
Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

Optimized GDTP-XGBoost Framework for Wind Power Forecasting Toward

Condition-Based Maintenance

Indexed by:

Gökhan Yükseka,*

a Electrical and Electronics Engineering, Batman University, Turkey

Highlights Abstract

▪ A GDTP mechanism is proposed to

dynamically control tree complexity in

XGBoost.

▪ DE-Fly combines DE, Firefly, and Mayfly

algorithms in a multi-phase hybrid structure.

▪ The enhanced GDTP-XGBoost improves wind

power forecasting accuracy and speed.

▪ Forecast precision enhances maintenance

planning and system-level reliability decisions.

 Accurate wind energy forecasting is essential for grid stability, energy-

demand balance, and the efficient use of renewables. Shallow learning

methods are favored for their scalability and generalization ability, yet

their performance strongly depends on proper hyperparameter tuning.

This study introduces an enhanced XGBoost model with a Gradient-

Dynamic Tree Pruning (GDTP) mechanism to control tree complexity

adaptively, optimized through a novel DE-Fly hybrid algorithm that

integrates Differential Evolution, Firefly Algorithm, and Mayfly

Algorithm. Experimental validation using real-world wind power data

demonstrates that the proposed DE-Fly–optimized GDTP-XGBoost

model achieves superior forecasting accuracy and significantly faster

computation than conventional approaches. Beyond predictive

performance, the framework provides practical benefits by supporting

condition-based maintenance, enabling earlier anomaly detection,

minimizing downtime, and enhancing the overall reliability of wind farm

operations.

 Keywords

This is an open access article under the CC BY license

(https://creativecommons.org/licenses/by/4.0/)

maintenance planning, optimization, renewable energy, shallow

learning, wind energy forecasting

1. Introduction

The global shift toward sustainable energy has made wind

power one of the most significant renewable energy sources (1–

3). While weather data and historical generation records are

becoming increasingly accessible, forecasting wind energy

remains a challenging task. Many machine learning methods

have been employed to enhance forecasting accuracy. However,

their success often depends on choosing the proper model

parameters. The failure of poorly tuned models to deliver the

desired performance suggests the need for more effective,

flexible forecasting methods that can adapt to various

conditions (4,5). From a maintenance perspective, accurate

forecasting helps reduce unnecessary load cycling, supports

asset health monitoring, and extends system lifetime. It is

important for enabling Condition-Based Maintenance (CBM)

strategies by providing timely and precise energy output

estimates, while supporting Reliability-Centered Maintenance

(RCM) frameworks when deeper failure mode insights are

required.

Accurate wind energy forecasting is also important for daily

operational decisions at wind farms. Short-term forecasts allow

operators to better schedule and distribute generated power

according to demand. They also help to adjust power

Eksploatacja i Niezawodnosc – Maintenance and Reliability
Volume 28 (2026), Issue 2

journal homepage: http://www.ein.org.pl

Article citation info:
Yüksek G, Optimized GDTP-XGBoost Framework for Wind Power Forecasting Toward Condition-Based Maintenance,
Eksploatacja i Niezawodnosc – Maintenance and Reliability 2026: 28(2) http:/10.17531/ein/214376

(*) Corresponding author.

E-mail addresses:

G. Yüksek (ORCID: 0000-0002-6832-8622) gokhan.yuksek@batman.edu.tr

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

distribution to meet grid requirements. Forecasts serve as an

early warning system for periods of high mechanical stress,

allowing teams to plan preventive measures before failures

occur. It becomes possible to schedule turbine maintenance

according to expected periods of low production. In this way,

forecasts become a practical decision support tool that links

data-driven modeling with condition-based maintenance

practices.

Recent surveys have highlighted the growing influence of

artificial intelligence (AI) and big data analytics in the realm of

wind energy forecasting. Machine learning and hybrid AI

methodologies have been particularly efficacious in managing

data heterogeneity and uncertainty (6). Forecasting accuracy is

continually being refined by methodological advances, which

employ hybrid deep learning and signal decomposition

strategies. For instance, Wang et al. in (7) developed an

improved Wavenet with multi-head self-attention for multi-

step-ahead forecasting, demonstrating significant error

reductions compared to classical AI models. Similarly,

Nascimento et al. in (8) proposed a transformer-based deep

neural network integrated with wavelet decomposition, showing

enhanced accuracy and efficiency over Long-Short Term

Memory (LSTM) in short-term wind speed and power

prediction. Among the comparative studies most relevant to this

research, Bouabdallaoui et al. (9) assessed Artificial Neural

Networks (ANN), ANFIS, Decision Trees (DT), and Support

Vector Machines (SVM), reporting an R² value of 0.95.

Karaman (10) evaluated Convolutional Neural Network (CNN),

LSTM, and Recurrent Neural Network (RNN) models,

achieving an R² of 0.9574. The nonlinear behaviour of wind

power generation is represented well by these advanced

learning models. However, it is also highlighted that they are

dependent on extensive hyperparameter tuning and

considerable computational resources. Also, the fact that these

methods are not easily explainable can make them less useful in

real-life situations. Consequently, shallow learning approaches

retain their high pertinence, delivering expeditious training,

enhanced transparency, and dependable performance under

conditions of limited data, which are of paramount importance

for real-time wind power forecasting.

Shallow learning methods are different from deep learning

models because they can be trained quickly, are easier to

understand, and work well with limited data. This makes them

suitable for use in industrial settings where time is important

(11). Extreme Gradient Boosting (XGBoost) is a type of

machine learning and is very good at finding nonlinear models

and dealing with noisy or incomplete data. However, careful

model configuration is essential to fully leverage XGBoost's

forecasting capabilities, particularly in critical systems where

reliability and uninterrupted performance are vital (12–14). The

connection between hyperparameters is the main reason for this

situation. These parameters work together to determine how the

model aligns with the data, balances bias and variance, and

adapts to new situations it has not encountered before. Finding

the best mix of different settings is hard because there are so

many options, and they all depend on each other (15,16).

Conventional approaches, such as grid or random search, are

computationally intensive and often prove ineffective in

identifying globally optimal configurations, resulting in

suboptimal performance. Additionally, their rigid structure

hinders their ability to adapt to different datasets or specific

requirements, emphasizing the necessity for a more intelligent,

adaptive, and automated tuning approach that can

systematically enhance XGBoost for various forecasting

scenarios (17).

Nature-inspired metaheuristic algorithms are potent tools

for hyperparameter optimization because of the limitations of

manual and exhaustive search strategies. The mimicking of

natural phenomena, such as biological evolution, swarm

behaviour, or physical processes, enables efficient optimization

of large, complex search spaces (18). Differential Evolution

(DE), in particular, has been successfully applied to

hyperparameter optimization in machine learning models,

demonstrating its ability to improve generalization and prevent

overfitting (19–21). Whale Optimization Algorithm (WOA)

(22–24), Grey Wolf Optimizer (GWO) (25–27), and Firefly

Algorithm (FA) have demonstrated success in various

optimization problems by balancing global exploration and

local exploitation (28,29). Nevertheless, most single-phase

metaheuristics encounter difficulties such as premature

convergence, limited fine-tuning capability, or becoming

trapped in local optima when confronted with high-dimensional

hyperparameter spaces. These limitations highlight the need for

more effective hybrid optimization strategies that combine

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

different algorithmic strengths to achieve superior results

(30,31). In recent years, hybrid metaheuristic approaches have

been proposed to address the shortcomings of single-phase

algorithms. One example is the Mountain Gazelle Optimization

(MGO) integrated with the Nelder–Mead (NM) method

(MGONM), which combines swarm-inspired exploration with

simplex-based local refinement and has shown competitive

results (32). Such studies illustrate the promise of hybrid

methods in improving convergence reliability when tackling

complex optimization problems.

