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Highlights  Abstract  

▪ Optimised step-stress accelerated testing 

captures LED degradation behaviour. 

▪ Empirical Mode Decomposition extracts 

degradation trends and separates noise. 

▪ Kernel density estimation models cross-device 

degradation feature distributions. 

▪ Divergence measures quantify cross-device 

heterogeneity. 

 Light-emitting diodes (LEDs) have become indispensable in modern 

applications owing to their high energy efficiency, long lifespan, and 

robustness compared to conventional light sources. Given these 

attributes, the reliability of LEDs has become a crucial factor, directly 

influencing the ability of systems and devices to perform their intended 

functions over time. However, variations in materials, structures, and 

manufacturing processes introduce heterogeneity in their degradation 

behaviour, even under identical operating conditions. In applications 

demanding brightness stability, colour rendering, and reliability 

prediction, degradation homogeneity is crucial, making the analysis of 

LED heterogeneity essential. This article investigates such heterogeneity 

using feature extraction methods, kernel density estimation, and 

divergence measures based on degradation data obtained from optimized 

step-stress accelerated tests. The proposed approach is used to quantify 

and evaluate LED degradation variability and has clear implications for 

reliability assessment and predictive modelling. 
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1. Introduction 

Light sources play a fundamental role across diverse domains, 

including engineering, economics, medicine, and daily life 

applications. Their wide applicability has driven continuous 

research and development to meet the growing demand for 

efficiency, durability, and sustainability. Among modern 

lighting technologies, LEDs have emerged as the dominant 

solution, offering significant advantages over conventional light 

sources. These advantages include high luminous efficiency, 

compact design, ease of replacement, reduced energy 

consumption, and an extended operational lifetime of up to 

50,000 hours under standard conditions [1]. Given these 

attributes, the reliability of LEDs has become a crucial factor, 

directly influencing the ability of systems and devices to 

perform their intended functions over time.  
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Advances in sensor technologies and measurement systems 

have enabled monitoring of degradation for reliability 

assessment based on collected data [2], rather than waiting for 

failures. However, obtaining reliability data under normal 

conditions is time-consuming and costly, especially for long-

lived, highly reliable products such as LEDs [3]. Accelerated 

testing (AT) addresses this challenge by applying harsher 

stresses or higher loads to shorten test duration, and provide 

insights into degradation mechanisms and facilitating lifetime 

prediction [4]. Existing standard [5] provided frameworks to 

conduct ATs for LED, while [6] provide a framework to enable 

lifetime assessment. In practice, Zhang et al. [7] applied 

constant electrical stresses to multiple LED groups, monitoring 

lumen depreciation with probabilistic lifetime models, whereas 

Herzog et al. [8] examined spectral degradation of high-power 

COB LEDs under prolonged constant thermal stress. Similarly, 

Alsharabi et al. [9] evaluated InGaN blue LEDs under 

simultaneous thermal, electrical, and humidity stresses. In 

another related investigation, Fan et al. [10] adopted stochastic 

degradation models to predict lifetime of UV LEDs based on 

data from constant stress and step stress degradation tests, and 

Lokesh [11] conducted ATs for cool white LEDs under three 

thermal stress level and constant drive current and proposed  

a colorimetric approach based on chromaticity shifts. In parallel, 

Xia et al. [12] explored gamma irradiation effects on UVC 

LEDs, while Yan et al. [13] conducted highly accelerated 

electrical stressing at low temperatures for GaN-based LEDs. 

More complex multi-stress tests, including thermal–electrical 

cycling, have been reported in [14-16]. Collectively, these 

studies demonstrate the diversity of AT designs and highlight 

the importance of selecting stress profiles, reflecting practical 

operating conditions.  

Among the ATs, step-stress accelerated degradation testing 

(SSADT) significantly reduces the time and cost required to 

collect reliability data, especially for highly reliable products 

that take a long time to fail under normal conditions. By 

subjecting units to successively increasing stress levels, the 

method ensures that degradation at lower stress levels is 

captured prior to overstressing while subsequently accelerating 

the failure process at higher stress levels, allowing long-term 

reliability estimates to be made in a much shorter timeframe 

[17]. In LED reliability research, SSADT has become an 

important approach for collecting degradation data efficiently. 

Do et al. [18] conducted an SSADT to monitor optical intensity 

of medical LEDs, while Zhang et al. [19] employed constant-

stress and step-stress electrical tests to obtain OLED brightness 

degradation and proposed a statistical method for lifetime 

estimation. Moreover, Jing et al. [20] collected emission-power 

degradation data for UV LEDs under thermal and stepped 

electrical stresses and analysed the resulting trajectories using 

TM-21 and an asymptotic Wiener-process framework for 

remaining useful life (RUL) estimation. In another aspect, Cai 

et al. [21] introduced a highly accelerated decay testing 

procedure to identify thermal-stress limits under humidity 

constraints and validated the degradation mechanism through 

SSADT. Additional SSADT-based studies can be found in 

[10,22].  

Despite its flexibility, the informativeness of SSADT data 

strongly depends on the selected stress sequence, duration, and 

transition points. Suboptimal choices may limit the amount of 

usable degradation information, inflate parameter uncertainty, 

or violate the assumed acceleration mechanism. Therefore,  

a rigorously designed test plan is required. Nelson et al. [4] 

provides a foundational framework for constructing optimal test 

plans using statistical modelling, Fisher information, and 

sensitivity analysis, emphasizing that stress levels, durations, 

and sample allocation should be chosen to maximize 

information about acceleration-model parameters. Building on 

this principle, Wang et al. [23] proposed an optimization scheme 

for Wiener-process-based SSADTs by enforcing mechanism 

equivalence across stress levels. Their algorithm extracts valid 

degradation information and employs an M-optimality criterion 

to identify optimal transition times for LED thermal-stress 

SSADTs. In another approach, Sun et al. [24] developed an 

SSADT optimization method for the Birnbaum–Saunders 

model, aimed at minimizing prediction mean squared error 

under cost constraints via Monte Carlo simulation, leading to 

optimal decisions on sample size and measurement scheduling. 

Meanwhile, Liu et al. [25] further advanced SSADT 

optimization using a hybrid neural-network–genetic-algorithm 

strategy, allowing simultaneous optimization of stress levels, 

durations, and other design parameters while accounting for 

both accelerated-stress effects and measurement error. 

Sensitivity analyses in their work highlight key parameters 
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influencing design robustness. The above analysis shows that 

designing an optimized SSADT for LEDs is crucial. This 

ensures that the collected degradation data are both statistically 

informative and physically representative, enabling accurate 

reliability assessment and precise lifetime prediction under 

realistic operating conditions. 

At this point, it is also important to consider heterogeneity, 

which plays a key role in reliability assessment. In the context 

of LED degradation, heterogeneity refers to significant 

variations in degradation rates, lifetime, and overall reliability 

among nominally identical units under identical operating 

conditions. Such variability arises from manufacturing 

imperfections, material inconsistencies, and minor deviations in 

operating modes [26]. Numerous studies have highlighted the 

impact of unit-to-unit heterogeneity on reliability. For example, 

Zheng et al. [27] employed an inverse Gaussian process with 

Gamma-distributed random effects to capture heterogeneity in 

torsion springs and integrated circuits, while Junxing et al. [28] 

extended Wiener-based stochastic models to account for 

variability across units. Wen et al. [29] focused on multiphase 

degradation processes separated by change points rather than 

unit heterogeneity. In LEDs, where precise brightness and color 

rendering are critical, capturing heterogeneity is essential. 

Veloso et al. [30] applied Bayesian dynamic linear degradation 

models to infrared LEDs, and Hoang et al. [14] introduced a 

Wiener-based model incorporating unit-to-unit covariates for 

high-power LEDs. Complementary studies [31,32] further 

explored heterogeneity under varying currents, optical 

conditions, and junction temperature measurements. These 

findings collectively indicate that heterogeneity, both across 

units and within multiphase degradation, is inherent to LED 

degradation and must be explicitly incorporated into reliability 

modelling, yet quantitative investigations remain limited.  

Heterogeneity in degradation of LEDs is widely recognised, 

quantitative assessment of heterogeneity remains limited, which 

can compromise the accuracy and reliability of lifetime 

predictions. While optical metrics such as luminous flux and 

colour shift are commonly used in standards like TM-21 [33], 

electrical parameters, particularly forward voltage, provide  

a complementary perspective on degradation and allow  

a continuous, high-resolution indicator for quantifying 

degradation across units [14, 34]. SSADT, potentially combined 

with optimised test plans, enables efficient collection of 

degradation trajectories that support rigorous, quantitative 

evaluation of heterogeneity. This motivates the need for  

a systematic assessment of degradation heterogeneity in LED 

reliability studies through voltage degradation data from 

SSADT. This study does not address heterogeneity across 

different types of LEDs or across varying stress conditions or 

causes of heterogeneity. Instead, the focus is on the inherent unit 

heterogeneity observed within a group of LEDs of the same type, 

tested under identical experimental conditions. The main 

research gaps have been covered, with the following main 

contributions: 

• An optimised accelerated step-thermal stress test under 

constant current is conducted to obtain forward-voltage 

degradation data of LEDs, enabling efficient acquisition 

of multi-temperature degradation behaviour and 

reducing the total testing time. 

