.0052
0.0160 0.0101 0.0059 0.0131 0.0058 0.0032 0.0183 0.0058 0.0036
17 0.0106 0.0060 0.0020 0.0126 0.0039 0.0029 0.0162 0.0047 0.0035
0.0168 0.0112 0.0066 0.0136 0.0059 0.0038 0.0161 0.0053 0.0031
18 0.0099 0.0053 0.0014 0.0105 0.0036 0.0016 0.0252 0.0063 0.0064
0.0154 0.0106 0.0053 0.0118 0.0050 0.0024 0.0252 0.0068 0.0062
19 0.0132 0.0066 0.0025 0.0123 0.0039 0.0020 0.0160 0.0050 0.0035
0.0183 0.0120 0.0070 0.0150 0.0069 0.0043 0.0172 0.0067 0.0042
20 0.0127 0.0074 0.0028 0.0115 0.0041 0.0023 0.0173 0.0052 0.0031
0.0181 0.0115 0.0071 0.0134 0.0055 0.0033 0.0209 0.0068 0.0042

Outliers 11,20 13,14,15,16,17 14,15,16,18

17,19 16,17,19 11,14,18,19,20

® Distribution shape-only indices, **) Raw distribution indices
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Table 9. The heterogeneity indices of LEDs at the current level of 210 mA.

LED-ID T=+60 °C T=+70 °C T=+80 °C
JSD WD MMD? JSD WD MMD? JSD WD MMD?
Global index 0.0186(*? 0.0075 0.0050 0.0142 0.0041 0.0034 0.0260 0.0084 0.0069
0.0146C 0.0092 0.0043 0.0109 0.0037 0.0011 0.0164 0.0075 0.0024

Local index

21 0.0156 0.0065 0.0042 0.0205 0.0055 0.0080 0.0202 0.0072 0.0042
0.0108 0.0070 0.0041 0.0121 0.0039 0.0013 0.0157 0.0076 0.0023
29 0.0132 0.0068 0.0029 0.0108 0.0031 0.0019 0.0204 0.0077 0.0047
0.0115 0.0076 0.0030 0.0093 0.0034 0.0011 0.0170 0.0080 0.0025
23 0.0140 0.0058 0.0031 0.0101 0.0030 0.0019 0.0200 0.0062 0.0038
0.0108 0.0072 0.0021 0.0079 0.0032 0.0008 0.0153 0.0072 0.0029
24 0.0195 0.0073 0.0054 0.0110 0.0032 0.0021 0.0226 0.0064 0.0045
0.0136 0.0093 0.0036 0.0089 0.0028 0.0006 0.0158 0.0063 0.0020
25 0.0191 0.0075 0.0057 0.0166 0.0048 0.0054 0.0190 0.0063 0.0038
0.0141 0.0091 0.0049 0.0110 0.0033 0.0007 0.0135 0.0058 0.0016
2 0.0243 0.0081 0.0070 0.0114 0.0035 0.0019 0.0247 0.0079 0.0067
0.0162 0.0085 0.0054 0.0102 0.0037 0.0011 0.0154 0.0065 0.0019
27 0.0160 0.0063 0.0038 0.0125 0.0035 0.0023 0.0214 0.0070 0.0050
0.0129 0.0084 0.0042 0.0106 0.0035 0.0014 0.0156 0.0069 0.0028
28 0.0174 0.0072 0.0057 0.0116 0.0035 0.0026 0.0294 0.0085 0.0096
0.0118 0.0076 0.0032 0.0090 0.0031 0.0008 0.0121 0.0059 0.0018
29 0.0138 0.0060 0.0038 0.0122 0.0036 0.0029 0.0329 0.0097 0.0117
0.0158 0.0093 0.0046 0.0100 0.0035 0.0011 0.0128 0.0064 0.0019
30 0.0141 0.0056 0.0032 0.0114 0.0033 0.0020 0.0232 0.0086 0.0078
0.0141 0.0084 0.0033 0.0094 0.0031 0.0008 0.0143 0.0072 0.0021

. 24,2526,28 21,24,27,29 26,28,29,30

Outliers
24,25,26,29,30 21,26,27,29 21,22,23,27

® Distribution shape-only indices, **) Raw distribution indices

These observations are consistent with the design of the
SSADT, in which the initial stage is conducted at a lower
temperature. Such a design does not compromise the assessment
of degradation characteristics at higher temperatures, as the
degradation process is cumulative and the physical mechanisms
underlying voltage drift and material ageing are continuous
across the stress range. Data collected at lower temperatures
contribute to the estimation of early-stage degradation trends
and help distinguish intrinsic material variability from stress-
induced acceleration. Moreover, the stepwise design enables the
separation of stress-dependent effects, allowing reliable
evaluation of degradation dynamics and distributional
parameters at each stress level, which is critical for modelling
heterogeneity associated with both temperature and drive
current. Table 6 also confirms that the estimated junction
temperature differences closely align with the temperature steps
applied in the tests, validating the experimental setup and
supports the interpretation that observed heterogeneity in both
initial voltage levels and degradation kinetics arises from

intrinsic LED behaviour rather than from inconsistencies in

applied stress.