Many existing metaheuristic algorithms demonstrate strong

optimization performance, yet their tendency to rely

predominantly on either exploration or exploitation often limits

their adaptability across diverse problem types. Algorithms

biased toward global exploration may struggle with precision in

the fine-tuning phase, while those focused on local exploitation

risk premature convergence and suboptimal solutions (33–35).

This trade-off becomes particularly important when tuning

complex machine learning models, where both parameter

optimization and dynamic structural control are required.

Managing model complexity during training is a key

challenge in developing reliable forecasting systems. This study

addresses the issue by introducing a Gradient-Dynamic Tree

Pruning (GDTP) mechanism that adjusts tree expansion based

on gradient feedback. The goal is to avoid unnecessary growth

in the model while maintaining high predictive power. Although

such strategies have clear advantages, they are rarely integrated

into automated machine learning setups. In this study, to close

this gap, a refined XGBoost model enhanced with GDTP and

optimized through a hybrid, multi-stage approach is presented.

The accompanying optimizer, DE-Fly, operates in phases, first

exploring broadly with DE, then narrowing the search using the

FA, and finally fine-tuning solutions via the Mayfly Algorithm

(MA). This coordination allows both the model structure and its

parameters to adapt jointly and effectively. When tested on

actual wind energy data, the framework not only achieved

stronger forecasting results than traditional methods but also

proved computationally efficient, making it well-suited for

maintenance scheduling, system reliability assessments, and

clean energy integration. The main research gaps addressed in

this study are as follows:

Lack of Integrated Hyperparameter and Structural

Optimization: Existing studies on XGBoost optimization

primarily focus on hyperparameter tuning without addressing

the dynamic control of tree structure. Current methods fail to

incorporate gradient-based pruning, which can significantly

improve model generalization and computational efficiency by

preventing unnecessary tree growth.

Limited Adaptation Problem-Specific Search Spaces:

Although various optimization techniques have been applied to

machine learning models, most rely on static or problem-

agnostic search strategies. These methods struggle to adapt to

the unique characteristics of wind energy forecasting tasks,

which require dynamic exploration of high-dimensional and

problem-specific parameter spaces.

Absence of Multi-Phase Optimization Frameworks

Combining Exploration, Exploitation, and Fine-Tuning:

Existing optimization strategies often merge or overlook the

distinction between exploration, exploitation, and fine-tuning

phases. This lack of structured coordination hinders their ability

to balance global search and local refinement, resulting in

suboptimal solutions and inconsistent performance.

Contribution of the Study

This study introduces a novel optimization framework that

addresses these gaps by proposing the DE-Fly Optimizer, which

sequentially integrates DE for exploration, FA for exploitation,

and MA for fine-tuning. This multi-phase optimization strategy

tunes XGBoost's conventional hyperparameters and optimizes

the GDTP mechanism to control tree complexity adaptively.

The proposed framework significantly enhances forecasting

accuracy, computational efficiency, and model generalisation.

2. Proposed DE-Fly Method

The proposed DE-Fly method builds upon well-established

metaheuristic algorithms, namely Differential Evolution (19),

the Firefly Algorithm (36), and the Mayfly Algorithm (37),

which are integrated into a coordinated multi-phase framework

as shown in pseudo-code below.

The DE method is used in the first stage of the hybrid

algorithm. DE provides an advantage in generating optimal

solutions in the initial population due to its ability to perform an

efficient global search in an ample solution space. The basic

mechanisms of this method consist of mutation, crossover, and

selection. Firstly, the mutation process, as given in Equation 1,

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

is performed.

𝜗𝑖
𝑘+1 = 𝜒𝑟1

𝑘 + 𝐹 ∙ (𝜒𝑟2
𝑘 − 𝜒𝑟3

𝑘) (1)

Where, 𝜗𝑖
𝑘+1 is the mutated solution for the i-th individual, 𝜒𝑟1

𝑘 ,

𝜒𝑟2
𝑘 , 𝜒𝑟3

𝑘 are randomly selected positions of three distinct

individuals from the current population, and F is the differential

weight factor within the range [0, 2]. After mutation, new

individuals are created by combining the mutated solution with

the existing population using crossover. The crossover

operation is defined in Equation 2.

𝑢𝑖
𝑘+1 = {

𝜗𝑖
𝑘+1, 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝜒𝑖
𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

Where, 𝑢𝑖
𝑘+1 is the offspring of the i-th individual after

crossover, 𝑟𝑎𝑛𝑑𝑗 is a random value in [0, 1], CR is the crossover

probability in the range [0, 1], and 𝑗𝑟𝑎𝑛𝑑 is a randomly chosen

index. In the selection step, the fitness of each new individual is

evaluated, and the best individuals are selected for the next

generation. The best solution is determined by equation 3.

𝑔𝑘+1 = 𝑎𝑟𝑔 min
𝑖

𝑓(𝑢𝑖
𝑘+1) (3)

Where 𝑔𝑘+1 is the global best solution at iteration k+1, and f is

the objective function. The best solution from the DE phase is

transferred to the FA as part of the initial population shown in

Equation 4.

𝑃𝐹𝑖𝑟𝑒𝑓𝑙𝑦
0 = 𝜒𝐷𝐸

∗ (4)

The FA is based on the movement of fireflies influenced by

their brightness. Brightness is inversely proportional to the

objective function value; brighter individuals represent better

solutions. The position of each Firefly is updated according to

equation 5.

𝜒𝑖
𝑘+1 = 𝜒𝑖

𝑘 + 𝛽𝑒−𝛾𝑟𝑖𝑗 ∙ (𝜒𝑗
𝑘 − 𝜒𝑖

𝑘) + 𝛼 ∙ 𝜀 (5)

Where, 𝜒𝑖
𝑘+1 is the updated position of the i-th individual, 𝛽

is the attraction coefficient, 𝛾 is the light absorption coefficient,

𝑟𝑖𝑗 is the distance between fireflies i and j, 𝛼 is the

randomization parameter, and 𝜀 is random noise. The objective

function is minimized at each iteration, and the brightest Firefly

is determined. The best solution is then passed to the MA, as

shown in equation 6.

𝑃𝑀𝑎𝑦𝑓𝑙𝑦
0 = 𝜒𝐹𝑖𝑟𝑒𝑓𝑙𝑦

∗ (6)

The MA combines social and individual dynamics to find

the optimal solution. The velocity and position of each

individual are updated as equations 7 and 8.

𝜗𝑖
𝑘+1 = 𝜔 ∙ 𝜗𝑖

𝑘 + 𝑐1𝑟1 ∙ (𝑝𝑖
𝑘 − 𝜒𝑖

𝑘) + 𝑐2𝑟2

∙ (𝑔𝑖
𝑘 − 𝜒𝑖

𝑘)

(7)

𝜒𝑖
𝑘+1 = 𝜒𝑖

𝑘 + 𝜗𝑖
𝑘+1 (8)

Here, 𝜗𝑖
𝑘+1 is the velocity of the i-th individual at iteration k+1,

𝜒𝑖
𝑘+1 Position of the i-th individual at iteration k+1, 𝜔 Inertia

weight, 𝑐1 and 𝑐2 acceleration coefficients, 𝑟1 and 𝑟2 are

random values in [0, 1], 𝑝𝑖
𝑘 is the personal best position of the

i-th individual, 𝑔𝑖
𝑘 is the global best position. The MA also

includes a mating mechanism to explore new solutions, as

shown in equation 9.

𝜒𝑐ℎ𝑖𝑙𝑑 = 𝛼𝜒𝑚𝑎𝑙𝑒 + (1 − 𝛼)𝜒𝑓𝑒𝑚𝑎𝑙𝑒 , 𝛼𝜖[0,1] (9)

After mating, the offspring may undergo mutation to

introduce randomness and improve exploration, as shown in

equation 10.

𝜒𝑚𝑢𝑡𝑎𝑡𝑒𝑑 = 𝜒𝑐ℎ𝑖𝑙𝑑 + 𝑁(0, 𝜎2) (10)

The best individual is the final solution when the MA

reaches the predefined number of iterations, as in equation 11.

