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Abstract

Accurate wind energy forecasting is essential for grid stability, energy-
demand balance, and the efficient use of renewables. Shallow learning

XGBoost.

DE-Fly combines DE, Firefly, and Mayfly
algorithms in a multi-phase hybrid structure.
The enhanced GDTP-XGBoost improves wind
power forecasting accuracy and speed.
Forecast precision enhances maintenance

planning and system-level reliability decisions.

This is an open access article under the CC BY license

methods are favored for their scalability and generalization ability, yet
their performance strongly depends on proper hyperparameter tuning.
This study introduces an enhanced XGBoost model with a Gradient-
Dynamic Tree Pruning (GDTP) mechanism to control tree complexity
adaptively, optimized through a novel DE-Fly hybrid algorithm that
integrates Differential Evolution, Firefly Algorithm, and Mayfly
Algorithm. Experimental validation using real-world wind power data
demonstrates that the proposed DE-Fly—optimized GDTP-XGBoost
model achieves superior forecasting accuracy and significantly faster
computation than conventional approaches. Beyond predictive
performance, the framework provides practical benefits by supporting
condition-based maintenance, enabling earlier anomaly detection,
minimizing downtime, and enhancing the overall reliability of wind farm
operations.

Keywords
maintenance planning, optimization, renewable energy, shallow
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1. Introduction

The global shift toward sustainable energy has made wind
power one of the most significant renewable energy sources (1—
3). While weather data and historical generation records are
becoming increasingly accessible, forecasting wind energy
remains a challenging task. Many machine learning methods
have been employed to enhance forecasting accuracy. However,
their success often depends on choosing the proper model
parameters. The failure of poorly tuned models to deliver the
desired performance suggests the need for more effective,
flexible forecasting methods that can adapt to various

conditions (4,5). From a maintenance perspective, accurate
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learning, wind energy forecasting

forecasting helps reduce unnecessary load cycling, supports
asset health monitoring, and extends system lifetime. It is
important for enabling Condition-Based Maintenance (CBM)
strategies by providing timely and precise energy output
estimates, while supporting Reliability-Centered Maintenance
(RCM) frameworks when deeper failure mode insights are
required.

Accurate wind energy forecasting is also important for daily
operational decisions at wind farms. Short-term forecasts allow
operators to better schedule and distribute generated power

according to demand. They also help to adjust power
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distribution to meet grid requirements. Forecasts serve as an
early warning system for periods of high mechanical stress,
allowing teams to plan preventive measures before failures
occur. It becomes possible to schedule turbine maintenance
according to expected periods of low production. In this way,
forecasts become a practical decision support tool that links
data-driven modeling with condition-based maintenance
practices.

Recent surveys have highlighted the growing influence of
artificial intelligence (Al) and big data analytics in the realm of
wind energy forecasting. Machine learning and hybrid Al
methodologies have been particularly efficacious in managing
data heterogeneity and uncertainty (6). Forecasting accuracy is
continually being refined by methodological advances, which
employ hybrid deep learning and signal decomposition
strategies. For instance, Wang et al. in (7) developed an
improved Wavenet with multi-head self-attention for multi-
step-ahead forecasting, demonstrating significant error
reductions compared to classical Al models. Similarly,
Nascimento et al. in (8) proposed a transformer-based deep
neural network integrated with wavelet decomposition, showing
enhanced accuracy and efficiency over Long-Short Term
Memory (LSTM) in short-term wind speed and power
prediction. Among the comparative studies most relevant to this
research, Bouabdallaoui et al. (9) assessed Artificial Neural
Networks (ANN), ANFIS, Decision Trees (DT), and Support
Vector Machines (SVM), reporting an R? value of 0.95.
Karaman (10) evaluated Convolutional Neural Network (CNN),
LSTM, and Recurrent Neural Network (RNN) models,
achieving an R? of 0.9574. The nonlinear behaviour of wind
power generation is represented well by these advanced
learning models. However, it is also highlighted that they are
dependent on extensive hyperparameter tuning and
considerable computational resources. Also, the fact that these
methods are not easily explainable can make them less useful in
real-life situations. Consequently, shallow learning approaches
retain their high pertinence, delivering expeditious training,
enhanced transparency, and dependable performance under
conditions of limited data, which are of paramount importance
for real-time wind power forecasting.

Shallow learning methods are different from deep learning

models because they can be trained quickly, are easier to

understand, and work well with limited data. This makes them
suitable for use in industrial settings where time is important
(11). Extreme Gradient Boosting (XGBoost) is a type of
machine learning and is very good at finding nonlinear models
and dealing with noisy or incomplete data. However, careful
model configuration is essential to fully leverage XGBoost's
forecasting capabilities, particularly in critical systems where
reliability and uninterrupted performance are vital (12—14). The
connection between hyperparameters is the main reason for this
situation. These parameters work together to determine how the
model aligns with the data, balances bias and variance, and
adapts to new situations it has not encountered before. Finding
the best mix of different settings is hard because there are so
many options, and they all depend on each other (15,16).
Conventional approaches, such as grid or random search, are
computationally intensive and often prove ineffective in
identifying globally optimal configurations, resulting in
suboptimal performance. Additionally, their rigid structure
hinders their ability to adapt to different datasets or specific
requirements, emphasizing the necessity for a more intelligent,
adaptive, and automated tuning approach that can
systematically enhance XGBoost for various forecasting
scenarios (17).