• Empirical Mode Decomposition (EMD) is applied to 

extract degradation-informative features, with intrinsic 

mode functions classified using statistical tests to 

separate noise from meaningful voltage trends. 

• Cross-device degradation heterogeneity is assessed 

using kernel density estimation (KDE) and quantified via 

Jensen–Shannon divergence (JSD), Wasserstein distance 

(WD), and Maximum Mean Discrepancy (MMD), 

enabling a principled evaluation of variability in LED 

degradation behaviour. 

The remainder of this article is organized follows. Section  

2 provides the information of tested LEDs, experiment 

involving the test set up, devices, and test rigs. The basic theory 

of EDM, KDE and divergence measures is given in Section  

3. Section 4 presents the results and discussions. Finally, 

Section 5 concludes the article. 

2. Experimental setup and data acquisition 

In this study, an ADT test was conducted on a 10 W/700 lm 

high-power white LED [35]. The schematic structure, physical 

dimensions, and technical specifications of the device under test 

are presented in Figure 1 and Table 1. 

In our experiment, temperature was selected as the sole 

accelerating stress, while other environmental factors were 

controlled. A three-step thermal stress profile was applied, 
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consisting of temperature levels T1<T2<T3 with corresponding 

duration’s t1, t2 and t3. The first stress level T1 was fixed at 

+60 °C, corresponding to the maximum rated operating 

temperature of the LED (Table 1) and ensuring consistency with 

the field degradation mechanism. The highest temperature T3 

was set to +80 °C, providing sufficient acceleration while 

preventing thermal overstress based on the maximum allowable 

junction temperature of +115 °C [6]. The intermediate level T2 

was assigned as +70 °C. Based on the rated forward current 

(Table 1), three LED groups (10 samples per group) were tested 

at drive currents of (i) 1050 mA, (ii) 525 mA, and (iii) 210 mA. 

 

Figure 1. The dimensions of the tested LED GT-

P10WW339910700 and its internal circuit diagram [35]. 

Table 1. The technical characteristics of tested LED [35]. 

Parameters Values Unit 

Luminous flux 700 lm 

Correlated colour 

temperature/Wavelength 
2900 ~ 3200 K/nm 

Forward voltage 9 ~ 11 V 

Forward current 1050 mA 

Thermal resistance 12 ℃/W 

Junction temperature 115 ℃ 

Operating temperature -40 ~ 60 ℃ 

To allocate the optimal durations for the stepwise 

temperature profile, a simulation-based design optimization 

framework was employed. The method integrates Monte-Carlo 

simulation, maximum likelihood estimation (MLE) under right-

censoring, and a genetic algorithm to optimize the SSALT plan. 

This framework follows classical reliability design principles 

[4,36] and incorporates modern extensions for nonlinear and 

multi-stress models [37]. The framework offers several 

advantages over conventional SSALT planning. First, it does 

not require closed-form Fisher information, which is often 

unavailable for nonlinear acceleration models or censored step-

stress structures. Instead, the statistical precision of the lifetime 

estimator is evaluated directly through replicated Monte-Carlo 

analysis, enabling application to any parametric lifetime model. 

Second, because the objective function is defined as the 

empirical variance of the log-median lifetime, the optimization 

targets the true estimation uncertainty rather than analytical 

approximations. Third, the use of GA provides global search 

capability, improving robustness in non-convex design spaces. 

As a result, the optimized plan (i) preserves the underlying 

failure mechanism, (ii) reduces total testing time, and (iii) 

enhances extrapolation accuracy under use conditions. 

The typical ambient temperature for LED operation is 

assumed to be +25 °C [38]. The lifetime distribution was 

modelled using a Weibull distribution with parameters β=14.72 

and η=2706.25, referenced from equivalent LED data [34]. The 

practical service lifetime was set to 30.5360 years (≈269,991 h) 

[34]. Because the stress involves temperature and drive current, 

the Arrhenius model and inverse power law [5] were used to 

establish the life–stress relationship. The optimization objective 

was to minimize the variance of the log-median lifetime. After 

optimization, the optimized test durations at +60 °C, +70 °C, 

and +80 °C were 1113.26, 871.10, and 478.64 hours, 

respectively. For practical implementation and smoother stress 

transitions, these durations were adjusted to 1080, 840, and 480 

hours, respectively. The final test plan is illustrated in Figure 2. 

During the test, a thermal chamber, DC power supplies, data 

loggers, and a central monitoring computer (see Figure 3) were 

employed to ensure (i) stable and accurate current supply to 

each LED, (ii) controlled thermal stress conditions, and (iii) 

continuous real-time measurement and recording of voltage 

degradation data. The temperature inside the thermal chamber 

is stably set and controlled through dedicated software. This 

temperature is continuously monitored and automatically 

adjusted to maintain the prescribed thermal conditions. All 
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LEDs in a group are mounted on a common aluminium plate, 

which has high thermal conductivity and minimizes the 

temperature difference between devices. Therefore, the LEDs in 

a group are subjected to approximately the same effective 

thermal stress, ensuring that relative differences in degradation 

behaviour can be evaluated. 

 

Figure 2. The experimental temperature profile for the ATs of 

LEDs. 

In this experiment, we focused on obtaining the voltage 

variation of LEDs. The test terminated when the test time set 

above was reached. Voltage was continuously monitored and 

recorded every 10 minutes, yielding up to approximately 6400, 

5000, and 2800 samples per group corresponding to stress levels 

+60, +70, and +80 ℃, respectively. This acquisition provides 

high-frequency data and sufficiently long and valuable time 

series for statistical analysis. The raw voltage data for the three 

current groups are shown in Figure 4 and Table 2. 

 

Figure 3. The test rigs of the experiment including thermal 

climate chamber, DC power supplies, central computer and 

data logger. 

 

Figure 4. Graphical plots of the raw voltage data of tested LEDs at the current levels of 1050 mA (left), 525 mA (middle) and 210 

mA (right) under a step thermal stress AT. 

Table 2. An example of the raw voltage data of tested LEDs under a step thermal stress AT. 

Time [hour] Voltage [V] (1050 mA) Voltage [V] (525 mA) Voltage [V] (210 mA) 

T = + 60℃ 

0 8.746509 8.244681 7.905493 

0.16 8.746468 8.24464 7.90555 

0.33 8.746386 8.244632 7.905526 

...  …  …  … 

T = + 70℃ 

1080 8.722047 8.221457 7.879998 

1080.16 8.721571 8.220637 7.879325 

1080.33 8.721309 8.220276 7.879129 

...  …  …  … 

T = + 80℃ 

1920 8.69469 8.194896 7.853354 

1920.16 8.693624 8.194437 7.852887 

1920.33 8.693772 8.19456 7.852887 

...  …  …  … 
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To properly assess the heterogeneity in degradation 

behaviour, the degradation data were analysed separately for 

each temperature level and drive-current group. Thermal stress 

and electrical stress influence LED degradation through 

different physical mechanisms, temperature accelerates defect 

generation and material ageing, while higher drive current 

increases junction temperature via self-heating. When 

observations across different stress conditions are pooled, the 

resulting dataset becomes a mixture of trajectories governed by 

different effective stress levels, obscuring systematic 

differences in degradation rates, bias statistical inference on the 

shape and scale of the degradation distribution, and violate key 

assumptions of accelerated testing. From a modelling 

perspective, mixing heterogeneous degradation paths leads to 

distorted estimates of critical parameters: (i) the slope and 

curvature of the degradation trend, (ii) the variance structure of 

the data component, and (iii) the parameters of the assumed 

lifetime distribution. Analysing within each temperature–

current subgroup therefore, ensures that degradation dynamics, 

acceleration factors, and distributional parameters are estimated 

consistently under homogeneous stress conditions, enabling 

meaningful comparisons across groups and preserving the 

physical interpretability of the accelerated test results. 

3. Methodology for analysis of LED degradation 

heterogeneity 

Degradation behaviour analysis is a key aspect of LED 

reliability research. The main task is to address how LEDs 

degrade under various test conditions and how the resulting 

variability can be quantified. In reliability studies, the 

degradation of LEDs can be represented by a common 

degradation trajectory model, in which the observed 

degradation signal of each unit is decomposed into a systematic 

trend component and stochastic deviations reflecting 

measurement noise and intrinsic variability. Formally, the 

degradation of the i-th LED at time t can be expressed as: 

 𝑌𝑖(𝑡) = 𝑓𝑖(𝛉, 𝑡) + 𝜀𝑖(𝑡)   (1) 

where fi(θ,t) denotes the underlying degradation trend, θ is the 

set of degradation parameters, and εi(t) captures random 

fluctuations and intrinsic variability. Intrinsic variability is 

understood as the inherent fluctuations or differences of the 

degradation process itself, arising from the material 

characteristics and operating mechanism of each LED. 