𝜒𝐹𝑖𝑛𝑎𝑙
∗ = 𝜒𝑀𝑎𝑦𝑓𝑙𝑦

∗ (11)

Throughout the hybrid algorithm, the objective functions of

3 different test functions are used to evaluate solutions and

guide the optimization process. The final solution 𝜒𝐹𝑖𝑛𝑎𝑙
∗ ,

represents the best result found by the DE-Fly technique.

In Figure 1, the working principle of the proposed DE-Fly is

given as follows.

1. All parameters for the DE algorithm are initialized. The

initial population is randomly generated.

In Figure 1, the working principle of the proposed DE-Fly is given as follows.

PSEUDO CODE

ALGORITHM DE_FLY

INPUT: pop_size; max_iter_de; max_iter_fa; max_iter_ma;

 bounds; objective f(·);

 DE: F, CR; FA: beta0, gamma, alpha; MA: omega, c1, c2, mating_alpha, sigma

BEGIN DE_FLY

 #Phase I: Differential Evolution (global exploration)

 P = Initialize_Population(pop_size, bounds); Evaluate_Fitness(P, f)

 FOR k = 1 .. max_iter_de:

 FOR each individual i in P:

 v = Mutation_DE(P, i, F) # Eq.(1)

 u = Crossover_DE(P[i], v, CR) # Eq.(2)

 P[i] = Selection_DE(P[i], u, f) # Eq.(3)

 END FOR

 END FOR

 best_de = Best(P) # seed for FA (Eq.(4))

 #Phase II: Firefly Algorithm (exploitation + diversity)

 Fflies = Initialize_With_Seed(best_de, pop_size, bounds)

 Evaluate_Fitness(Fflies, f)

 FOR k = 1 .. max_iter_fa:

 FOR each pair (i,j):

 IF brightness(Fflies[i]) < brightness(Fflies[j]):

 Fflies[i] = Firefly_Update(Fflies[i], Fflies[j], beta0, gamma, alpha, bounds) # Eq.(5)

 END IF

 END FOR

 Update_Fitness(Fflies, f)

 END FOR

 best_fa = Best(Fflies) # seed for MA (Eq.(6))

 #Phase III: Mayfly Algorithm (fine-tuning)

 M = Initialize_With_Seed(best_fa, pop_size, bounds); Init_Velocities(M); Init_Personals(M)

 gbest = Best(M)

 FOR k = 1 .. max_iter_ma:

 FOR each mayfly i in M:

 v_i = omega*v_i + c1*rand()*(pbest_i - x_i) + c2*rand()*(gbest - x_i) # Eq.(7)

 x_i = Project_Bounds(x_i + v_i, bounds) # Eq.(8)

 END FOR

 # mating + mutation (optional)

 FOR each (male,female) in Pairs(M):

 child = mating_alpha*male + (1-mating_alpha)*female # Eq.(9)

 child = Project_Bounds(child + Normal(0, sigma^2), bounds) # Eq.(10)

 Insert_If_Better(M, child, f)

 END FOR

 Update_Personal_And_Global_Bests(M, f)

 END FOR

 RETURN gbest

χ_Final* (Eqs.11,14)

END DE_FLY

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

2. Differential mutation is performed: The difference vector

between three randomly selected individuals is generated and

added to the positions of the existing individuals.

3. The crossover process is applied: Each individual is

crossed with the mutated solution to create new individuals.

4. Selection process is performed: The new and existing

populations are compared according to the cost function, and

the most suitable individuals are selected.

5. The DE algorithm terminates when it reaches the

specified number of iterations or error criteria. The best solution

is passed to the FA:

𝑃𝐹𝑖𝑟𝑒𝑓𝑙𝑦
0 = 𝜒𝐷𝐸

∗ (12)

6. Initialize all parameters for the FA. The best solution from

the DE is included in the initial population.

Figure 1. Flowchart of the DE-Fly Optimizer.

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

7. In each iteration of the FA, the brightness is calculated

according to the cost functions of the individuals. Individuals

gravitate towards brighter individuals. The randomization term

ensures diversity.

8. The FA terminates when it reaches the specified number

of iterations or error criteria. The brightest individual (best

solution) is transferred to the MA:

𝑃𝑀𝑎𝑦𝑓𝑙𝑦
0 = 𝜒𝐹𝑖𝑟𝑒𝑓𝑙𝑦

∗ (13)

9. All parameters for the MA are initialized. The best

solution from Firefly is used as the initial population.

10. In each iteration of the MA, the speed and position of the

individuals are updated. The mating process creates new

individuals. The mutation process ensures that new individuals

are provided with diversity in the solution space.

11. The MA terminates when it reaches the specified number

of iterations or error criteria. The best individual is considered

the final solution:

𝜒𝐹𝑖𝑛𝑎𝑙
∗ = 𝜒𝑀𝑎𝑦𝑓𝑙𝑦

∗ (14)

12. The final best solution is reported as the result of the

hybrid algorithm.

3. Benchmark Test with CEC2019

The CEC2019 benchmark set is widely used for evaluating the

performance of optimization algorithms, as shown in Table 1

(38,39). It was designed to test the effectiveness of evolutionary

algorithms and meta-heuristic methods in solving real-world

problems. Various challenging test functions are included,

designed to assess the ability of algorithms to handle complex

problems. These functions are characterized by being multi-

modal, non-separable, and high-dimensional. Algorithms are

evaluated on how well they navigate complex search spaces,

and the suite has become a standard testbed frequently

employed to demonstrate the effectiveness of newly proposed

optimization methods (40–42).

All experiments were conducted on a workstation equipped

with an AMD Ryzen 9 7950X 16-core/32-thread processor (5.7

GHz), 64 GB DDR5 7200 MHz RAM, and an NVIDIA RTX

3070 Ti GPU (8 GB). The algorithms were implemented in

Python within the Visual Studio environment. Core libraries

used include NumPy, Pandas, Scikit-learn, Matplotlib, and

Seaborn for data preprocessing and visualization; XGBoost for

regression modeling; and SciPy, along with custom Python

implementations for metaheuristic optimizations. This

computational setup ensured both efficiency in large-scale

simulations and reproducibility of results.

Table 1. CEC2019 Test Functions.

No. Function D Search Range Best

ℱ1 Storn's Chebyshev Polynomial Fitting Problem 9 [–8192, 8192] 1

ℱ2 Inverse Hilbert Matrix Problem 16 [−16,384, 16,384] 1

ℱ3 Lennard–Jones Minimum Energy Cluster 18 [−4, 4] 1

ℱ4 Rastrigin's Function 10 [−100, 100] 1

ℱ5 Griewangk's Function 10 [−100, 100] 1

ℱ6 Weierstrass Function 10 [−100, 100] 1

ℱ7 Modified Schwefel's Function 10 [−100, 100] 1

ℱ8 Expanded Schaffer's F6 Function 10 [−100, 100] 1

ℱ9 Happy Cat Function 10 [−100, 100] 1

ℱ10 Ackley Function 10 [−100, 100] 1

The established benchmark has been further categorized into

distinct groups: single-modal, multi-modal, composite, and

a category devoted to real-world problems. The categorization

in question facilitates the testing of algorithms concerning a

wide range of theoretical and practical problems. In terms of

performance evaluation, criteria such as solution quality,

consistency, and computation are considered. CEC2019

provides standardized test functions, enabling fair comparisons

between algorithms.