4.2. Homogeneity hypothesis test

The results presented in Section 4.1 provide clear evidence that
LED degradation heterogeneity is influenced by operating
current and ambient temperature. Heterogeneity in the main
degradation trends, reflected by differences in initial
degradation levels and long-term degradation rates, is clearly
evident from the explicit values reported in Table 3-5. Although
the heterogeneity in the oscillatory components (IMFs) has been
quantified descriptively in Table 6-8, a formal statistical
assessment is required to determine whether the observed
within-group variability is statistically significant.

For this analysis, the corresponding IMFs of LEDs were
assumed to be independent and identically distributed samples.
The null hypothesis was defined as Ho: “The oscillatory
components (IMFs) of LEDs within the same group are
homogeneous,” while the alternative hypothesis was Hi: “The
oscillatory components (IMFs) of LEDs within the same group
are heterogeneous.” We employ IMF-based bootstrap procedure.
The applied IMF-based bootstrap procedure offers several
important advantages.

First, it provides a quantitative,

statistically rigorous evaluation of unit-to-unit variability,
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preserving local degradation trends while enabling robust
estimation of dispersion across LEDs. Second, it separates
heterogeneity due to amplitude from differences in distribution
shape or kinetics, allowing a nuanced understanding of
degradation mechanisms under different operating conditions.
Third, the bootstrap resampling approach is non-parametric and
robust against small sample sizes or non-normal distributions,
ensuring that the statistical conclusions are defensible. The
testing procedure consisted of the following steps:
e  FEach IMF of each LED was divided into equal-sized
blocks to preserve local degradation trends.
e  Blocks of corresponding IMFs were pooled across LEDs
within the same group.
e New IMFs for each LED were reconstructed by
randomly selecting blocks from the pooled set.
e  Test statistics were computed based on pairwise
dispersion values derived from the reconstructed IMFs.
e  P-values were estimated using bootstrap simulations
with 2000 iterations.

Tables 10-12 summarise the results of the homogeneity tests
for each LED group. The analysis indicates that all groups
exhibit homogeneity in distribution shape across different
temperature conditions, with no evidence to reject the null

hypothesis. In contrast, statistically significant heterogeneity is

predominantly associated with differences in the distribution
mean. Specifically, LEDs operated at 210 mA show uniformity
in mean, shape, and kinetics (Table 12), whereas LEDs at 525
mA exhibit mean-driven heterogeneity at +60 °C (Table 11), and
LEDs at 1050 mA display heterogeneity in distribution mean at
both +60 °C and +70 °C (Table 10). These insights ensure that
degradation models reflect the intrinsic variability of the LED
population rather than artefacts or measurement noise,
enhancing both scientific rigor and practical relevance.

In summary, LEDs consistently exhibit heterogeneity in
their degradation behaviour, reflected in differences in initial
degradation values, and degradation rates across devices and
operating conditions. In certain cases, the decomposition of the
degradation signal further reveals non-homogeneous oscillatory
components around the main degradation trend, indicating that
variability is not limited to the long-term drift but also appears
in the short-term micro-oscillations. These findings highlight
that any degradation modelling framework must, at a minimum,
account for heterogeneity in the degradation trend, rate, and
initial state. In more complex scenarios, the modelling approach
should also incorporate the heterogeneous oscillatory
components around the trend to ensure an accurate and robust
representation of the LED degradation process and lifetime

prediction.

Table 10. Homogeneity hypothesis test results of LEDs at the current level 1050 mA.