In this study, the heterogeneity in the degradation trend 

fi(θ,t) is evaluated using the degradation slope, estimated from 

the main trend extracted via EMD. Meanwhile, heterogeneity in 

the intrinsic variability is assessed based on the combination of 

the EMD with KDE and quantifies distributional divergences 

through JSD, WD, and MMD. This dual-level assessment of 

heterogeneity in trend and intrinsic variability is crucial. By 

quantifying the sources of heterogeneity, it provides the 

information for developing reliable accelerated degradation 

models and for accurately predicting RUL under varying stress 

conditions.  

3.1. Kernel Density Estimation 

Density distribution analysis is a widely used method in data 

science, and is especially suitable for time series data. KDE 

method is especially beneficial when the underlying distribution 

of the data is unknown or uncertain. The KDE is  

a nonparametric density estimation technique used to estimate 

the probability density function (PDF) of a random variable [39]. 

For a given dataset Y = (Y1, Y2,…,Ym) , the estimated density 

at an observation point y is computed as the average of kernels 

centred at each sample point, and is mathematically defined as: 

𝑓(𝑦) = 𝑚−1ℎ
−1 ∑ 𝐾 (

𝑦−𝑌𝑖

ℎ
)𝑚

𝑖=1 , −∞ < 𝑦 < +∞ (2) 

where 𝑓(𝑦) denotes the estimated density at point y; m is the 

number of observations of Y; h is the bandwidth parameter that 

controls the smoothness of the density estimation; K(•) is the 

kernel function, which is typically a symmetric PDF; and Yi 

represents each data point in the sample.  

In KDE, two key considerations are the choice of kernel 

function and the selection of bandwidth. The classical kernel 

estimation can be found in [40]. The kernel determines how data 

around each observation is smoothed, with the Gaussian kernel 

being widely used due to its smoothness and theoretical 

foundation. However, prior study [39] emphasise that the 

bandwidth plays a more critical role, as it directly controls the 

smoothness of the estimated density. Several methods exist for 

bandwidth selection, including rule-of-thumb approaches, 

cross-validation, and the Sheather–Jones (SJ) method. Among 

these, the SJ method for estimating bandwidth in KDE [41] is 

particularly favoured for its accuracy and stability across a wide 

range of distributions, making it the default choice in many 

statistical applications. This method is proposed to select 
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bandwidth by minimizing the approximate mean square integral 

error: 

𝐴𝑀𝐼𝑆𝐸(ℎ) =
𝑅(𝐾)

𝑛ℎ
+

1

4
𝜇2(𝐾)2ℎ

4𝑅(𝑓") (3) 

where  

𝑅(𝐾) = ∫ 𝐾(𝑢)2𝑑𝑢, 𝜇2(𝐾) = ∫ 𝑢2𝐾(𝑢)𝑑𝑢
+∞

−∞
  (4) 

and 

 𝑅(𝑓") = ∫(𝑓"(𝑦))
2

𝑑𝑦   (5) 

The theoretical optimal bandwidth is then determined by: 

ℎ
∗ = (

𝑅(𝐾)

𝜇2(𝐾)2𝑅(𝑓")𝑛
)

1/5

 (6) 

Since 𝑅(𝑓")  is unknown, SJ uses the estimation plug-in: 

estimates 𝑓"  through KDE with pilot bandwidth, then 

substitutes it into the above formula. The result is a nonlinear 

equation that needs to be solved numerically to get the optimal 

bandwidth. 

3.2. Empirical Mode Decomposition 

Feature extraction transforms complex raw data into concise, 

meaningful representations by reducing noise and 

dimensionality, thereby improving modelling, prediction, and 

classification performance. EMD method, proposed by Huang 

et al. [42], decomposes a nonlinear and no stationary signal into 

a set of Intrinsic Mode Functions (IMFs) and a residual, as 

presented in Equation (7). Each IMF captures oscillations at  

a specific time scale, revealing the underlying dynamical 

structure without prior assumptions on stationary or functional 

form. Unlike traditional methods such as Fourier or Wavelet 

Transform, EMD is fully adaptive and data-driven, making it 

particularly effective for analysing nonlinear, non-standard, and 

time-varying signals. An IMF is defined by two conditions: (1) 

the number of zero crossings and extrema differ at most by one, 

and (2) the mean of the upper and lower envelopes is zero at all 

times [43]. 

𝑌(𝑡) = ∑ 𝐼𝑀𝐹𝑖(𝑡)𝑛
𝑖=1 + 𝑟(𝑡)  (7) 

where Y(t) is obtained time-domain data, IMFi(t) is the ith 

IMF, n is the number of IMFs, extracted from original data and 

r(t) is residual data, which is main trend of Y(t). The main 

process of the EDM for degradation data of equipment in each 

stage is summarized below: 

• Initialize the degradation data Y(t) 

• Find the upper and lower extrema eupper, elower points of Y 

and calculate the mean of upper and lower envelopes 

using p-chip interpolation: 

𝐼(𝑡) = 𝑌(𝑡) −
𝑒𝑢𝑝𝑝𝑒𝑟+𝑒𝑙𝑜𝑤𝑒𝑟

2
 (8) 

I(t) is the 1st IMF if two conditions are satisfied, if not the step 

(2) are repeated until two conditions are met and I(t) is regarded 

the 1st IMF. 

• Calculate 𝑟(𝑡) = 𝑌(𝑡) − 𝐼𝑀𝐹1(𝑡), and set r(t) as the new 

Y(t). 

• Repeat the step (2), (3) until r(t) becomes a monotonic 

function. 

By using the EMD, the LED degradation data are 

decomposed into multiple IMFs and residual components. In the 

composite degradation trajectory, the residual component is 

regarded as the main degradation trend [44], while the IMFs 

capture different layers of intrinsic variability superimposed on 

the main degradation trend. High-frequency IMFs generally 

reflect measurement noise or rapid fluctuations, while lower-

frequency IMFs reflect slower variations [42] that are not part 

of the long-term trend and are treated as representations of 

intrinsic variability, capturing local oscillations and micro-

fluctuations in the degradation process. By isolating these 

components, the IMFs help quantify the within-path variability 

and clarify the heterogeneity in degradation behaviour across 

LEDs, allowing the degradation process to be analysed more 

reliably. 

3.3. Quantification of distributional divergences 

Quantifying divergences between distributions is an important 

step in data analysis, helping to assess the variability and 

heterogeneity between data sets that traditional summary 

statistics such as mean or variance do not adequately capture. In 

the context of degradation data analysis, comparing 

distributions of different samples allows for the identification of 

unusual samples and the assessment of uniformity during 

degradation.  

Let (X, B) be a measurable space, where X is the sample 

space and B is a σ-algebra on X. Given observed data Y1, 

Y2,…,YN are random variables defined on X with the respective 

independently and identically distributed (i.i.d.) {P1, P2,…, 

PN} ∈ P(X) defined on (X, B). For any two probability 

distributions Pi, Pj, a divergence measure is a nonnegative 
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functional:  

𝐷(𝑃𝑖 , 𝑃𝑗): 𝑃(𝑋) × 𝑃(𝑋) → 𝑅≥0  (9) 

Such that 𝐷(𝑃𝑖 , 𝑃𝑗) = 0 ⇔ 𝑃𝑖 = 𝑃𝑗 

Given the collection of N probability distributions 

{𝑃1, 𝑃2, . . , 𝑃𝑁}, the global heterogeneity index is the empirical 

mean of pairwise divergences is given: 

𝐻𝐷({𝑃1, 𝑃2, . . . , 𝑃𝑁}) = 𝐸(𝐼,𝐽)[𝐷(𝑃𝐼 , 𝑃𝐽)] (10) 

where the expectation is taken with respect to the uniform 

distribution over unordered pairs (𝐼, 𝐽), 𝐼 ≠ 𝐽.  