Table 2 reports the parameter settings of the proposed DE-

Fly and the compared algorithms. The term popsize represents

the number of individuals in the population for all algorithms,

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

while max_iter denotes the maximum number of iterations. In

DE, 𝐹 refers to the differential weight factor and 𝐶𝑅 to the

crossover probability. In the FA, r is a random number drawn

from [–1,1], whereas , ℓ𝑚𝑖𝑛 and , ℓ𝑚𝑎𝑥 indicate the lower and

upper bounds of the light absorption coefficient. Within the MA,

𝒸1 and 𝒸2 are acceleration coefficients that control the influence

of personal and global best positions, and ω denotes the inertia

weight balancing exploration and exploitation. In the WOA,

 a is a convergence parameter linearly decreasing from 2 to 0,

 𝑏 is a constant defining the bubble-net spiral motion, 𝑙 is

a random parameter in [–1,1] controlling exploitation behaviour,

and 𝑝 is the probability of the shrinking encircling mechanism.

In the GWO, 𝑎 is again a linearly decreasing parameter, while

𝐴 and 𝐶 are control coefficients derived from random vectors.

For the MGO component of MGONM, 𝛼 represents leader

influence, 𝛽 herd influence, 𝛿 escape strength, 𝑤 an inertia

weight decreasing from 0.9 to 0.4, 𝑟 the adaptive search radius

(1→0), and 𝑗𝑢𝑚𝑝_𝑝𝑟𝑜𝑏 the probability of a random jump.

Finally, in the NM phase of MGONM, 𝛼 denotes the reflection

coefficient, 𝛾 the expansion coefficient, 𝜌 the contraction

coefficient, and 𝜎 the shrink coefficient.

Table 2. Optimization Algorithm Parameters.

Algorithm Parameter Value

DE-Fly

DE popsize, max_iter, 𝐹, 𝐶𝑅 20,100,0.5,0.9

FA r, ℓ𝑚𝑖𝑛 , ℓ𝑚𝑎𝑥 [−1,1], 0.0001,1

MA 𝒸1, 𝒸2, 𝜔, 1.5, 1.5, 0.5

WOA popsize, max
iter

, a, 𝑏, 𝑙, 𝑝 20,100, [2,0], 1, [−1,1], 0.5

DE popsize, max_iter, 𝐹, 𝐶𝑅 20,100,0.5,0.9

GWO popsize, max_iter, a, A, C 20,100, 2 → 0, [−𝑎, 𝑎], [0,2]

MGONM
MGO

popsize, max
iter

, α, β, δ, w, r,

jump_prob

20,100,2,1.5,0.8,0.9, 0.9

→ 0.4, 1

→ 0, 0.1

NM max
iter

, α, γ, ρ, σ 100, 1.0, 2.0, 0.5, 0.5

Both Table 3 and Figure 2 present the outcomes of the

CEC2019 benchmark suite. Overall, the proposed DE-Fly

algorithm consistently provided superior or competitive results

across the majority of test functions, outperforming classical DE,

swarm-based methods (GWO and WOA), and the hybrid

MGONM approach. For the Ackley function, DE-Fly obtained

the lowest best value (21.01) and the lowest mean (21.42), with

a minimal standard deviation (0.1), indicating highly reliable

convergence. In the Storn's Chebyshev Polynomial Fitting

Problem, DE-Fly produced the best value (3187),

outperforming MGONM and DE by a considerable margin.

Table 3. CEC2019 Performance Comparison.

Function Metrics DE-Fly MGONM DE GWO WOA

ℱ1 Best

Mean

Std

3.187e+03

1.563e+05

1.860e+05

7.310e+04

1.967e+06

2.035e+06

6.045e+04

2.286e+06

3.374e+06

7.021e+02

8.963e+05

1.586e+06

1.143e+00

5.084e+07

6.744e+07

ℱ2 Best

Mean

Std

3.983e+00

4.301e+00

1.772e-01

4.607e+00

6.118e+00

9.003e-01

4.585e+00

5.339e+00

5.088e-01

4.680e+00

5.563e+00

5.417e-01

5.000e+00

1.041e+01

4.060e+00

ℱ3 Best

Mean

Std

1.409e+00

5.512e+00

2.453e+00

2.422e+00

6.287e+00

1.625e+00

7.951e+00

1.028e+01

7.435e-01

1.532e+00

5.288e+00

2.163e+00

4.929e+00

7.854e+00

1.568e+00

ℱ4 Best

Mean

Std

4.980e+00

1.192e+03

6.673e+03

5.129e+01

3.200e+02

4.020e+02

4.638e+01

2.974e+03

8.064e+03

1.555e+02

2.958e+03

2.842e+03

1.651e+04

1.073e+05

6.040e+04

Function Metrics DE-Fly MGONM DE GWO WOA

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

ℱ5 Best

Mean

Std

1.032e+00

9.871e+02

5.042e+03

3.230e+00

5.037e+02

8.114e+02

2.932e+00

4.362e+03

1.805e+04

1.148e+02

1.146e+04

1.654e+04

9.491e+04

4.494e+05

2.788e+05

ℱ6 Best

Mean

Std

1.841e+02

1.900e+02

1.700e+00

1.843e+02

1.879e+02

1.886e+00

1.906e+02

1.922e+02

6.988e-01

1.894e+02

1.919e+02

1.020e+00

1.872e+02

1.908e+02

1.306e+00

ℱ7 Best

Mean

Std

8.515e+02

1.910e+03

4.216e+02

9.886e+02

2.511e+03

6.677e+02

2.324e+03

3.088e+03

8.929e+02

1.871e+03

3.189e+03

6.849e+02

6.765e+03

1.902e+04

7.384e+03

ℱ8 Best

Mean

Std

3.204e+00

4.028e+00

3.594e-01

3.631e+00

4.678e+00

3.981e-01

4.223e+00

4.801e+00

1.730e-01

3.562e+00

4.426e+00

3.856e-01

4.112e+00

4.983e+00

2.619e-01

ℱ9 Best

Mean

Std

1.063e+00

2.050e+00

2.526e+00

1.259e+00

9.280e+00

7.817e+00

1.266e+00

1.283e+02

3.432e+02

8.387e+00

1.286e+02

2.317e+02

7.345e+02

7.491e+03

5.656e+03

ℱ10 Best

Mean

Std

2.101e+01

2.142e+01

1.000e-01

2.102e+01

2.128e+01

1.695e-01

2.136e+01

2.166e+01

1.154e-01

2.140e+01

2.167e+01

1.139e-01

2.133e+01

2.156e+01

1.214e-01

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

Figure 2. Heatmap of the Performance Comparison of Optimization Algorithms.

Although WOA yielded a slightly lower best result, its mean

and variance were significantly higher, demonstrating unstable

behavior compared to DE-Fly. On the Expanded Schaffer's F6

Function function, DE-Fly again reported the best performance

(best = 3.204, mean = 4.028), with lower variance than

MGONM, confirming consistent convergence. On more

complex multimodal landscapes, DE-Fly maintained its

superiority. For the Griewank’s function, DE-Fly achieved the

lowest best (1.032) and mean (987.1) values, whereas other

methods showed larger deviations. The Happy Cat function

further confirmed this advantage, with DE-Fly yielding both the

lowest best (1.063) and mean (2.050), far outperforming

MGONM (9.280) and DE (128.3). In the Inverse Hilbert Matrix

Problem, DE-Fly achieved the best value (3.983) and the lowest

mean (4.301), with a standard deviation (0.177) considerably

smaller than those of competing methods, indicating strong

robustness. For the Lennard–Jones Minimum Energy Cluster,

DE-Fly again produced the best value (1.409) and lowest mean

(5.512), surpassing MGONM (6.287) and DE (10.28). In the

Rastrigin’s function, known for its highly multimodal surface,

DE-Fly was the only optimizer that maintained competitive best

(4.980) and mean (1192) values with reasonable stability,

whereas MGONM, DE, and WOA suffered from high error

variance. On the Modified Schwefel's Function, DE-Fly

achieved the lowest best (851.5) and mean (1910), while

alternative methods diverged significantly. Finally, for the

Weierstrass function, DE-Fly closely approximated the global

optimum with a best of 184.1 and a mean of 190.0, again

recording the lowest variance among all tested algorithms.