Nature-inspired metaheuristic algorithms are potent tools
for hyperparameter optimization because of the limitations of
manual and exhaustive search strategies. The mimicking of
natural phenomena, such as biological evolution, swarm
behaviour, or physical processes, enables efficient optimization
of large, complex search spaces (18). Differential Evolution
(DE), in particular, has been successfully applied to
hyperparameter optimization in machine learning models,
demonstrating its ability to improve generalization and prevent
overfitting (19-21). Whale Optimization Algorithm (WOA)
(22-24), Grey Wolf Optimizer (GWO) (25-27), and Firefly
Algorithm (FA) have demonstrated success in various
optimization problems by balancing global exploration and
local exploitation (28,29). Nevertheless, most single-phase
metaheuristics encounter difficulties such as premature
convergence, limited fine-tuning capability, or becoming
trapped in local optima when confronted with high-dimensional
hyperparameter spaces. These limitations highlight the need for

more effective hybrid optimization strategies that combine
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different algorithmic strengths to achieve superior results
(30,31). In recent years, hybrid metaheuristic approaches have
been proposed to address the shortcomings of single-phase
algorithms. One example is the Mountain Gazelle Optimization
(MGO) integrated with the Nelder-Mead (NM) method
(MGONM), which combines swarm-inspired exploration with
simplex-based local refinement and has shown competitive
results (32). Such studies illustrate the promise of hybrid
methods in improving convergence reliability when tackling
complex optimization problems.

Many existing metaheuristic algorithms demonstrate strong
optimization performance, yet their tendency to rely
predominantly on either exploration or exploitation often limits
their adaptability across diverse problem types. Algorithms
biased toward global exploration may struggle with precision in
the fine-tuning phase, while those focused on local exploitation
risk premature convergence and suboptimal solutions (33-35).
This trade-off becomes particularly important when tuning
complex machine learning models, where both parameter
optimization and dynamic structural control are required.

Managing model complexity during training is a key
challenge in developing reliable forecasting systems. This study
addresses the issue by introducing a Gradient-Dynamic Tree
Pruning (GDTP) mechanism that adjusts tree expansion based
on gradient feedback. The goal is to avoid unnecessary growth
in the model while maintaining high predictive power. Although
such strategies have clear advantages, they are rarely integrated
into automated machine learning setups. In this study, to close
this gap, a refined XGBoost model enhanced with GDTP and
optimized through a hybrid, multi-stage approach is presented.
The accompanying optimizer, DE-Fly, operates in phases, first
exploring broadly with DE, then narrowing the search using the
FA, and finally fine-tuning solutions via the Mayfly Algorithm
(MA). This coordination allows both the model structure and its
parameters to adapt jointly and effectively. When tested on
actual wind energy data, the framework not only achieved
stronger forecasting results than traditional methods but also
proved computationally efficient, making it well-suited for
maintenance scheduling, system reliability assessments, and
clean energy integration. The main research gaps addressed in
this study are as follows:

Lack of Integrated Hyperparameter and Structural

Optimization: Existing studies on XGBoost optimization
primarily focus on hyperparameter tuning without addressing
the dynamic control of tree structure. Current methods fail to
incorporate gradient-based pruning, which can significantly
improve model generalization and computational efficiency by
preventing unnecessary tree growth.

Limited Adaptation Problem-Specific Search Spaces:
Although various optimization techniques have been applied to
machine learning models, most rely on static or problem-
agnostic search strategies. These methods struggle to adapt to
the unique characteristics of wind energy forecasting tasks,
which require dynamic exploration of high-dimensional and
problem-specific parameter spaces.

Absence of Multi-Phase Optimization Frameworks
Combining Exploration, Exploitation, and Fine-Tuning:
Existing optimization strategies often merge or overlook the
distinction between exploration, exploitation, and fine-tuning
phases. This lack of structured coordination hinders their ability
to balance global search and local refinement, resulting in
suboptimal solutions and inconsistent performance.

Contribution of the Study

This study introduces a novel optimization framework that
addresses these gaps by proposing the DE-Fly Optimizer, which
sequentially integrates DE for exploration, FA for exploitation,
and MA for fine-tuning. This multi-phase optimization strategy
tunes XGBoost's conventional hyperparameters and optimizes
the GDTP mechanism to control tree complexity adaptively.
The proposed framework significantly enhances forecasting

accuracy, computational efficiency, and model generalisation.
2. Proposed DE-Fly Method

The proposed DE-Fly method builds upon well-established
metaheuristic algorithms, namely Differential Evolution (19),
the Firefly Algorithm (36), and the Mayfly Algorithm (37),
which are integrated into a coordinated multi-phase framework
as shown in pseudo-code below.