Let 𝛺 = {(𝑖, 𝑗): 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁}. The number of such unordered 

pairs is |𝛺| =
𝑁(𝑁−1)

2
 . The empirical mean of pairwise 

divergences is computed by definition of uniform expectation: 

 𝐸(𝐼,𝐽)[𝐷(𝑃𝐼 , 𝑃𝐽)] =
1

|𝛺|
∑ 𝐷(𝑃𝑖 , 𝑃𝑗)(𝑖,𝑗)∈𝛺  (11) 

Substituting |𝛺| =
𝑁(𝑁−1)

2
 gives: 

𝐸(𝐼,𝐽)[𝐷(𝑃𝐼 , 𝑃𝐽)] =
2

𝑁(𝑁−1)
∑ 𝐷(𝑃𝑖 , 𝑃𝑗)(𝑖,𝑗)∈𝛺   (12) 

Therefore, the global heterogeneity index associated with 𝐷(⋅) 

is defined as the average pairwise divergence: 

𝐻𝐷({𝑃1, 𝑃2, . . . , 𝑃𝑁}) =
2

𝑁(𝑁−1)
∑ 𝐷(𝑃𝑖 , 𝑃𝑗)1≤𝑖≤𝑗≤𝑁  (13) 

The index quantifies the global dispersion or dissimilarity of the 

family {𝑃1, 𝑃2, . . , 𝑃𝑁} in the divergence-induced geometry. For 

a single distribution Pi, a local heterogeneity index related to Pi 

can be defined by: 

𝐻𝐷(𝑃𝑖|{𝑃1, 𝑃2, . . . , 𝑃𝑁}) =
1

𝑁−1
∑ 𝐷(𝑃𝑖 , 𝑃𝑗)𝑁

𝑗=1
𝑗≠𝑖

 (14) 

which measures the average divergence between Pi and all 

other distribution. Both global and local indices can be used to 

quantify distributional heterogeneity in multi-sample or 

federated learning contexts. In the multi-scale case, suppose that 

at “scale” m each device i gives a distribution Pi,m. We define 

the heterogeneity index at scale m: 

𝐻𝐷
(𝑚)

=
2

𝑁(𝑁−1)
∑ 𝐷(𝑃𝑖,𝑚, 𝑃𝑗,𝑚)0≤𝑖≤𝑗≤𝑁  (15) 

Therefore, the composite multi-scale index is defined by: 

𝐻𝐷 = ∑ 𝑤𝑚𝐻𝐷
(𝑚)𝑀

𝑚=1   (16) 

where wk is weighted by the importance of the scale.  

In this study, JSD, WD, and MMD were employed as 

quantitative measures of divergence to assess heterogeneity in 

LED degradation across different temperature and drive-current 

groups. Meanwhile, the Kullback–Leibler divergence (KLD) is 

often insensitive to tail differences [45] and may be undefined 

when the distributions have non-overlapping support. 

Parametric tests such as the chi-square test rely on restrictive 

assumptions (e.g., sample-size requirements, independence) [46] 

that are rarely satisfied in degradation data. Likewise, the 

Kolmogorov–Smirnov test shows low sensitivity to differences 

in higher-order moments or tail behaviour [47]. The JSD is  

a symmetric, bounded measure derived from the KLD. It 

quantifies the similarity between probability distributions in  

a way that is robust to zero-probability bins, making it suitable 

for discrete or histogram-based representations of degradation 

signals [48]. The WD, also known as the Earth Mover’s 

Distance, evaluates the minimal “effort” required to transform 

one distribution into another, incorporating the geometry of the 

support space. The WD is particularly advantageous when the 

distributions exhibit shifts or scale differences [49]. The MMD 

is a kernel-based measure that captures higher-order differences 

between distributions, including differences in moments and 

shapes, and is well-suited for non-parametric settings where the 

distributions may not follow standard theoretical forms [50].  

By combining these three measures, the study leverages  

a multi-faceted evaluation of divergence: JSD captures overall 

probabilistic similarity, the WD emphasizes the geometric or 

structural difference, and the MMD detects subtle differences in 

higher-order statistics. This integrated approach ensures  

a robust assessment of heterogeneity in LED degradation, 

accounting for variations in both central tendency and 

distributional shape across stress groups. 

The JSD is a symmetric and differentiable measure for 

comparing the differences between two probability distributions, 

built on the KLD but overcomes the disadvantages such as: 

being asymmetric and possibly infinite when the two 

distributions do not have the same support. For any two 

probability distributions Pi, Pj, the JSD is defined by [48]: 

𝐷𝐽𝑆(𝑃𝑖‖𝑃𝑗) =
1

2
𝐷𝐾𝐿(𝑃𝑖‖𝑀𝑖𝑗) +

1

2
𝐷𝐾𝐿(𝑃𝑗‖𝑀𝑖𝑗) (17) 

where 𝑀𝑖𝑗 =
1

2
(𝑃𝑖 + 𝑃𝑗)  is mixture probability of 𝑃𝑖 , 𝑃𝑗  ; and  

𝐷𝐾𝐿(𝑃𝑖‖𝑃𝑗) = ∑ 𝑝𝑖𝑘 𝑙𝑜𝑔
𝑝𝑖𝑘

𝑝𝑗𝑘
𝑘  is the KLD. 

The JSD can be represented in detail as:
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𝐷𝐽𝑆(𝑃𝑖‖𝑃𝑗) =
1

2
∑ 𝑃𝑖(𝑥) 𝑙𝑜𝑔

𝑃𝑖(𝑦)

𝑀𝑖𝑗(𝑦)
+𝑦∈𝑋

1

2
∑ 𝑃𝑗(𝑦) 𝑙𝑜𝑔

𝑃𝑗(𝑦)

𝑀𝑖𝑗(𝑦)𝑥∈𝑋    (18) 

Meanwhile, the WD measures the “minimum cost” of 

transforming a distribution Pi into a distribution Pj, where cost 

is understood as “mass × distance travelled”. In other words, it 

describes the minimum amount of work needed to “move the 

soil” (probability mass) from shape Pi to shape Pj. WD order p 

(p≥ 1) is defined by [49]: 

𝑊𝑝(𝑃𝑖 , 𝑃𝑗) = ( 𝑖𝑛𝑓
𝛾∈𝛤(𝑃𝑖,𝑃𝑗)

∫ 𝑑(𝑥, 𝑦)𝑝𝑑𝛾(𝑥, 𝑦)
𝑋×𝑋

)

1

𝑝

 (19) 

The first order WD: 

𝑊1(𝑃𝑖 , 𝑃𝑗) = 𝑖𝑛𝑓
𝛾∈𝛤(𝑃𝑖,𝑃𝑗)

∫ 𝑑(𝑥, 𝑦)𝑑𝛾(𝑥, 𝑦)
𝑋×𝑋

 (20) 

where 𝛤(𝑃𝑖 , 𝑃𝑗)  is the set of joint distribution which 

marginal distributions are Pi, Pj, d(x, y) is the Euclidean distance, 

and 𝛾(𝑥, 𝑦) is the method to distribute mass to convert Pi to Pj. 

In another approach, the MMD is a widely used non-

parametric distance measure for comparing two probability 

distributions. The core idea of the MMD is to map data from the 

observation space to the Recurrent Hilbert Space through a 

feature kernel, and then measure the distance between the mean 

vectors in this space. Because it does not require any 

assumptions about the distribution shape and is scalable to high-

dimensional data, the MMD has been applied in many fields 

such as non-parametric hypothesis testing, generative anomaly 

modelling evaluation, domain adaptation, and degenerative data 

analysis to determine the homogeneity of samples. MMD2 

between any two distributions Pi, Pj, is defined by [50]: 

𝑀𝑀𝐷2(𝑃𝑖 , 𝑃𝑗) = ‖𝐸𝑋𝑖~𝑃𝑖
[𝜙(𝑌𝑖)] − 𝐸𝑋𝑗~𝑃𝑗

[𝜙(𝑌𝑗)]‖
𝐻

2

      (21) 

𝑀𝑀𝐷2(𝑃𝑗 , 𝑃𝑗) = ‖𝜇𝑃𝑖
− 𝜇𝑃𝑗

‖
𝐻

2

, 𝜇𝑃𝑖
: = 𝐸𝑋𝑖~𝑃𝑖

[𝜙(𝑌𝑖)] ∈ 𝐻     (22) 

where ϕ is the feature mapping defined by the kernel 𝑘(𝑌𝑖 , 𝑌𝑗) =

⟨𝜙(𝑌𝑖), 𝜙(𝑌𝑗)⟩. The biased estimator of MMD2 is defined by:  

 

𝑀𝑀𝐷2(𝑃̂𝑖 , 𝑃̂𝑗) =
1

𝑛𝑖
2 ∑ ∑ 𝑘(𝑦𝑖𝑎 , 𝑦𝑖𝑏)𝑏𝑎 +

1

𝑛𝑗
2 ∑ ∑ 𝑘(𝑦𝑗𝑎 , 𝑦𝑗𝑏)𝑏𝑎 −

2

𝑛𝑖𝑛𝑗
∑ ∑ 𝑘(𝑦𝑖𝑎 , 𝑦𝑗𝑏)𝑏𝑎    (23) 

4. Results and discussion 

In this study, the high-frequency voltage data were used directly 

for EMD without down-sampling or explicit noise filtering. The 

adaptive nature of EMD allows the decomposition of non-linear 

and non-stationary signals IMFs, which separate high-

frequency components, often corresponding to measurement 

noise or transient fluctuations, from lower-frequency modes 

that reflect the underlying degradation dynamics. The 

combination of high-resolution data and EMD facilitates both 

precise extraction of degradation trends and comparative 

statistical evaluation across stress conditions, improving the 

interpretability and reliability of accelerated degradation 

analyses. In this section, the evaluation results of LED 

degradation heterogeneity are presented. The analysis is 

performed for LEDs under identical test conditions and 

operating modes. We perform the analysis on two main aspects: 

i) analysis of degradation heterogeneity and ii) testing of the 

homogeneity hypothesis. The KDE method is applied with  

a Gaussian kernel, and the bandwidth is optimized using the SJ 

plug-in method [41]. In addition, the MMD measure is used 

with a Gaussian kernel, in which the bandwidth is determined 

using the median heuristic method [51]. The weights of the 

IMFs are determined based on their energy levels. 