In summary, the DE-Fly algorithm consistently delivered

superior results in terms of best solution quality, mean stability,

and variance reduction across the CEC2019 test functions.

These findings validate the effectiveness of the proposed multi-

phase framework and demonstrate its advantage over both

single-phase optimizers and hybrid counterparts such as

MGONM.

4. GDTP Mechanism for XGBoost

XGBoost builds its predictive model by adding trees in

sequence, with each new tree aiming to reduce the residual

errors of the ensemble. While this iterative approach improves

the capacity to represent nonlinear patterns, it may also cause

overfitting when tree depth and complexity increase excessively.

Conventional pruning strategies usually depend on fixed rules,

such as a maximum depth limit or a constant gain threshold, and

adaptive approaches often expand only those nodes that exceed

a specified gain level (43,44). The GDTP mechanism differs by

applying a gradient-based threshold that is updated at every

boosting iteration. Through this adjustment, node expansion and

pruning are regulated together according to the distribution of

gradient information, ensuring that weak splits are removed and

only effective expansions are retained. In this way, tree growth

adapts to the learning dynamics, controlling model complexity

while preserving predictive accuracy.

4.1. Background on XGBoost Formulation

XGBoost is a widely adopted tree-based ensemble learning

algorithm that iteratively minimizes prediction error through

additive model construction (45,46). It has been shown to

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

effectively handle nonlinear relationships, noisy or missing data,

and high-dimensional feature spaces, making it one of the most

robust shallow learning methods for forecasting tasks (47,48).

Given a dataset with n observations {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , the

predicted output 𝑦̂𝑖 is expressed as the sum of outputs from 𝐾

DTs:

𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ ℱ

𝐾

𝑘=1

 (15)

where ℱ denotes the functional space of regression trees. The

learning objective at iteration 𝑡 is defined as:

ℒ (𝑡) = ∑ 𝑙 (𝑦𝑖 , 𝑦̂𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖))

𝑛

𝑖=1

+ Ω(𝑓𝑡) (16)

Here, 𝑙 represents the loss function, and Ω(𝑓𝑡) is a

regularization term penalizing model complexity, defined as:

Ω(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝜔𝑗

2

𝑇

𝐽=1

 (17)

where 𝑇 is the number of leaves in the tree, 𝜔𝑗 is the score on

leaf 𝑗 , 𝛾, and 𝜆 are regularization parameters controlling the

trade-off between model fit and complexity.

Using a second-order Taylor expansion, the objective can be

approximated as:

ℒ (𝑡) ≈ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡) (18)

where 𝑔𝑖 and ℎ𝑖 are the first and second derivatives of the loss

function with respect to the previous prediction 𝑦̂𝑖
(𝑡−1)

.

4.2. Classical Split Gain Calculation

During tree construction, XGBoost evaluates potential split

points based on the split gain, defined as:

Υ =
1

2
[

𝐺𝐿
2

𝐻𝐿 + 𝜆
+

𝐺𝑅
2

𝐻𝑅 + 𝜆
−

(𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 + 𝐻𝑅 + 𝜆
] − 𝛾 (19)

where 𝐺𝐿 and 𝐻𝐿 are the sums of the first and second

derivatives for the left child node, and 𝐺𝑅 and 𝐻𝑅 are the same

for the right child node. A positive gain indicates that the split

improves the objective and should be applied.

4.3. Proposed GDTP Strategy

In conventional XGBoost, the growth of trees is often limited

by a fixed maximum depth. However, this static constraint may

not be optimal for datasets with varying complexity across

different regions of the feature space. To address this, we

propose the GDTP mechanism, which introduces an adaptive,

split-level pruning condition based on the split gain.

The proposed pruning rule is defined as 𝐼𝑓 Υ <

𝛾𝑑𝑦𝑛 , 𝑡ℎ𝑒𝑛 𝑝𝑟𝑢𝑛𝑒 𝑡ℎ𝑒 𝑏𝑟𝑎𝑛𝑐ℎ , where 𝛾𝑑𝑦𝑛 is a dynamic

gradient improvement threshold that governs whether a split

should proceed or be terminated. To enable data-driven

adaptability, 𝛾𝑑𝑦𝑛 is formulated as:

𝛾𝑑𝑦𝑛 = 𝛼 ∙ Υ̅ (20)

where 𝛼 is a tunable scaling factor, 𝛾 is the average gain

observed in the previously constructed trees or branches. This

formulation allows each branch to make pruning decisions

based on the overall quality of splits observed throughout the

model, ensuring that only meaningful branches are expanded.

4.4. Integration with the DE-Fly Optimizer

The proposed GDTP mechanism introduces an additional

control layer into the XGBoost learning process by adaptively

regulating the tree expansion based on the gradient-based

dynamic threshold. 𝛾𝑑𝑦𝑛.

Figure 3. Block diagram of the DE-Fly Optimized GDTP-

XGBoost framework for Wind Energy Forecasting.

Finding an appropriate balance between the pruning threshold

and other hyperparameters presents a complex, multi-

dimensional optimization problem that traditional methods

often struggle to address efficiently (49). To overcome this

challenge, the present study adopts the DE-Fly Optimizer,

thereby enabling more effective tuning of the GDTP-XGBoost

model. The overall optimization objective is formulated as

follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒Θ,𝑎 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠(𝛩, 𝛾𝑑𝑦𝑛) = 𝛼 ∙ Υ (21)

where 𝛩 a represents the standard XGBoost hyperparameters

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

and 𝛼 is the scaling factor controlling the dynamic pruning

threshold. A balanced progression across both the

hyperparameter space and the model's structural parameters is

enabled by the structure of the proposed optimization approach.

As shown in Figure 3, the DE-Fly algorithm makes the

GDTP-XGBoost plan better by doing cost function checks over

and over again, which creates a way to change the model so that

it can do what is needed for forecasting. This flexibility enables

the model to adapt to the particular attributes of the prediction

task. So, the DE-Fly-optimised GDTP-XGBoost framework is

pretty solid. It has got much strength, can be scaled up or down

as needed, and is pretty efficient. It is not just about making

better predictions, but also about making sure things are reliable,

avoiding failures, and planning maintenance for wind energy

systems.

5. A Case Study on DE-Fly Enhanced GDTP-XGBoost

This research examines the role of optimization algorithms in

improving hyperparameter tuning within a GDTP-XGBoost

forecasting framework, emphasizing applications in wind

energy. In addition to achieving higher predictive accuracy, the

approach contributes to operational practices by supporting

maintenance planning and strengthening system reliability. In

practice, accurate turbine output forecasts help engineers better

understand system behavior and schedule timely interventions,

especially crucial for wind farms relying on CBM and RCM

protocols.

Figure 4. Correlation of turbine and meteorological parameters.

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

The proposed model was evaluated using operational data

from a wind farm in Yalova, Turkey, collected over the course

of 2018 (50). SCADA data from Nordex N117/3600 turbines,

including wind speed, wind direction, theoretical power, and

actual output, were merged with meteorological records to

enhance forecast reliability.

The complete set of input features used in the forecasting

model is summarized in Table 4, where each parameter is

described in terms of its physical meaning, unit, and data source.

For instance, prectotland denotes total land precipitation

obtained from the MERRA-2 reanalysis dataset (mm/h), while

cloud Cover represents the fraction of the sky obscured by

clouds (0–1). Altogether, these variables provide both direct and

indirect indicators of turbine performance, enabling the model

to monitor load trends, identify anomalies, and evaluate

component conditions within predictive maintenance systems.

The original dataset contained 50,830 entries recorded at 10-

minute intervals, which were aggregated into hourly averages,

resulting in 8,760 samples. To address missing values, 484 gaps

were identified and filled using a combination of moving

average and linear interpolation. For model evaluation, the

dataset was divided into 70% training and 30% testing subsets,

and all reported performance metrics were computed on the test

set.