The DE method is used in the first stage of the hybrid
algorithm. DE provides an advantage in generating optimal
solutions in the initial population due to its ability to perform an
efficient global search in an ample solution space. The basic
mechanisms of this method consist of mutation, crossover, and

selection. Firstly, the mutation process, as given in Equation 1,
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is performed.
Ot = x5+ F - Oy — Xf%) (1

Where, 19{”1 is the mutated solution for the i-#% individual, yX,,
x¥& ., xk are randomly selected positions of three distinct
individuals from the current population, and F is the differential
weight factor within the range [0, 2]. After mutation, new
individuals are created by combining the mutated solution with
the existing population using crossover. The crossover

operation is defined in Equation 2.
{19{‘“, if rand; < CR o7 j = jyana

xk, otherwise

k1 -

u;

(2)

Where, uf*! is the offspring of the i-4 individual after
crossover, rand; is arandom value in [0, 1], CR is the crossover
probability in the range [0, 1], and j,4,q is @ randomly chosen
index. In the selection step, the fitness of each new individual is
evaluated, and the best individuals are selected for the next
generation. The best solution is determined by equation 3.
gt = arg min f(ukt) 3)
Where g**1 is the global best solution at iteration k+/, and f'is
the objective function. The best solution from the DE phase is
transferred to the FA as part of the initial population shown in
Equation 4.
PFqiTefly = XpE (4)
The FA is based on the movement of fireflies influenced by
their brightness. Brightness is inversely proportional to the
objective function value; brighter individuals represent better
solutions. The position of each Firefly is updated according to
equation 5.
X =l Be - (xf —xf) +ae (5)
Where, yf*?1 is the updated position of the i-¢ individual, §
is the attraction coefficient, y is the light absorption coefficient,
1;; is the distance between fireflies i and j, a is the
randomization parameter, and ¢ is random noise. The objective
function is minimized at each iteration, and the brightest Firefly
is determined. The best solution is then passed to the MA, as
shown in equation 6.
P 1\91ayfly = X;L"refly (6)
The MA combines social and individual dynamics to find
the optimal solution. The velocity and position of each

individual are updated as equations 7 and 8.
I = w-OF + cyry - (pF — xF) + comy
(gt = xt) ™

X = b+ ot ®

9F*1 is the velocity of the i-th individual at iteration k+1,

Here,
x¥+1 Position of the i-t4 individual at iteration k+/, w Inertia
weight, ¢; and ¢, acceleration coefficients, r; and r, are
random values in [0, 1], p¥ is the personal best position of the
i-th individual, g¥ is the global best position. The MA also
includes a mating mechanism to explore new solutions, as
shown in equation 9.

Xchita = @xYmate + (1 — @) Xremate, 2€[0,1] €))

After mating, the offspring may undergo mutation to
introduce randomness and improve exploration, as shown in

equation 10.

Xmutated = Xchild + N(OJUZ) (10)
The best individual is the final solution when the MA

reaches the predefined number of iterations, as in equation 11.
XFinal = XIT/Iayfly (11)
Throughout the hybrid algorithm, the objective functions of
3 different test functions are used to evaluate solutions and
guide the optimization process. The final solution ygina; s

represents the best result found by the DE-Fly technique.

PSEUDO CODE
ALGORITHM DE_FLY
INPUT: pop_size; max_iter_de; max_iter_fa; max_iter_ma;
bounds; objective f(-);
DE: F, CR; FA: beta0, gamma, alpha; MA: omega, cl, c2, mating_alpha, sigma
BEGIN DE_FLY
#Phase I: Differential Evolution (global exploration)
P = Initialize_Population(pop_size, bounds); Evaluate_Fitness(P, f)
FOR k=1 .. max_iter_de:
FOR each individual i in P:

v = Mutation_DE(P, i, F) #Eq.(1)
u = Crossover DE(P[i], v, CR) #Eq.(2)
P[i] = Selection_DE(P[i], u, f) #Eq.(3)
END FOR
END FOR

best_de = Best(P) # seed for FA (Eq.(4))
#Phase II: Firefly Algorithm (exploitation + diversity)
Fflies = Initialize_ With_Seed(best_de, pop_size, bounds)
Evaluate_Fitness(Fflies, f)
FOR k =1 .. max_iter_fa:
FOR each pair (i,j):
IF brightness(Fflies[i]) < brightness(Fflies[j]):
Fflies[i] = Firefly_Update(Fflies[i], Fflies[j], beta0, gamma, alpha, bounds) # Eq.(5)
END IF
END FOR
Update_Fitness(Fflies, f)
END FOR
best_fa = Best(Fflies) # seed for MA ( Eq.(6))
#Phase I1I: Mayfly Algorithm (fine-tuning)
M = Initialize_With_Seed(best_fa, pop_size, bounds); Init_Velocities(M); Init_Personals(M)
gbest = Best(M)
FOR k =1 .. max_iter_ma:
FOR each mayfly i in M:

v_i=omega*v_i+ cl*rand()*(pbest_i - x_i) + c2*rand()*(gbest - x_i) # Eq.(7)
X_i = Project_Bounds(x_i + v_i, bounds) # Eq.(8)
END FOR