Metrics Value of test statistic Critical value Probability of test statistic Null hypothesis test results
Raw distribution test
T=+60 °C
JSD 0.0137 0.0169 0.0005 Rejects
WD 0.0088 0.0127 0.0005 Rejects
MMD? 0.0034 0.0056 0.0005 Rejects
T=+70 °C
JSD 0.0121 0.0173 0.0005 Rejects
WD 0.0074 0.0110 0.0005 Rejects
MMD? 0.0031 0.0051 0.0005 Rejects
T=+80 °C
JSD 0.0165 0.0156 0.7496 Fails to reject
WD 0.0118 0.0132 0.0555 Fails to reject
MMD? 0.0039 0.0042 0.0555 Fails to reject
Distribution shape-only test
T=+60 °C
JSD 0.0132 0.0139 0.2034 Fails to reject
WD 0.0088 0.0068 1.00 Fails to reject
MMD? 0.0036 0.0024 1.00 Fails to reject
T=+70 °C
JSD 0.0120 0.0175 0.0005 Rejects
WD 0.0073 0.0077 0.2689 Fails to reject
MMD? 0.0041 0.0043 0.2539 Fails to reject
T=+80 °C
JSD 0.0159 0.0141 0.9490 Fails to reject
WD 0.0118 0.0084 1.00 Fails to reject
MMD? 0.0037 0.0027 1.00 Fails to reject
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Table 11. Homogeneity hypothesis test results of LEDs at the current level 525 mA.

Metrics Value of test statistic Critical value Probability of test statistic Null hypothesis test results
Raw distribution test
T=+60 °C
JSD 0.0123 0.0178 0.0005 Rejects
WD 0.0083 0.0120 0.0005 Rejects
MMD? 0.0045 0.0065 0.0005 Rejects
T=+70 °C
JSD 0.0113 0.0143 0.0005 Rejects
WD 0.0059 0.0062 0.2459 Fails to reject
MMD? 0.0033 0.0035 0.2546 Fails to reject
T=+80 °C
JSD 0.0241 0.0202 0.9955 Fails to reject
WD 0.0107 0.0067 1,00 Fails to reject
MMD? 0.0078 0.0042 1,00 Fails to reject
Distribution shape-only test
T=+60 °C
JSD 0.0119 0.0130 0.0555 Fails to reject
WD 0.0083 0.0072 0.9690 Fails to reject
MMD? 0.0059 0.0050 0.9955 Fails to reject
T=+70 °C
JSD 0.0111 0.0136 0.0005 Rejects
WD 0.0059 0.0044 0.9990 Fails to reject
MMD? 0.0045 0.0034 1.00 Fails to reject
T=+80 °C
JSD 0.0240 0.0209 0.9565 Fails to reject
WD 0.0109 0.0060 1.00 Fails to reject
MMD? 0.0078 0.0069 1.00 Fails to reject
Table 12. Homogeneity hypothesis test results of LEDs at the current level 210 mA.
Metrics Value of test statistic Critical value Probability of test statistic Null hypothesis test results
Raw distribution test
T=+60 °C
JSD 0.0147 0.0147 0.4493 Fails to reject
WD 0.0080 0.0093 0.0255 Rejects
MMD? 0.0040 0.0043 0.224 Fails to reject
T=+70 °C
JSD 0.0114 0.0110 0.7216 Fails to reject
WD 0.0059 0.0037 1.00 Fails to reject
MMD? 0.0013 0.0011 1.00 Fails to reject
T=+80 °C
JSD 0.0237 0.0164 1.00 Fails to reject
WD 0.0130 0.0075 1.00 Fails to reject
MMD? 0.0051 0.0024 1.00 Fails to reject
Distribution shape-only test
T=+60 °C
JSD 0.0135 0.0188 0.0005 Rejects
WD 0.0082 0.0075 0.8351 Fails to reject
MMD? 0.0061 0.0056 0.8530 Fails to reject
T=+70 °C
JSD 0.0113 0.0144 0.0005 Rejects
WD 0.0059 0.0041 1.00 Fails to reject
MMD? 0.0060 0.0051 1.00 Fails to reject
T=+80 °C
JSD 0.0234 0.0259 0.0880 Fails to reject
WD 0.0131 0.0084 1.00 Fails to reject
MMD? 0.0049 0.0042 1.00 Fails to reject

. accelerated step-str tests. Th ntinuous measurement:
5. Conclusions ce d step-stress tests e co ous measurements

enabled the construction of large, high-resolution datasets

In this article, we investigated the degradation heterogeneity of . . o
» We mvestig & & Y suitable for statistical and reliability analyses.

10W LEDs using voltage data collected from optimized
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A feature extraction approach combining Empirical Mode
Decomposition, kernel density estimation, and divergence
measures (JSD, WD, and MMD) was applied to evaluate
degradation heterogeneity among LEDs under identical
conditions. Rather than focusing on the root causes of
heterogeneity or comparisons across different LED types, this
study concentrated on quantifying heterogeneity within groups
of LEDs operating under the same stress conditions. Two case
studies were conducted to distinguish between heterogeneity in
the main degradation trends, which reflects differences in initial
degradation levels and long-term degradation rates; and
heterogeneity in the oscillatory components (IMFs), which

represent fluctuations around the trend and capture intrinsic
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