4.1. Analysis of degradation heterogeneity of LEDs 

To analyse heterogeneity in the LED degradation process, the 

degradation data of LEDs were first grouped according to their 

temperature and drive-current conditions to ensure that each 

dataset represented a homogeneous degradation mechanism, as 

mentioned in Section 2. The grouped degradation data were then 

decomposed into a main degradation trend and a set of 

oscillatory components using EMD, forming the composite 

degradation trajectory. Figure 5 illustrates the first five IMFs of 

LED 1 operated at 1050 mA and +60 °C as an example.  

In practice, measurement data are inevitably contaminated 

by white noise, and thus not all IMFs obtained from EMD 

decomposition are meaningful. To separate voltage degradation 
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trend from high-frequency noise or transient fluctuations, we 

applied a multi-criteria IMF selection and denoising procedure 

following EMD. As EMD is fully data-adaptive, initial high-

frequency IMFs may be noise-dominated, necessitating robust 

filtering. First, each IMF was subjected to a Ljung–Box Q-test 

[52], and those failing to reject the white-noise hypothesis at 5% 

significance were excluded, preventing residual noise from 

contaminating the degradation trend [42,53]. Surviving IMFs 

were further filtered based on relative energy (<5% of total) and 

high-frequency content, following established EMD denoising 

practices [54]. Finally, monotonicity was assessed using the 

Mann–Kendall trend test [55,56] or linear regression slope 

analysis [57], retaining only IMFs with statistically significant 

trends (𝑝 < 0.05) and slope magnitudes above 5% of the IMF 

margin, ensuring that oscillatory or quasi-periodic components 

are not misinterpreted as long-term degradation. Figure 6 

illustrates the time series, autocorrelation, histogram, and power 

spectrum of an example IMF, providing evidence for the IMF 

classification procedure. This hybrid approach, combining 

EMD with statistical tests and energy/frequency-based 

thresholding, offers several advantages: it reduces spurious 

high-frequency noise and mode-mixing artefacts, preserves 

components that reliably represent the underlying degradation, 

and allows threshold validation via sensitivity analysis to ensure 

reproducibility. After filtering, the “denoised” degradation 

signal was reconstructed by summing only the retained IMFs 

and the residual component.  

 

Figure 5. Illustration of EMD of degradation voltage data of LED1 under temperature of +60 ℃ at current of 1050 mA. 

 

Figure 6. Illustration of time series, autocorrelation function, histogram, power spectrum plots of an IMF. 
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To ensure the rigour and representativeness of the extracted 

degradation trend, the residual component was subjected to the 

same testing procedure as described above, followed by  

a dedicated monotonicity assessment. Monotonicity was 

evaluated by computing the first-order differences between 

consecutive samples, 𝛥𝑟(𝑡𝑖) = 𝑟(𝑡𝑖+1) − 𝑟(𝑡𝑖) . This criterion 

ensures that the residual indeed represents a meaningful, slowly 

varying trajectory suitable for subsequent statistical modelling 

of the degradation process. A residual path was considered 

effectively monotonic if the vast majority of 𝛥𝑟(𝑡𝑖)  values 

shared the same sign. Visual inspection and statistical 

evaluation both confirmed the absence of oscillatory behaviour 

incompatible with an underlying degradation trend. Thereby, 

this residual component is regarded as the main degradation 

trend. The IMFs capture different layers of intrinsic variability 

superimposed on this main degradation trend. 

In this study, degradation heterogeneity is examined from 

two complementary perspectives: (i) heterogeneity in the main 

degradation trends, which reflects differences in initial 

degradation levels and long-term degradation rates; and (ii) 

heterogeneity in the oscillatory components (IMFs), which 

represent fluctuations around the trend and capture intrinsic 

variability within the degradation process. 

Figure 7 shows the adjusted main degradation trends, of 

LEDs operated at 1050 mA (top), 525 mA (middle), and 210 mA 

(bottom). These trends are normalised by subtracting their 

initial degradation values so that all trajectories start at zero, 

thereby allowing a clearer visual comparison of their 

degradation slopes. Tables 3–5 report the initial degradation 

values and degradation slopes derived from the EMD-extracted 

residuals. The slopes were estimated using MLE to ensure 

statistical efficiency and robustness. Table 6 provides the 

average junction temperature difference of the LEDs between 

different thermal stresses determined based on the slope of the 

degradation curve and the Arrhenius [5]. As shown in Figure 8 

and Tables 3-5, LED degradation heterogeneity manifests in 

two complementary dimensions: (1) absolute degradation levels 

(differences in initial voltage values), and (2) degradation 

kinetics (differences in slope). The results reported in Table 6 

confirms that the estimated junction temperature differences 

closely align with the temperature steps applied in the tests, 

demonstrating that the degradation slopes reliably reflect the 

actual thermal stress conditions.  

 

 

 

Figure 7. The graphical plots of the adjusted degradation trends from EMD analysis of LEDs at the current level of 1050 mA (top), 

525 mA (middle) and 210 mA (bottom). 
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Table 3. The initial degradation values and slope of degradation trend of LED at current level of 1050 mA. 

LED-ID T = +60 ℃ T = +70 ℃ T = +80 ℃ 

Initial voltage [V] Drift [V/h] Initial voltage [V] Drift [V/h] Initial voltage [V] Drift [V/h] 

1 8.679766 -3.33·10-6 8.654863 -7.66·10-6 8.627157 -1.89·10-5 

2 8.745670 -2.10·10-6 8.719252 -5.64·10-6 8.692112 -1.33·10-5 

3 8.743251 -2.28·10-6 8.715490 -5.36·10-6 8.688151 -1.30·10-5 

4 8.675236 -3.19·10-6 8.650314 -7.49·10-6 8.623475 -1.89·10-5 

5 8.721904 -3.27·10-6 8.693562 -7.56·10-6 8.666620 -1.85·10-5 

6 8.741322 -2.27·10-6 8.715616 -5.66·10-6 8.688586 -1.42·10-5 

7 8.697613 -2.68·10-6 8.671483 -6.78·10-6 8.645520 -1.61·10-5 

8 8.742674 -2.07·10-7 8.715497 -6.55·10-6 8.689359 -1.60·10-5 

9 8.665605 -2.64·10-6 8.639678 -6.37·10-6 8.610254 -1.68·10-5 

10 8.721637 -2.44·10-6 8.693179 -5.75·10-6 8.667198 -1.43·10-5 

Table 4. The initial degradation values and slope of degradation trend of LED at current level of 525 mA. 

LED-ID T = +60 ℃ T = +70 ℃ T = +80 ℃ 

Initial voltage [V] Drift [V/h] Initial voltage [V] Drift [V/h] Initial voltage [V] Drift [V/h] 

11 8.244681 -4.97·10-7 8.221457 -1.11·10-6 8.192814 -2.40·10-6 

12 8.275884 -6.25·10-7 8.254341 -1.43·10-6 8.225152 -3.50·10-6 

13 8.244878 -5.05·10-7 8.224604 -1.14·10-6 8.197039 -2.60·10-6 

14 8.287069 -5.70·10-7 8.262460 -1.29·10-6 8.232587 -2.98·10-6 

15 8.286594 -5.30·10-7 8.263626 -1.18·10-6 8.236210 -2.87·10-6 

16 8.246887 -4.59·10-7 8.224983 -1.05·10-6 8.195997 -2.26·10-6 

17 8.282296 -5.55·10-7 8.258310 -1.11·10-6 8.229401 -2.48·10-6 

18 8.276884 -5.52·10-7 8.250610 -1.21·10-6 8.220710 -2.76·10-6 

19 8.240925 -6.60·10-7 8.220424 -1.58·10-6 8.192204 -3.44·10-6 

20 8.274162 -5.05·10-7 8.252952 -1.29·10-6 8.223991 -2.91·10-6 

Table 5. The initial degradation values and slope of degradation trend of LED at current level of 210 mA. 