# mating + mutation (optional)
FOR each (male,female) in Pairs(M):
child = mating_alpha*male + (1-mating_alpha)*female # Eq.(9)
child = Project_Bounds(child + Normal(0, sigma”2), bounds) # Eq.(10)
Insert_If Better(M, child, f)
END FOR
Update_Personal_And_Global_Bests(M, f)
END FOR
RETURN gbest
# y_Final* (Eqgs.11,14)
END DE_FLY

In Figure 1, the working principle of the proposed DE-Fly is
given as follows.
1. All parameters for the DE algorithm are initialized. The

initial population is randomly generated.
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2. Differential mutation is performed: The difference vector
between three randomly selected individuals is generated and
added to the positions of the existing individuals.

3. The crossover process is applied: Each individual is
crossed with the mutated solution to create new individuals.

4. Selection process is performed: The new and existing

populations are compared according to the cost function, and

Start Start:

DE Phase (input)

A 4
Input: population size, max

the most suitable individuals are selected.

5. The DE algorithm terminates when it reaches the
specified number of iterations or error criteria. The best solution
is passed to the FA:

PFOirefly = XpE 12)

6. Initialize all parameters for the FA. The best solution from

the DE is included in the initial population.

Start:
FA Phase(Best Solution

Start:
MA Phase(Best Solution
FA)

DE)

iterations DE, max
iterations FA,

max iterations MA,

dimension, bounds,
objective func

Initialize Population

Initialize Surrogate Model

call: DE phase(input) find_best(population)

Il ¥

Best Solution DE iter<max_iter_DE

Y
el Select Target Vector
FA Phase(Best Solution
DE)
\ 4 k4
Best Solution FA Generate Mutant Vector,

v v
call:
MA Phase(Best Solution IPlesitelin Eessya
FA)
" A 4

Final Best Solution Perform Selection  —

End: Return Final
Solution DE

End: Return Final

Solution

4
Y

iter<max_iter_FA iter<max_iter MA

For Each Firefly — Update Position Male

Compare Brightness Update Position Female

Update Position (if

needed) Perform Mating

Evaluate Fitness Update Best Solution  |—

End: Return Final Best
Solution

Update Best Firefly —

End: Return Best
Solution FA

Figure 1. Flowchart of the DE-Fly Optimizer.
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7. In each iteration of the FA, the brightness is calculated
according to the cost functions of the individuals. Individuals
gravitate towards brighter individuals. The randomization term
ensures diversity.

8. The FA terminates when it reaches the specified number
of iterations or error criteria. The brightest individual (best
solution) is transferred to the MA:

P181ayfzy = X;irefly (13)

9. All parameters for the MA are initialized. The best
solution from Firefly is used as the initial population.

10. In each iteration of the MA, the speed and position of the
individuals are updated. The mating process creates new
individuals. The mutation process ensures that new individuals
are provided with diversity in the solution space.

11. The MA terminates when it reaches the specified number
of iterations or error criteria. The best individual is considered
the final solution:

XFinal = XMayfly (14)

12. The final best solution is reported as the result of the
hybrid algorithm.

3. Benchmark Test with CEC2019

The CEC2019 benchmark set is widely used for evaluating the
Table 1. CEC2019 Test Functions.

performance of optimization algorithms, as shown in Table 1
(38,39). It was designed to test the effectiveness of evolutionary
algorithms and meta-heuristic methods in solving real-world
problems. Various challenging test functions are included,
designed to assess the ability of algorithms to handle complex
problems. These functions are characterized by being multi-
modal, non-separable, and high-dimensional. Algorithms are
evaluated on how well they navigate complex search spaces,
and the suite has become a standard testbed frequently
employed to demonstrate the effectiveness of newly proposed
optimization methods (40—42).

All experiments were conducted on a workstation equipped
with an AMD Ryzen 9 7950X 16-core/32-thread processor (5.7
GHz), 64 GB DDRS5 7200 MHz RAM, and an NVIDIA RTX
3070 Ti GPU (8 GB). The algorithms were implemented in
Python within the Visual Studio environment. Core libraries
used include NumPy, Pandas, Scikit-learn, Matplotlib, and
Seaborn for data preprocessing and visualization; XGBoost for
regression modeling; and SciPy, along with custom Python
implementations for metaheuristic optimizations. This
computational setup ensured both efficiency in large-scale

simulations and reproducibility of results.