Maintaining data consistency throughout this process was

essential to ensure the accuracy of the model, particularly for

applications where operational decisions rely on dependable

forecasts. In this study, the forecasting task was defined as

estimating the potential power output of the turbine given a set

of meteorological conditions, rather than extending the

prediction horizon. This design enables the model to anticipate

turbine load levels under forecasted weather scenarios,

supporting its practical use in condition-based maintenance

applications. The forecasting model was trained on historical

SCADA power data combined with meteorological records to

capture the relationship between atmospheric conditions and

turbine output, and this learned relationship was then used with

forecasted meteorological inputs to estimate the turbine's

potential future power generation.

Figure 5. Bivariate Pair Plot of Selected Traits.

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

Following data preparation, a correlation analysis was

conducted to explore the relationships between input features

and turbine power output. As shown in Figure 4 and the pairwise

scatter plots in Figure 5, wind speed exhibits the strongest

correlation with output power (R = 0.93), confirming its

dominant role in wind energy forecasting. In contrast, variables

such as air density and wind direction showed weaker

associations (R = 0.12), indicating secondary influence.

Table 4. Description of the input parameters used in the forecasting model.

Parameter Description Unit Source

Wind Speed Hub-height wind velocity 𝑚/𝑠 SCADA

Wind Direction Wind flow orientation at hub height ° SCADA

Air Density Calculated from pressure and temperature 𝑘𝑔/𝑚³ MERRA-2

Temperature Ambient air temperature °𝐶 MERRA-2

Solar Irradiation Global tilted irradiation 𝑊/𝑚² MERRA-2

Prectotland Total land precipitation 𝑚𝑚/ℎ MERRA-2

Cloud Cover Fraction of sky obscured by clouds (0–1) – MERRA-2

However, due to their indirect effects on turbine

performance and atmospheric conditions, they were still

included in the model. Similarly, temperature showed a weak

negative correlation with R = -0.11, cloud cover with R = -0.09,

and solar radiation with R = -0.06. This information helped

identify the most relevant features to be used in machine

learning models, enabling the model to focus on the most

effective variables.

The performance of the GDTP-XGBoost model is highly

sensitive to its hyperparameter configuration, which affects

learning dynamics, model complexity, and overall stability.

These parameters also influence the reliability of downstream

decisions, particularly in maintenance applications where

accurate forecasts are used to inform operational planning. In

this study, five metaheuristic algorithms were used to tune the

hyperparameters and explore their impact on predictive

performance.

Key parameters such as the number of estimators

(n_estimators) and tree depth (max_depth) directly influence

the model's ability to learn patterns without overfitting.

Learning rate (learning_rate), subsample ratio, and

colsample_bytree determine how training data and features are

utilized, affecting the model's generalization capacity. Gamma

controls tree splitting sensitivity, encouraging structural

simplicity when set appropriately. The GDTP mechanism

adaptively manages these interactions to balance learning

precision and model efficiency. Table 5 compares the parameter

sets identified by each optimization algorithm, highlighting

their different tuning behaviors and guiding the selection of

robust configurations.

Table 5. Comparison of the Optimized Parameters of the XGBoost Model.

Method n_estimators max_depth learn_rate subsample colsample_bytree Gamma

WOA 323 6 0.1317 0.7066 0.9160 2.8166

GWO 197 6 0.1598 0.7707 0.8784 3.8409

DE 187 5 0.1061 0.7938 0.9407 2.3516

DE-Fly 366 5 0.187 0.962 0.885 0.156

MGONM 311 5 0.163 0.915 0.891 1.8

Figures 6 and 7 present the performance evaluation of the

GDTP-XGBoost Regressor model in forecasting wind power

output. In Figure 6, the predicted values closely follow the

actual power trends over a selected 100-hour interval, capturing

both peak and valley patterns with moderate error. This visual

consistency indicates that the model can effectively adapt to the

dynamic nature of wind energy production. Figure 7 provides a

complementary perspective by plotting all actual versus

predicted values across the test dataset. The tight concentration

of points around the diagonal reference line suggests that the

model exhibits strong predictive accuracy and minimal bias.

The combination of these visualizations confirms the Gradient

Boosting model's capability to model nonlinear patterns in wind

energy data, though its performance is ultimately outperformed

by the proposed GDTP-XGBoost approach.

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

Figure 6. Prediction and actual wind power values for 100

hours using GDTP-XGBoost.

According to Table 6, which is visualized in Figure 8, the

results show how the tested optimization algorithms perform

based on three key metrics: coefficient of determination (R²),

root mean square error (RMSE), and residual standard error

(RSE). Together, these measures compare the model's accuracy

and ability to explain variation in the target variable. The

coefficient of determination (R²) reflects how well the model

captures the variance in the data, with values closer to 1

indicating stronger predictive performance. In this study, the

DE-Fly–optimized GDTP-XGBoost model achieved an R² of

0.9892, showing a strong alignment between predicted and

actual

Figure 7. Scatter plot of actual vs. predicted wind power with

the 1:1 reference line using GDTP-XGBoost.

values. The RMSE was employed to measure the average

deviation between predicted and observed values. A smaller

RMSE reflects higher forecasting precision. Among all tested

methods, the DE-Fly model achieved the lowest RMSE value

of 135.0388, demonstrating its strong ability to capture the

dynamics of wind power generation. This outcome indicates

that the proposed optimizer not only models underlying data

structures with accuracy but also reduces prediction errors more

consistently than competing algorithms. For maintenance

planning, this improvement is especially valuable, as reliable

forecasts support earlier fault identification, load management,

and efficient scheduling, thereby increasing turbine availability

and reducing the likelihood of unscheduled stoppages. In

addition, lower RMSE values make it possible to recognize

abnormal deviations between expected and actual output at an

early stage, providing practical warning signs of mechanical

stress or potential failures. Such information allows

maintenance teams to act preventively, limiting unexpected

interruptions and extending the operational life of key

components.

Table 6. Performance Metric Comparison of the DE-Fly

Enhanced GDTP-XGBoost.

Method R2 RMSE RSE

WOA 0.9883 140.6290 0.01167

GWO 0.9879 142.7685 0.01203

DE 0.9872 146.7788 0.01272

MGONM 0.9887 138.5345 0.01116

DE-Fly 0.9892 135.0388 0.01076

The RSE achieved by DE-Fly was 0.01076, the lowest

among the compared models. This finding underlines the

algorithm's advantage in delivering accurate forecasts and

emphasizes its relevance for reliability-oriented applications.

Accurate prediction contributes directly to reducing operational

risks and strengthening turbine sustainability. The improved

performance over classical Differential Evolution and other

single-phase optimizers can be explained by the balanced

integration of its three stages: global exploration through DE,

local refinement with FA, and adaptive adjustment via MA. The

combination of these mechanisms avoids premature

convergence, accelerates search efficiency, and provides more

precise final solutions. Consequently, DE-Fly proves effective

not only for tuning hyperparameters but also for managing

structural complexity within the GDTP-XGBoost model,

leading to improved forecasting results and operational benefits.

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

Figure 8. Performance Comparison of Algorithms on GDTP-XGBoost.

The proposed study is also compared with previously

published results on the same dataset, as shown in Table 7. In

(9), wind power prediction was carried out using ANN, ANFIS,

DT, and SVM, achieving an R² value of 0.95. Similarly, in (10),

deep learning-based methods such as ANN, CNN, LSTM, and

RNN were employed, with the best model yielding an R² of

0.9574. In addition to these literature benchmarks, several

regression and deep learning models were implemented in this

study for direct comparison. Among these, the classical Linear

Regression (LR) model yielded the lowest performance with an

R² of 0.8638, followed by ANN (0.9149) and Random Forest

(RF) (0.9496). Deep learning models such as Gated Recurrent

Unit (GRU) (0.96), LSTM (0.9515), and CNN (0.9809)

demonstrated strong performance on the dataset. Notably, the

DT model alone achieved an R² of 0.9668. However, the highest

accuracy was obtained by the proposed GDTP-XGBoost model

optimized via the DE-Fly algorithm, achieving an R² of 0.9892,

outperforming all other tested models as well as the best results

reported in (9) and (10). This improvement highlights the

strength of the proposed method in modeling complex,

nonlinear wind power generation dynamics and providing

highly reliable predictions for operational use. Additionally, an

ablation study was conducted by comparing the proposed

GDTP-XGBoost with the standard XGBoost. The results

confirmed the superiority of the proposed approach, achieving

an R² of 0.9892 with a training time of 0.18 s, compared to

0.9492 and 1.49 s for the baseline XGBoost, respectively.