LED-ID 
T = +60 ℃ T = +70 ℃ T = +80 ℃ 

Initial voltage [V] Drift [V/h] Initial voltage [V] Drift [V/h] Initial voltage [V] Drift [V/h] 

21 7.905493 -3.65·10-7 7.87970 -8.18·10-7 7.851761 -1.80·10-6 

22 7.901959 -4.03·10-7 7.87654 -8.73·10-7 7.849277 -1.89·10-6 

23 7.903845 -4.04·10-7 7.87805 -8.79·10-7 7.850245 -2.01·10-6 

24 7.904837 -3.31·10-7 7.87893 -7.51·10-7 7.850680 -1.74·10-6 

25 7.907469 -4.01·10-7 7.88178 -8.58·10-7 7.853968 -2.01·10-6 

26 7.909987 -3.75·10-7 7.88486 -7.83·10-7 7.857737 -1.87·10-6 

27 7.906010 -3.52·10-7 7.88006 -7.50·10-7 7.851834 -1.73·10-6 

28 7.905747 -4.07·10-7 7.87941 -8.58·10-7 7.852589 -2.05·10-6 

29 7.909454 -3.40·10-7 7.88331 -7.16·10-7 7.855621 -1.58·10-6 

30 7.917753 -4.20·10-7 7.89198 -8.76·10-7 7.863932 -2.14·10-6 

To further analyse heterogeneity, it is essential to examine 

the distributional characteristics of the individual IMFs that 

compose composite degradation trajectory. Variations in 

amplitude, shape, or kinetics of the IMFs across LEDs can 

reveal whether heterogeneity arises from local fluctuations or 

from systematic differences in the degradation mechanism. 

Accounting for IMF-level distributional heterogeneity thus 

strengthens the robustness of reliability models and enhances 

confidence in accelerated lifetime testing and predictive 

analyses. To quantify this heterogeneity, global (GHI) and local 

heterogeneity indices (LHI) were computed from pairwise 

divergences using formulas (11), (12), and (14), derived from 

the IMFs and their KDEs. Two complementary analyses were 
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performed: (i) a distribution shape-only assessment using 

normalised IMFs, which isolates distribution-shape differences, 

and (ii) a raw-distribution assessment using unnormalized IMFs, 

which captures differences in mean, variance, and shape. 

Comparing the two sets of indices helps identify the dominant 

source of variability: larger discrepancies in the raw-distribution 

indices indicate heterogeneity driven mainly by degradation 

magnitude, whereas larger discrepancies in the distribution 

shape-only indices reflect differences in shape and degradation 

kinetics. 

Table 6. The average junction temperature difference of the LEDs between different thermal stresses. 

LED- 

ID 

1050 mA LED- 

ID 

525 mA LED- 

ID 

210 mA 

60 ℃-70 ℃ 70 ℃-80 ℃ 60 ℃-70 ℃ 70 ℃-80 ℃ 60 ℃-70 ℃ 70 ℃-80 ℃ 

1 12.04 13.04 11 11.41 11.29 21 11.64 11.38 

2 14.24 12.35 12 11.94 12.92 22 11.16 11.16 

3 12.34 12.79 13 11.77 11.86 23 11.23 11.87 

4 12.34 13.32 14 11.75 12.10 24 11.82 12.12 

5 12.09 12.90 15 11.59 12.76 25 11.01 12.22 

6 13.22 13.23 16 11.95 11.03 26 10.61 12.56 

7 13.38 12.43 17 11.38 11.58 27 10.93 12.06 

8 12.76 12.87 18 11.31 11.92 28 10.76 12.56 

9 12.72 13.98 19 12.56 11.27 29 10.75 11.44 

10 12.40 13.12 20 12.33 11.73 30 10.61 12.90 

To further analyse heterogeneity, it is essential to examine 

the distributional characteristics of the individual IMFs that 

compose composite degradation trajectory. Variations in 

amplitude, shape, or kinetics of the IMFs across LEDs can 

reveal whether heterogeneity arises from local fluctuations or 

from systematic differences in the degradation mechanism. 

Accounting for IMF-level distributional heterogeneity thus 

strengthens the robustness of reliability models and enhances 

confidence in accelerated lifetime testing and predictive 

analyses. To quantify this heterogeneity, global (GHI) and local 

heterogeneity indices (LHI) were computed from pairwise 

divergences using formulas (11), (12), and (14), derived from 

the IMFs and their KDEs. Two complementary analyses were 

performed: (i) a distribution shape-only assessment using 

normalised IMFs, which isolates distribution-shape differences, 

and (ii) a raw-distribution assessment using unnormalized IMFs, 

which captures differences in mean, variance, and shape. 

Comparing the two sets of indices helps identify the dominant 

source of variability: larger discrepancies in the raw-distribution 

indices indicate heterogeneity driven mainly by degradation 

magnitude, whereas larger discrepancies in the distribution 

shape-only indices reflect differences in shape and degradation 

kinetics. 

Tables 7-9 present the computed GHI and LHI and highlight 

LED pairwise comparisons whose dispersion exceeds the 2σ 

threshold of global heterogeneity, based on the classified IMFs. 

In these tables, lowercase values correspond to distribution 

shape-only indices, whereas bold values represent raw 

distribution indices incorporating amplitude and variance. 

Overall, most LEDs within each group exhibit consistent 

degradation trends, although some units show deviations. The 

observed divergence tends to decrease with increasing 

temperature and/or decreasing current (Figure 8). 

A more detailed examination reveals that, at a drive current 

of 1050 mA, heterogeneity is predominantly governed by 

amplitude differences across temperatures (Table 7). For LEDs 

operating at 525 mA, early-stage heterogeneity is mainly 

amplitude-driven, whereas later-stage differences reflect 

variations in shape and degradation kinetics (Table 8). At the 

lowest current level of 210 mA, heterogeneity is consistently 

dominated by shape and kinetics throughout the degradation 

process (Table 9). These results indicate a clear dependence of 

heterogeneity on operating conditions: at high currents and low 

temperatures, differences in degradation magnitude dominate, 

while at low currents and high temperatures, variations in the 

distribution shape and kinetics become the primary source of 

heterogeneity. Collectively, the GHI and LHI analyses provide 

quantitative evidence that the nature of LED degradation 

heterogeneity shifts from amplitude-driven to shape/kinetics-

driven as operating stress decreases, highlighting the 

importance of considering both global and local heterogeneity 

in reliability assessment.  
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Table 7. The heterogeneity indices of LEDs at the current level of 1050 mA. 

LED-ID 
T= +60 ℃ T= +70 ℃ T= +80 ℃ 

JSD WD MMD2 JSD WD MMD2 JSD WD MMD2 

Global index 
0.0137(*) 0.0068 0.0024 0.0171 0.0073 0.0043 0.0141 0.0084 0.0027 

0.0169(**) 0.0127 0.0056 0.0173 0.0110 0.0051 0.0156 0.0132 0.0042 

Local index 

1 
0.0119 0.0056 0.0015 0.0208 0.0084 0.0075 0.0110 0.0066 0.0021 

0.0160 0.0135 0.0078 0.0178 0.0115 0.0051 0.0139 0.0133 0.0048 

2 
0.0122 0.0064 0.0026 0.0146 0.0058 0.0029 0.0131 0.0086 0.0025 

0.0129 0.0105 0.0037 0.0128 0.0080 0.0029 0.0133 0.0117 0.0035 

3 
0.0134 0.0065 0.0025 0.0197 0.0079 0.0065 0.0120 0.0073 0.0020 

0.0146 0.0094 0.0031 0.0149 0.0084 0.0032 0.0137 0.0105 0.0027 

4 
0.0126 0.0057 0.0020 0.0142 0.0059 0.0031 0.0129 0.0078 0.0028 

0.0142 0.0112 0.0049 0.0139 0.0088 0.0040 0.0133 0.0108 0.0029 

5 
0.0126 0.0062 0.0019 0.0154 0.0061 0.0032 0.0118 0.0069 0.0020 

0.0161 0.0116 0.0045 0.0170 0.0099 0.0051 0.0133 0.0105 0.0030 

6 
0.0118 0.0063 0.0020 0.0153 0.0072 0.0039 0.0155 0.0087 0.0036 

0.0160 0.0133 0.0067 0.0178 0.0120 0.0068 0.0163 0.0135 0.0044 

7 
0.0120 0.0056 0.0015 0.0142 0.0060 0.0033 0.0124 0.0066 0.0018 

0.0193 0.0128 0.0059 0.0179 0.0116 0.0066 0.0150 0.0123 0.0039 

8 
0.0125 0.0062 0.0022 0.0139 0.0058 0.0027 0.0126 0.0070 0.0022 

0.0153 0.0118 0.0064 0.0151 0.0100 0.0049 0.0139 0.0112 0.0043 

9 
0.0129 0.0062 0.0026 0.0135 0.0066 0.0030 0.0135 0.0085 0.0028 

0.0130 0.0095 0.0029 0.0135 0.0081 0.0029 0.0130 0.0101 0.0028 

10 
0.0120 0.0063 0.0024 0.0120 0.0061 0.0025 0.0121 0.0074 0.0025 

0.0149 0.0108 0.0042 0.0148 0.0103 0.0047 0.0149 0.0153 0.0053 

Outliers 
2,9 1,2,3 2,3,4,6,9 

1,5,6,7,8 1,5,6,7 1,2,7,8,10 

(*) Distribution shape-only indices, (**) Raw distribution indices 

Table 8. The heterogeneity indices of LEDs at the current level of 525 mA.  