No. Function D Search Range Best
Fi Storn's Chebyshev Polynomial Fitting Problem 9 [-8192, 8192] 1
F, Inverse Hilbert Matrix Problem 16 [-16,384, 16,384] 1
Fs Lennard—Jones Minimum Energy Cluster 18 [-4, 4] 1
Fy Rastrigin's Function 10 [-100, 100] 1
Fs Griewangk's Function 10 [-100, 100] 1
Fe Weierstrass Function 10 [-100, 100] 1
F, Modified Schwefel's Function 10 [-100, 100] 1
Fg Expanded Schaffer's F6 Function 10 [-100, 100] 1
Fq Happy Cat Function 10 [-100, 100] 1
Fio Ackley Function 10 [-100, 100] 1

The established benchmark has been further categorized into
distinct groups: single-modal, multi-modal, composite, and
a category devoted to real-world problems. The categorization
in question facilitates the testing of algorithms concerning a
wide range of theoretical and practical problems. In terms of

performance evaluation, criteria such as solution quality,

consistency, and computation are considered. CEC2019
provides standardized test functions, enabling fair comparisons
between algorithms.

Table 2 reports the parameter settings of the proposed DE-
Fly and the compared algorithms. The term popsize represents

the number of individuals in the population for all algorithms,
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while max_iter denotes the maximum number of iterations. In
DE, F refers to the differential weight factor and Cy to the
crossover probability. In the FA, r is a random number drawn
from [-1,1], whereas ,€,,;, and , €, indicate the lower and
upper bounds of the light absorption coefficient. Within the MA,
¢, and ¢, are acceleration coefficients that control the influence
of personal and global best positions, and ® denotes the inertia
weight balancing exploration and exploitation. In the WOA,
a is a convergence parameter linearly decreasing from 2 to 0,
b is a constant defining the bubble-net spiral motion, [ is

arandom parameter in [-1,1] controlling exploitation behaviour,

Table 2. Optimization Algorithm Parameters.

and p is the probability of the shrinking encircling mechanism.
In the GWO, a is again a linearly decreasing parameter, while
A and C are control coefficients derived from random vectors.
For the MGO component of MGONM, «a represents leader
influence, f herd influence, § escape strength, w an inertia
weight decreasing from 0.9 to 0.4, r the adaptive search radius
(1—-0), and jump_prob the probability of a random jump.
Finally, in the NM phase of MGONM, « denotes the reflection
coefficient, y the expansion coefficient, p the contraction

coefficient, and o the shrink coefficient.

Algorithm Parameter Value
DE popsize, max_iter, F, Cg 20,100,0.5,0.9
DE-Fly FA 1, Comins Cmax [-1,1],0.0001,1
MA C1,Cy W, 1.5,1.5,0.5
WOA popsize, max,a, b, 1, p 20,100, [2,0],1,[-1,1],0.5
DE popsize, max_iter, F, Cy 20,100,0.5,0.9
GWO popsize, max_iter, a, A, C 20,100,2 = 0,[—a, a], [0,2]
MGO popsize, max, &, B, &, w,, 20,100,2,1.5,0.8,0.9, 0.9
MGONM jump_prob - 04,1
- 0,0.1
NM r}%grx: &Y, p,0 100,1.0,2.0,0.5,0.5

Both Table 3 and Figure 2 present the outcomes of the
CEC2019 benchmark suite. Overall, the proposed DE-Fly
algorithm consistently provided superior or competitive results
across the majority of test functions, outperforming classical DE,
swarm-based methods (GWO and WOA), and the hybrid
MGONM approach. For the Ackley function, DE-Fly obtained

Table 3. CEC2019 Performance Comparison.

the lowest best value (21.01) and the lowest mean (21.42), with
a minimal standard deviation (0.1), indicating highly reliable
convergence. In the Storn's Chebyshev Polynomial Fitting
DE-Fly produced the best (3187),

Problem, value

outperforming MGONM and DE by a considerable margin.

Function Metrics DE-Fly MGONM DE GWO WOA
Fy Best 3.187¢+03 7.310e+04 6.045e+04 7.021e+02 1.143e+00
Mean 1.563e+05 1.967e+06 2.286e+06 8.963e+05 5.084e+07
Std 1.860e+05 2.035e+06 3.374e+06 1.586e+06 6.744e+07
F, Best 3.983e+00 4.607e+00 4.585e+00 4.680e+00 5.000e+00
Mean 4.301e+00 6.118e+00 5.339¢+00 5.563e+00 1.041e+01
Std 1.772e-01 9.003e-01 5.088e-01 5.417e-01 4.060e+00
Fs Best 1.409e+00 2.422e+00 7.951e+00 1.532e+00 4.929e+00
Mean 5.512e+00 6.287¢+00 1.028e+01 5.288e+00 7.854e+00
Std 2.453e+00 1.625¢+00 7.435e-01 2.163e+00 1.568e+00
Fy Best 4.980e+00 5.129e+01 4.638e+01 1.555e+02 1.651e+04
Mean 1.192e+03 3.200e+02 2.974e+03 2.958e+03 1.073e+05
Std 6.673e+03 4.020e+02 8.064¢+03 2.842¢+03 6.040e+04