Table 7. Performance Comparison of Proposed Models with Existing Studies.

Method
Performance Comparison

R2 Train Time (sec.)

XGBoost 0.9492 1.49

ANN 0.9149 7.13

RF 0.9496 0.49

Proposed GDTP-XGBoost 0.9892 0.18

DT 0.9668 0.05

LR 0.8638 0.01

CNN 0.9809 24

GRU 0.96 60.37

LSTM 0.9515 68.65

(9) 0,95 NA

(10) 0,9574 85.8

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

In addition to its predictive accuracy, the GDTP-XGBoost

framework also demonstrated a remarkable advantage in terms

of computational time efficiency. By dynamically pruning

unnecessary tree growth during training and employing the DE-

Fly optimizer for more targeted hyperparameter tuning, the

model converged faster than conventional XGBoost and deep

learning counterparts. This balance of accuracy and speed

underlines the practical suitability of the proposed approach for

real-time forecasting and maintenance decision support, where

both reliability and timely computation are essential.

The fact that the proposed GDTP-XGBoost framework

outperformed CNN and LSTM is particularly significant. While

deep learning models are effective at modeling temporal

dependencies, they typically require large datasets, extensive

training time, and considerable computational resources. In

contrast, tree-based methods, when equipped with adaptive

hyperparameters and structural tuning, can rival or surpass deep

learning performance at a fraction of the computational cost.

This balance of accuracy, efficiency, and interpretability makes

the proposed method especially attractive for real-time

forecasting and condition-based maintenance applications.

6. Conclusion

This study introduces a forecasting framework which integrates

XGBoost with the GDTP mechanism. The aim is to enhance the

accuracy of wind power predictions and to strengthen

operational reliability through predictive insights. The GDTP-

XGBoost configuration is engineered to curtail superfluous

model proliferation while retaining its capacity for

generalisation, thus enhancing its aptitude to discern variations

in wind speed. To further refine performance, the DE-Fly

optimiser is used to adjust the hyperparameters automatically.

In a study that looked at how well different strategies could

predict wind turbine performance, the DE-Fly–optimized

GDTP-XGBoost model was better than other strategies at

predicting how well turbines would perform. Maintenance

planning is supported by stronger predictive quality, which also

reduces reliance on corrective repairs and enables more

effective data-driven management in wind energy systems. The

framework has forecasting capability. This contributes directly

to maintenance and reliability practices. Precise predictions

show possible mechanical problems early on, which helps with

condition-based maintenance by doing things at the right time

and in the right way. Long-term application in reliability-

focused environments is supported by the integrated

optimisation process, which also improves model stability. For

this reason, the model is used not only to predict the future, but

also to make sure that the company can continue to work

effectively.

Planned future work involves a comprehensive evaluation of

the GDTP-XGBoost model’s adaptability across multiple

energy domains, geographical settings, and time series

scenarios. The next steps will be to develop the DE-Fly

optimiser to handle multi-objective problems and to incorporate

the forecasting framework into real-time maintenance platforms.

Here, any differences between forecasts and actual data can

indicate problems with individual components. The study will

also be extended to additional wind farm sites and turbine types

to verify the broader applicability of the proposed approach.

References

1. Hassan Q, Viktor P, J. Al-Musawi T, Mahmood Ali B, Algburi S, Alzoubi HM, et al. The renewable energy role in the global energy

Transformations. Renewable Energy Focus. 2024 Mar;48:100545.

2. Yüksek G. Forecasting Wind Energy Production: Analysis of Meteorological and Temporal Variables Using Optimized Regression

Modeling. In: 2024 Global Energy Conference (GEC). IEEE; 2024. p. 146–52. https://doi.org/10.1109/GEC61857.2024.10880956

3. Salgado Duarte Y, Szpytko J. Reliability-oriented twin model for integrating offshore wind farm maintenance activities. Eksploatacja i

Niezawodność – Maintenance and Reliability. 2024 Dec 27; https://doi.org/10.17531/ein/199355

4. Sulaiman MH, Mustaffa Z. Enhancing wind power forecasting accuracy with hybrid deep learning and teaching-learning-based

optimization. Cleaner Energy Systems. 2024 Dec;9:100139.

5. AlShafeey M, Csaki C. Adaptive machine learning for forecasting in wind energy: A dynamic, multi-algorithmic approach for short and

long-term predictions. Heliyon. 2024 Aug;10(15):e34807.

6. Zhao E, Sun S, Wang S. New developments in wind energy forecasting with artificial intelligence and big data: a scientometric insight.

Data Science and Management. 2022 Jun;5(2):84–95. https://doi.org/10.1016/j.dsm.2022.05.002

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

7. Wang Y, Chen T, Zhou S, Zhang F, Zou R, Hu Q. An improved Wavenet network for multi-step-ahead wind energy forecasting. Energy

Convers Manag. 2023 Feb;278:116709.

8. Nascimento EGS, de Melo TAC, Moreira DM. A transformer-based deep neural network with wavelet transform for forecasting wind

speed and wind energy. Energy. 2023 Sep;278:127678.

9. Bouabdallaoui D, Haidi T, Elmariami F, Derri M, Mellouli EM. Application of four machine-learning methods to predict short-horizon

wind energy. 2023;6:726–37. Available from: www.sciencedirect.com/journal/global-energy-interconnection.

https://doi.org/10.1016/j.gloei.2023.11.006

10. Karaman ÖA. Prediction of Wind Power with Machine Learning Models. Applied Sciences. 2023 Oct 19;13(20):11455.

11. Li D, Qi Z, Zhou Y, Elchalakani M. Machine Learning Applications in Building Energy Systems: Review and Prospects. Buildings. 2025

Feb 19;15(4):648.

12. Abdelsattar M, A. Ismeil M, Menoufi K, AbdelMoety A, Emad-Eldeen A. Evaluating Machine Learning and Deep Learning models for

predicting Wind Turbine power output from environmental factors. PLoS One. 2025 Jan 23;20(1):e0317619.

13. Trizoglou P, Liu X, Lin Z. Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore

wind turbines. Renew Energy. 2021 Dec;179:945–62. https://doi.org/10.1016/j.renene.2021.07.085

14. Aslan E. Temperature Prediction and Performance Comparison of Permanent Magnet Synchronous Motors Using Different Machine

Learning Techniques for Early Failure Detection. Eksploatacja i Niezawodność – Maintenance and Reliability. 2024 Aug 9;27(1).

https://doi.org/10.17531/ein/192164

15. Moorthy PK, Goel N, Baghel S. Regression Methods and Models. In: Deep Learning Concepts in Operations Research. New York:

Auerbach Publications; 2024. p. 199–225. https://doi.org/10.1201/9781003433309-17

16. Bai FJJS, Jasmine RA. Optimization of tree-based machine learning algorithms for improving the predictive accuracy of hepatitis C disease.