LED-ID T= +60 ℃ T= +70 ℃ T= +80 ℃ 

JSD WD MMD2 JSD WD MMD2 JSD WD MMD2 

Global index 0.0129(*) 0.0072 0.0026 0.0136 0.0044 0.0029 0.0210 0.0060 0.0049 

0.0178(**) 0.0121 0.0065 0.0144 0.0063 0.0035 0.0203 0.0067 0.0042 

Local index 

11 
0.0115 0.0070 0.0027 0.0112 0.0038 0.0022 0.0179 0.0054 0.0044 

0.0152 0.0108 0.0063 0.0114 0.0050 0.0026 0.0176 0.0058 0.0045 

12 
0.0124 0.0063 0.0025 0.0116 0.0041 0.0021 0.0185 0.0050 0.0045 

0.0157 0.0107 0.0053 0.0133 0.0058 0.0032 0.0158 0.0051 0.0033 

13 
0.0109 0.0070 0.0022 0.0139 0.0047 0.0032 0.0170 0.0051 0.0036 

0.0140 0.0119 0.0048 0.0129 0.0059 0.0028 0.0160 0.0058 0.0030 

14 
0.0115 0.0064 0.0025 0.0124 0.0035 0.0028 0.0203 0.0056 0.0045 

0.0139 0.0097 0.0047 0.0130 0.0052 0.0028 0.0186 0.0068 0.0032 

15 
0.0124 0.0065 0.0025 0.0129 0.0038 0.0031 0.0208 0.0055 0.0055 

0.0168 0.0104 0.0061 0.0120 0.0053 0.0027 0.0168 0.0054 0.0026 

16 
0.0106 0.0059 0.0020 0.0135 0.0042 0.0035 0.0199 0.0059 0.0052 

0.0160 0.0101 0.0059 0.0131 0.0058 0.0032 0.0183 0.0058 0.0036 

17 
0.0106 0.0060 0.0020 0.0126 0.0039 0.0029 0.0162 0.0047 0.0035 

0.0168 0.0112 0.0066 0.0136 0.0059 0.0038 0.0161 0.0053 0.0031 

18 
0.0099 0.0053 0.0014 0.0105 0.0036 0.0016 0.0252 0.0063 0.0064 

0.0154 0.0106 0.0053 0.0118 0.0050 0.0024 0.0252 0.0068 0.0062 

19 
0.0132 0.0066 0.0025 0.0123 0.0039 0.0020 0.0160 0.0050 0.0035 

0.0183 0.0120 0.0070 0.0150 0.0069 0.0043 0.0172 0.0067 0.0042 

20 
0.0127 0.0074 0.0028 0.0115 0.0041 0.0023 0.0173 0.0052 0.0031 

0.0181 0.0115 0.0071 0.0134 0.0055 0.0033 0.0209 0.0068 0.0042 

Outliers 
11,20 13,14,15,16,17 14,15,16,18 

17,19 16,17,19 11,14,18,19,20 

(*) Distribution shape-only indices, (**) Raw distribution indices 
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Table 9. The heterogeneity indices of LEDs at the current level of 210 mA. 

LED-ID 
T= +60 ℃ T= +70 ℃ T= +80 ℃ 

JSD WD MMD2 JSD WD MMD2 JSD WD MMD2 

Global index 
0.0186(*) 0.0075 0.0050 0.0142 0.0041 0.0034 0.0260 0.0084 0.0069 

0.0146(**) 0.0092 0.0043 0.0109 0.0037 0.0011 0.0164 0.0075 0.0024 

Local index 

21 
0.0156 0.0065 0.0042 0.0205 0.0055 0.0080 0.0202 0.0072 0.0042 

0.0108 0.0070 0.0041 0.0121 0.0039 0.0013 0.0157 0.0076 0.0023 

22 
0.0132 0.0068 0.0029 0.0108 0.0031 0.0019 0.0204 0.0077 0.0047 

0.0115 0.0076 0.0030 0.0093 0.0034 0.0011 0.0170 0.0080 0.0025 

23 
0.0140 0.0058 0.0031 0.0101 0.0030 0.0019 0.0200 0.0062 0.0038 

0.0108 0.0072 0.0021 0.0079 0.0032 0.0008 0.0153 0.0072 0.0029 

24 
0.0195 0.0073 0.0054 0.0110 0.0032 0.0021 0.0226 0.0064 0.0045 

0.0136 0.0093 0.0036 0.0089 0.0028 0.0006 0.0158 0.0063 0.0020 

25 
0.0191 0.0075 0.0057 0.0166 0.0048 0.0054 0.0190 0.0063 0.0038 

0.0141 0.0091 0.0049 0.0110 0.0033 0.0007 0.0135 0.0058 0.0016 

26 
0.0243 0.0081 0.0070 0.0114 0.0035 0.0019 0.0247 0.0079 0.0067 

0.0162 0.0085 0.0054 0.0102 0.0037 0.0011 0.0154 0.0065 0.0019 

27 
0.0160 0.0063 0.0038 0.0125 0.0035 0.0023 0.0214 0.0070 0.0050 

0.0129 0.0084 0.0042 0.0106 0.0035 0.0014 0.0156 0.0069 0.0028 

28 
0.0174 0.0072 0.0057 0.0116 0.0035 0.0026 0.0294 0.0085 0.0096 

0.0118 0.0076 0.0032 0.0090 0.0031 0.0008 0.0121 0.0059 0.0018 

29 
0.0138 0.0060 0.0038 0.0122 0.0036 0.0029 0.0329 0.0097 0.0117 

0.0158 0.0093 0.0046 0.0100 0.0035 0.0011 0.0128 0.0064 0.0019 

30 
0.0141 0.0056 0.0032 0.0114 0.0033 0.0020 0.0232 0.0086 0.0078 

0.0141 0.0084 0.0033 0.0094 0.0031 0.0008 0.0143 0.0072 0.0021 

Outliers 
24,25,26,28 21,24,27,29 26,28,29,30 

24,25,26,29,30 21,26,27,29 21,22,23,27 

(*) Distribution shape-only indices, (**) Raw distribution indices 

These observations are consistent with the design of the 

SSADT, in which the initial stage is conducted at a lower 

temperature. Such a design does not compromise the assessment 

of degradation characteristics at higher temperatures, as the 

degradation process is cumulative and the physical mechanisms 

underlying voltage drift and material ageing are continuous 

across the stress range. Data collected at lower temperatures 

contribute to the estimation of early-stage degradation trends 

and help distinguish intrinsic material variability from stress-

induced acceleration. Moreover, the stepwise design enables the 

separation of stress-dependent effects, allowing reliable 

evaluation of degradation dynamics and distributional 

parameters at each stress level, which is critical for modelling 

heterogeneity associated with both temperature and drive 

current. Table 6 also confirms that the estimated junction 

temperature differences closely align with the temperature steps 

applied in the tests, validating the experimental setup and 

supports the interpretation that observed heterogeneity in both 

initial voltage levels and degradation kinetics arises from 

intrinsic LED behaviour rather than from inconsistencies in 

applied stress. 

4.2. Homogeneity hypothesis test 

The results presented in Section 4.1 provide clear evidence that 

LED degradation heterogeneity is influenced by operating 

current and ambient temperature. Heterogeneity in the main 

degradation trends, reflected by differences in initial 

degradation levels and long-term degradation rates, is clearly 

evident from the explicit values reported in Table 3-5. Although 

the heterogeneity in the oscillatory components (IMFs) has been 

quantified descriptively in Table 6-8, a formal statistical 

assessment is required to determine whether the observed 

within-group variability is statistically significant.  

For this analysis, the corresponding IMFs of LEDs were 

assumed to be independent and identically distributed samples. 

The null hypothesis was defined as H0: “The oscillatory 

components (IMFs) of LEDs within the same group are 

homogeneous,” while the alternative hypothesis was H1: “The 

oscillatory components (IMFs) of LEDs within the same group 

are heterogeneous.” We employ IMF-based bootstrap procedure. 