Function Metrics DE-Fly MGONM DE GWO WOA
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Fe Best 1.032e+00 3.230e+00 2.932e+00 1.148e+02 9.491e+04
Mean 9.871e+02 5.037¢+02 4.362e+03 1.146e+04 4.494e+05
Std 5.042¢+03 8.114e+02 1.805e+04 1.654e+04 2.788e+05

Fe Best 1.841e+02 1.843e+02 1.906e+02 1.894e+02 1.872e+02
Mean 1.900e+02 1.879¢+02 1.922e+02 1.919¢+02 1.908e+02
Std 1.700e+00 1.886e+00 6.988e-01 1.020e+00 1.306e+00

F, Best 8.515e¢+02 9.886e+02 2.324e+03 1.871e+03 6.765¢+03
Mean 1.910e+03 2.511e+03 3.088e+03 3.189¢+03 1.902e+04
Std 4.216e+02 6.677e+02 8.929¢+02 6.849¢+02 7.384e+03

Fg Best 3.204e+00 3.631e+00 4.223e+00 3.562¢+00 4.112e+00
Mean 4.028e+00 4.678e+00 4.801e+00 4.426e+00 4.983e+00
Std 3.594e-01 3.981e-01 1.730e-01 3.856e-01 2.619¢-01

Fo Best 1.063e+00 1.259¢+00 1.266e+00 8.387¢+00 7.345e+02
Mean 2.050e+00 9.280e+00 1.283e+02 1.286e+02 7.491e+03
Std 2.526e+00 7.817¢+00 3.432¢+02 2.317e+02 5.656e+03

Fio Best 2.101e+01 2.102e+01 2.136e+01 2.140e+01 2.133e+01
Mean 2.142¢+01 2.128e+01 2.166e+01 2.167e+01 2.156e+01
Std 1.000e-01 1.695e-01 1.154¢-01 1.139e-01 1.214e-01

Best Values

Function
FI0 F9 F8 F7 F6 F5 F4 F3 F2 F1

Function
F10 F9 F8 F7 F6 F5 F4 F3 F2 F1

4.607e+00 4.585e+00

SEEESTINTTITN  2esseson | T T

3.631e+00 4.223e+00 3.562e+00
' : DE GWO WOA

DE-Fly MGONM
Algorithm

Mean Values

1.900e+02 1.879e+02 ’W
' GWO WOA

DE-Fly MGONM DE
Algorithm

4.028e+00

I 9.5e+04

1.0e+00

I 5.1e+07

2.1e+00
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Standard Deviation Values

1.860e+05 2.035e+06 3.374e+06 1.586e+06 6.744e+07
- 9.003e-01 5.088e-01 5.417e-01 4.060e+00
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Figure 2. Heatmap of the Performance Comparison of Optimization Algorithms.

Although WOA yielded a slightly lower best result, its mean
and variance were significantly higher, demonstrating unstable
behavior compared to DE-Fly. On the Expanded Schaffer's F6
Function function, DE-Fly again reported the best performance
(best = 3.204, mean = 4.028), with lower variance than
MGONM, confirming consistent convergence. On more
complex multimodal landscapes, DE-Fly maintained its
superiority. For the Griewank’s function, DE-Fly achieved the
lowest best (1.032) and mean (987.1) values, whereas other
methods showed larger deviations. The Happy Cat function
further confirmed this advantage, with DE-Fly yielding both the
lowest best (1.063) and mean (2.050), far outperforming
MGONM (9.280) and DE (128.3). In the Inverse Hilbert Matrix
Problem, DE-Fly achieved the best value (3.983) and the lowest
mean (4.301), with a standard deviation (0.177) considerably
smaller than those of competing methods, indicating strong
robustness. For the Lennard—Jones Minimum Energy Cluster,
DE-Fly again produced the best value (1.409) and lowest mean
(5.512), surpassing MGONM (6.287) and DE (10.28). In the
Rastrigin’s function, known for its highly multimodal surface,
DE-Fly was the only optimizer that maintained competitive best
(4.980) and mean (1192) values with reasonable stability,
whereas MGONM, DE, and WOA suffered from high error
variance. On the Modified Schwefel's Function, DE-Fly
achieved the lowest best (851.5) and mean (1910), while
alternative methods diverged significantly. Finally, for the
Weierstrass function, DE-Fly closely approximated the global
optimum with a best of 184.1 and a mean of 190.0, again

recording the lowest variance among all tested algorithms.