In: Decision-Making Models. Elsevier; 2024. p. 523–45. https://doi.org/10.1016/B978-0-443-16147-6.00015-3

17. Khan MS, Peng T, Akhlaq H, Khan MA. Comparative Analysis of Automated Machine Learning for Hyperparameter Optimization and

Explainable Artificial Intelligence Models. IEEE Access. 2025;1–1. https://doi.org/10.1109/ACCESS.2025.3566427

18. Oliva D, Houssein EH, Hinojosa S, editors. Metaheuristics in Machine Learning: Theory and Applications. Vol. 967. Cham: Springer

International Publishing; 2021. https://doi.org/10.1007/978-3-030-70542-8

19. Das S, Suganthan PN. Differential Evolution: A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation. 2011

Feb;15(1):4–31. https://doi.org/10.1109/TEVC.2010.2059031

20. Schmidt M, Safarani S, Gastinger J, Jacobs T, Nicolas S, Schulke A. On the Performance of Differential Evolution for Hyperparameter

Tuning. In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE; 2019. p. 1–8.

https://doi.org/10.1109/IJCNN.2019.8851978

21. Sen A, Gupta V, Tang C. Differential Evolution Algorithm Based Hyperparameter Selection of Gated Recurrent Unit for Electrical Load

Forecasting [Internet]. 2023. Available from: https://arxiv.org/abs/2309.13019

22. Ali Y, Awwad E, Al-Razgan M, Maarouf A. Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational

Complexity. Processes. 2023 Jan 21;11(2):349.

23. Brodzicki A, Piekarski M, Jaworek-Korjakowska J. The Whale Optimization Algorithm Approach for Deep Neural Networks. Sensors.

2021 Nov 30;21(23):8003.

24. Oladejo SO, Ekwe SO, Ajibare AT, Akinyemi LA, Mirjalili S. Tuning SVMs' hyperparameters using the whale optimization algorithm. In:

Handbook of Whale Optimization Algorithm. Elsevier; 2024. p. 495–521. https://doi.org/10.1016/B978-0-32-395365-8.00042-7

25. Yu X, Xu W, Wu X, Wang X. Reinforced exploitation and exploration grey wolf optimizer for numerical and real-world optimization

problems. Applied Intelligence. 2022 Jun 28;52(8):8412–27. https://doi.org/10.1007/s10489-021-02795-4

26. Sumathi S, Rajesh R. HybGBS: A hybrid neural network and grey wolf optimizer for intrusion detection in a cloud computing environment.

Concurr Comput. 2024 Nov 19;36(24). https://doi.org/10.1002/cpe.8264

27. Aufa BZ, Suyanto S, Arifianto A. Hyperparameter Setting of LSTM-based Language Model using Grey Wolf Optimizer. In: 2020

International Conference on Data Science and Its Applications (ICoDSA). IEEE; 2020. p. 1–5.

https://doi.org/10.1109/ICoDSA50139.2020.9213031

http://www.sciencedirect.com/journal/global-energy-interconnection

Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026

28. Rahamathulla MY, Ramaiah M. Optimizing anomaly detection models for edge IIoT with an enhanced firefly algorithm-based

hyperparameter tuning strategy. Results in Engineering. 2025 Sep;27:105843.

29. Nayak J, Naik B, Dash PB, Souri A, Shanmuganathan V. Hyper-parameter tuned light gradient boosting machine using memetic firefly

algorithm for hand gesture recognition. Appl Soft Comput. 2021 Aug;107:107478.

30. Izci D, Hekimoğlu B, Ekinci S. A new artificial ecosystem-based optimization integrated with Nelder-Mead method for PID controller

design of buck converter. Alexandria Engineering Journal. 2022 Mar;61(3):2030–44. https://doi.org/10.1016/j.aej.2021.07.037

31. Boddu Y, Manimaran A, Arunkumar B, Ramkumar D. Design of an Iterative Dual Metaheuristic VARMAx Model Enhancing Efficiency

of Time Series Predictions. IEEE Access. 2024;12:128071–84. https://doi.org/10.1109/ACCESS.2024.3454540

32. Ekinci S, Izci D, Yilmaz M. Efficient Speed Control for DC Motors Using Novel Gazelle Simplex Optimizer. IEEE Access.

2023;11:105830–42. https://doi.org/10.1109/ACCESS.2023.3319596

33. Snášel V, Rizk-Allah RM, Izci D, Ekinci S. Weighted mean of vectors optimization algorithm and its application in designing the power

system stabilizer. Appl Soft Comput. 2023 Mar;136:110085.

34. Eker E, Kayri M, Ekinci S, Izci D. A New Fusion of ASO with SA Algorithm and Its Applications to MLP Training and DC Motor Speed

Control. Arab J Sci Eng. 2021 Apr 2;46(4):3889–911. https://doi.org/10.1007/s13369-020-05228-5

35. Lale T. GWO-WOA-AOA: Multi-stage Hybrid Metaheuristic Optimization Approach. In: 2025 9th International Symposium on Innovative

Approaches in Smart Technologies (ISAS). IEEE; 2025. p. 1–8. https://doi.org/10.1109/ISAS66241.2025.11101906

36. Yang XS. Firefly Algorithm, Stochastic Test Functions and Design Optimisation. 2010 Mar 6; Available from:

http://arxiv.org/abs/1003.1409

37. Zervoudakis K, Tsafarakis S. A mayfly optimization algorithm. Comput Ind Eng. 2020 Jul;145:106559.

38. Brest J, Maucec MS, Boskovic B. The 100-Digit Challenge: Algorithm jDE100. In: 2019 IEEE Congress on Evolutionary Computation

(CEC). IEEE; 2019. p. 19–26. https://doi.org/10.1109/CEC.2019.8789904

39. Viktorin A, Senkerik R, Pluhacek M, Kadavy T, Zamuda A. DISH Algorithm Solving the CEC 2019 100-Digit Challenge. In: 2019 IEEE

Congress on Evolutionary Computation (CEC). IEEE; 2019. p. 1–6. https://doi.org/10.1109/CEC.2019.8789936

40. Braik M, Al-Hiary H. Rüppell's fox optimizer: A novel meta-heuristic approach for solving global optimization problems. Cluster Comput.

2025 Aug 28;28(5):292. https://doi.org/10.1007/s10586-024-04950-1

41. Sharma P, Raju S. Techno-economic analysis of Retired Electric Vehicle Batteries with Grid-Connected Hybrid Energy System. Energy

Convers Manag. 2025 Sep;339:119870.

42. Eker E. Development of Random Walks Strategy-Based Dandelion Optimizer and Its Application to Engineering Design Problems. IEEE

Access. 2025;13:56547–75. https://doi.org/10.1109/ACCESS.2025.3554505

43. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. New York, NY, USA: ACM; 2016. p. 785–94. https://doi.org/10.1145/2939672.2939785

44. Ostroumova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased boosting with categorical features. In: Neural Information

Processing Systems [Internet]. 2017. Available from: https://api.semanticscholar.org/CorpusID:5044218

45. Hakkal S, Lahcen AA. XGBoost To Enhance Learner Performance Prediction. Computers and Education: Artificial Intelligence. 2024

Dec;7:100254.

46. Niazkar M, Menapace A, Brentan B, Piraei R, Jimenez D, Dhawan P, et al. Applications of XGBoost in water resources engineering: A

systematic literature review (Dec 2018–May 2023). Environmental Modelling & Software. 2024 Mar;174:105971.

47. Xu Y, Zheng S, Zhu Q, Wong K chun, Wang X, Lin Q. A complementary fused method using GRU and XGBoost models for long-term

solar energy hourly forecasting. Expert Syst Appl. 2024 Nov;254:124286.

48. Zhang L, Jánošík D. Enhanced short-term load forecasting with hybrid machine learning models: CatBoost and XGBoost approaches.

Expert Syst Appl. 2024 May;241:122686.

49. Fan M, Xiao K, Sun L, Zhang S, Xu Y. Automated Hyperparameter Optimization of Gradient Boosting Decision Tree Approach for Gold

Mineral Prospectivity Mapping in the Xiong'ershan Area. Minerals. 2022 Dec 16;12(12):1621.

50. Erisen B. https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset/data. Wind Turbine Scada Dataset.