The applied IMF-based bootstrap procedure offers several 

important advantages. First, it provides a quantitative, 

statistically rigorous evaluation of unit-to-unit variability, 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 3, 2026 

 

preserving local degradation trends while enabling robust 

estimation of dispersion across LEDs. Second, it separates 

heterogeneity due to amplitude from differences in distribution 

shape or kinetics, allowing a nuanced understanding of 

degradation mechanisms under different operating conditions. 

Third, the bootstrap resampling approach is non-parametric and 

robust against small sample sizes or non-normal distributions, 

ensuring that the statistical conclusions are defensible. The 

testing procedure consisted of the following steps: 

• Each IMF of each LED was divided into equal-sized 

blocks to preserve local degradation trends. 

• Blocks of corresponding IMFs were pooled across LEDs 

within the same group. 

• New IMFs for each LED were reconstructed by 

randomly selecting blocks from the pooled set. 

• Test statistics were computed based on pairwise 

dispersion values derived from the reconstructed IMFs. 

• P-values were estimated using bootstrap simulations 

with 2000 iterations. 

Tables 10-12 summarise the results of the homogeneity tests 

for each LED group. The analysis indicates that all groups 

exhibit homogeneity in distribution shape across different 

temperature conditions, with no evidence to reject the null 

hypothesis. In contrast, statistically significant heterogeneity is 

predominantly associated with differences in the distribution 

mean. Specifically, LEDs operated at 210 mA show uniformity 

in mean, shape, and kinetics (Table 12), whereas LEDs at 525 

mA exhibit mean-driven heterogeneity at +60 °C (Table 11), and 

LEDs at 1050 mA display heterogeneity in distribution mean at 

both +60 °C and +70 °C (Table 10). These insights ensure that 

degradation models reflect the intrinsic variability of the LED 

population rather than artefacts or measurement noise, 

enhancing both scientific rigor and practical relevance. 

In summary, LEDs consistently exhibit heterogeneity in 

their degradation behaviour, reflected in differences in initial 

degradation values, and degradation rates across devices and 

operating conditions. In certain cases, the decomposition of the 

degradation signal further reveals non-homogeneous oscillatory 

components around the main degradation trend, indicating that 

variability is not limited to the long-term drift but also appears 

in the short-term micro-oscillations. These findings highlight 

that any degradation modelling framework must, at a minimum, 

account for heterogeneity in the degradation trend, rate, and 

initial state. In more complex scenarios, the modelling approach 

should also incorporate the heterogeneous oscillatory 

components around the trend to ensure an accurate and robust 

representation of the LED degradation process and lifetime 

prediction. 

Table 10.  Homogeneity hypothesis test results of LEDs at the current level 1050 mA. 

Metrics Value of test statistic Critical value Probability of test statistic Null hypothesis test results 

Raw distribution test 

T= +60 ℃ 

JSD 0.0137 0.0169 0.0005 Rejects 

WD 0.0088 0.0127 0.0005 Rejects 

MMD2 0.0034 0.0056 0.0005 Rejects 

T= +70 ℃ 

JSD 0.0121 0.0173 0.0005 Rejects 

WD 0.0074 0.0110 0.0005 Rejects 

MMD2 0.0031 0.0051 0.0005 Rejects 

T= +80 ℃ 

JSD 0.0165 0.0156 0.7496 Fails to reject 

WD 0.0118 0.0132 0.0555 Fails to reject 

MMD2 0.0039 0.0042 0.0555 Fails to reject 

Distribution shape-only test 

T= +60 ℃ 

JSD 0.0132 0.0139 0.2034 Fails to reject 

WD 0.0088 0.0068 1.00 Fails to reject 

MMD2 0.0036 0.0024 1.00 Fails to reject 

T= +70 ℃ 

JSD 0.0120 0.0175 0.0005 Rejects 

WD 0.0073 0.0077 0.2689 Fails to reject 

MMD2 0.0041 0.0043 0.2539 Fails to reject 

T= +80 ℃ 

JSD 0.0159 0.0141 0.9490 Fails to reject 

WD 0.0118 0.0084 1.00 Fails to reject 

MMD2 0.0037 0.0027 1.00 Fails to reject 
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Table 11.  Homogeneity hypothesis test results of LEDs at the current level 525 mA. 

Metrics Value of test statistic Critical value Probability of test statistic Null hypothesis test results 

Raw distribution test 

T= +60 ℃ 

JSD 0.0123 0.0178 0.0005 Rejects 

WD 0.0083 0.0120 0.0005 Rejects 

MMD2 0.0045 0.0065 0.0005 Rejects 

T= +70 ℃ 

JSD 0.0113 0.0143 0.0005 Rejects 

WD 0.0059 0.0062 0.2459 Fails to reject 

MMD2 0.0033 0.0035 0.2546 Fails to reject 

T= +80 ℃ 

JSD 0.0241 0.0202 0.9955 Fails to reject 

WD 0.0107 0.0067 1,00 Fails to reject 

MMD2 0.0078 0.0042 1,00 Fails to reject 

Distribution shape-only test 

T= +60 ℃ 

JSD 0.0119 0.0130 0.0555 Fails to reject 

WD 0.0083 0.0072 0.9690 Fails to reject 

MMD2 0.0059 0.0050 0.9955 Fails to reject 

T= +70 ℃ 

JSD 0.0111 0.0136 0.0005 Rejects 

WD 0.0059 0.0044 0.9990 Fails to reject 

MMD2 0.0045 0.0034 1.00 Fails to reject 

T= +80 ℃ 

JSD 0.0240 0.0209 0.9565 Fails to reject 

WD 0.0109 0.0060 1.00 Fails to reject 

MMD2 0.0078 0.0069 1.00 Fails to reject 

Table 12.  Homogeneity hypothesis test results of LEDs at the current level 210 mA. 

Metrics Value of test statistic Critical value Probability of test statistic Null hypothesis test results 

Raw distribution test 

T= +60 ℃ 

JSD 0.0147 0.0147 0.4493 Fails to reject 

WD 0.0080 0.0093 0.0255 Rejects 

MMD2 0.0040 0.0043 0.224 Fails to reject 

T= +70 ℃ 

JSD 0.0114 0.0110 0.7216 Fails to reject 

WD 0.0059 0.0037 1.00 Fails to reject 

MMD2 0.0013 0.0011 1.00 Fails to reject 

T= +80 ℃ 

JSD 0.0237 0.0164 1.00 Fails to reject 

WD 0.0130 0.0075 1.00 Fails to reject 

MMD2 0.0051 0.0024 1.00 Fails to reject 

Distribution shape-only test 

T= +60 ℃ 

JSD 0.0135 0.0188 0.0005 Rejects 

WD 0.0082 0.0075 0.8351 Fails to reject 

MMD2 0.0061 0.0056 0.8530 Fails to reject 

T= +70 ℃ 

JSD 0.0113 0.0144 0.0005 Rejects 

WD 0.0059 0.0041 1.00 Fails to reject 

MMD2 0.0060 0.0051 1.00 Fails to reject 

T= +80 ℃ 

JSD 0.0234 0.0259 0.0880 Fails to reject 

WD 0.0131 0.0084 1.00 Fails to reject 

MMD2 0.0049 0.0042 1.00 Fails to reject 

5. Conclusions 

In this article, we investigated the degradation heterogeneity of 

10W LEDs using voltage data collected from optimized 

accelerated step-stress tests. The continuous measurements 

enabled the construction of large, high-resolution datasets 

suitable for statistical and reliability analyses. 
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A feature extraction approach combining Empirical Mode 

Decomposition, kernel density estimation, and divergence 

measures (JSD, WD, and MMD) was applied to evaluate 

degradation heterogeneity among LEDs under identical 

conditions. Rather than focusing on the root causes of 

heterogeneity or comparisons across different LED types, this 

study concentrated on quantifying heterogeneity within groups 

of LEDs operating under the same stress conditions. Two case 

studies were conducted to distinguish between heterogeneity in 

the main degradation trends, which reflects differences in initial 

degradation levels and long-term degradation rates; and 

heterogeneity in the oscillatory components (IMFs), which 

represent fluctuations around the trend and capture intrinsic 

variability within the degradation process. The results 

demonstrated that degradation heterogeneity is influenced by 

environmental factors and operating modes. 

For future work, we plan to extend our experiments to 

different LED types and stress conditions to provide a more 

comprehensive characterization of degradation heterogeneity. 

Building on these insights, we aim to develop models that 

explicitly incorporate heterogeneity into LED degradation 

modelling and RUL prediction. Importantly, understanding and 

quantifying degradation heterogeneity can provide practical 

guidance for product design, reliability assessment, and 

predictive maintenance strategies in real-world LED 

applications.  
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