In summary, the DE-Fly algorithm consistently delivered
superior results in terms of best solution quality, mean stability,
and variance reduction across the CEC2019 test functions.
These findings validate the effectiveness of the proposed multi-
phase framework and demonstrate its advantage over both
single-phase optimizers and hybrid counterparts such as

MGONM.
4. GDTP Mechanism for XGBoost

XGBoost builds its predictive model by adding trees in
sequence, with each new tree aiming to reduce the residual
errors of the ensemble. While this iterative approach improves
the capacity to represent nonlinear patterns, it may also cause
overfitting when tree depth and complexity increase excessively.
Conventional pruning strategies usually depend on fixed rules,
such as a maximum depth limit or a constant gain threshold, and
adaptive approaches often expand only those nodes that exceed
a specified gain level (43,44). The GDTP mechanism differs by
applying a gradient-based threshold that is updated at every
boosting iteration. Through this adjustment, node expansion and
pruning are regulated together according to the distribution of
gradient information, ensuring that weak splits are removed and
only effective expansions are retained. In this way, tree growth
adapts to the learning dynamics, controlling model complexity

while preserving predictive accuracy.
4.1. Background on XGBoost Formulation

XGBoost is a widely adopted tree-based ensemble learning
algorithm that iteratively minimizes prediction error through

additive model construction (45,46). It has been shown to
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effectively handle nonlinear relationships, noisy or missing data,
and high-dimensional feature spaces, making it one of the most
robust shallow learning methods for forecasting tasks (47,48).
Given a dataset with n observations {(x;,y;)}’~,, the
predicted output J; is expressed as the sum of outputs from K

DTs:

K
9= filx), feeF (15)
k=1

where F denotes the functional space of regression trees. The

learning objective at iteration t is defined as:
n

LO® = Z l (yi,f/i(t_l) + ft(xi)) +Q(f) (16)

Here, | represents the loss function, and Q(f;) is a

regularization term penalizing model complexity, defined as:
T
1
) =T +52) o} 17)
J=1

where T is the number of leaves in the tree, w; is the score on
leaf j, y, and A are regularization parameters controlling the
trade-off between model fit and complexity.

Using a second-order Taylor expansion, the objective can be

approximated as:

1
LO = g,fy (x;) + Ehiftz(xi) + Q(f) (18)

where g; and h; are the first and second derivatives of the loss

function with respect to the previous prediction ﬁi(t_l).

4.2. Classical Split Gain Calculation

During tree construction, XGBoost evaluates potential split

points based on the split gain, defined as:
[ GE Gk (G, + Gp)*
2|H, + A "Hy+2 H,+Hp+2| 7

where G, and H;, are the sums of the first and second

Y =

(19)

derivatives for the left child node, and G and Hy are the same
for the right child node. A positive gain indicates that the split

improves the objective and should be applied.
4.3. Proposed GDTP Strategy

In conventional XGBoost, the growth of trees is often limited
by a fixed maximum depth. However, this static constraint may
not be optimal for datasets with varying complexity across
different regions of the feature space. To address this, we
propose the GDTP mechanism, which introduces an adaptive,
split-level pruning condition based on the split gain.

The proposed pruning rule is defined as IfY <

Yayn, then prune the branch , where y4,, is a dynamic
gradient improvement threshold that governs whether a split
should proceed or be terminated. To enable data-driven
adaptability, ¥4y, is formulated as:

Yayn = @ Y (20)
where « is a tunable scaling factor, y is the average gain
observed in the previously constructed trees or branches. This
formulation allows each branch to make pruning decisions
based on the overall quality of splits observed throughout the

model, ensuring that only meaningful branches are expanded.
4.4. Integration with the DE-Fly Optimizer

The proposed GDTP mechanism introduces an additional
control layer into the XGBoost learning process by adaptively
regulating the tree expansion based on the gradient-based

dynamic threshold. Ygyn.

> Evaluate cost function ¢
value

‘,Mmlmlze

Apply
DE-Fly Optimizer

GDTP XGBoost Parameters

€-------

"\seg bulposees

s[ele[eelo]
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Figure 3. Block diagram of the DE-Fly Optimized GDTP-
XGBoost framework for Wind Energy Forecasting.

Finding an appropriate balance between the pruning threshold
and other hyperparameters presents a complex, multi-
dimensional optimization problem that traditional methods
often struggle to address efficiently (49). To overcome this
challenge, the present study adopts the DE-Fly Optimizer,
thereby enabling more effective tuning of the GDTP-XGBoost
model. The overall optimization objective is formulated as

follows:
minimizeg , Validation Loss(0,yayn) = a-Y 21)

where O a represents the standard XGBoost hyperparameters
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and « is the scaling factor controlling the dynamic pruning
threshold. A balanced progression across both the
hyperparameter space and the model's structural parameters is
enabled by the structure of the proposed optimization approach.

As shown in Figure 3, the DE-Fly algorithm makes the
GDTP-XGBoost plan better by doing cost function checks over
and over again, which creates a way to change the model so that
it can do what is needed for forecasting. This flexibility enables
the model to adapt to the particular attributes of the prediction
task. So, the DE-Fly-optimised GDTP-XGBoost framework is
pretty solid. It has got much strength, can be scaled up or down
as needed, and is pretty efficient. It is not just about making
better predictions, but also about making sure things are reliable,

avoiding failures, and planning maintenance for wind energy

Temperature

Prectotland - -

Air Density

Solar Irradiation -

Cloud Cover - -0.

Active Power -

Wind Speed -

Theoretical Power Curve -

Wind Direction -

systems.
5. A Case Study on DE-Fly Enhanced GDTP-XGBoost

This research examines the role of optimization algorithms in
improving hyperparameter tuning within a GDTP-XGBoost
forecasting framework, emphasizing applications in wind
energy. In addition to achieving higher predictive accuracy, the
approach contributes to operational practices by supporting
maintenance planning and strengthening system reliability. In
practice, accurate turbine output forecasts help engineers better
understand system behavior and schedule timely interventions,

especially crucial for wind farms relying on CBM and RCM

protocols.
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- -0.50

Figure 4. Correlation of turbine and meteorological parameters.
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The proposed model was evaluated using operational data
from a wind farm in Yalova, Turkey, collected over the course
of 2018 (50). SCADA data from Nordex N117/3600 turbines,
including wind speed, wind direction, theoretical power, and
actual output, were merged with meteorological records to
enhance forecast reliability.

The complete set of input features used in the forecasting
model is summarized in Table 4, where each parameter is
described in terms of its physical meaning, unit, and data source.
For instance, prectotland denotes total land precipitation
obtained from the MERRA-2 reanalysis dataset (mm/h), while
cloud Cover represents the fraction of the sky obscured by
clouds (0-—1). Altogether, these variables provide both direct and
indirect indicators of turbine performance, enabling the model
to monitor load trends, identify anomalies, and evaluate
component conditions within predictive maintenance systems.

The original dataset contained 50,830 entries recorded at 10-
minute intervals, which were aggregated into hourly averages,
resulting in 8,760 samples. To address missing values, 484 gaps

were identified and filled using a combination of moving

average and linear interpolation. For model evaluation, the
dataset was divided into 70% training and 30% testing subsets,
and all reported performance metrics were computed on the test
set.

Maintaining data consistency throughout this process was
essential to ensure the accuracy of the model, particularly for
applications where operational decisions rely on dependable
forecasts. In this study, the forecasting task was defined as
estimating the potential power output of the turbine given a set
of meteorological conditions, rather than extending the
prediction horizon. This design enables the model to anticipate
turbine load levels under forecasted weather scenarios,
supporting its practical use in condition-based maintenance
applications. The forecasting model was trained on historical
SCADA power data combined with meteorological records to
capture the relationship between atmospheric conditions and
turbine output, and this learned relationship was then used with
forecasted meteorological inputs to estimate the turbine's

potential future power generation.
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Figure 5. Bivariate Pair Plot of Selected Traits.

Eksploatacja i Niezawodnos$¢ — Maintenance and Reliability Vol. 28, No. 2, 2026




Following data preparation, a correlation analysis was
conducted to explore the relationships between input features
and turbine power output. As shown in Figure 4 and the pairwise

scatter plots in Figure 5, wind speed exhibits the strongest

correlation with output power (R = 0.93), confirming its
dominant role in wind energy forecasting. In contrast, variables
such as air density and wind direction showed weaker

associations (R = 0.12), indicating secondary influence.

Table 4. Description of the input parameters used in the forecasting model.

Parameter Description Unit Source
'Wind Speed Hub-height wind velocity m/s SCADA
'Wind Direction 'Wind flow orientation at hub height ° SCADA
Air Density Calculated from pressure and temperature kg/m? MERRA-2
Temperature IAmbient air temperature °C MERRA-2
Solar Irradiation Global tilted irradiation W /m? MERRA-2
Prectotland Total land precipitation mm/h MERRA-2
Cloud Cover Fraction of sky obscured by clouds (0—1) — MERRA-2

However, due to their indirect effects on turbine
performance and atmospheric conditions, they were still
included in the model. Similarly, temperature showed a weak
negative correlation with R =-0.11, cloud cover with R =-0.09,
and solar radiation with R = -0.06. This information helped
identify the most relevant features to be used in machine
learning models, enabling the model to focus on the most
effective variables.

The performance of the GDTP-XGBoost model is highly
sensitive to its hyperparameter configuration, which affects
learning dynamics, model complexity, and overall stability.
These parameters also influence the reliability of downstream
decisions, particularly in maintenance applications where
accurate forecasts are used to inform operational planning. In

this study, five metaheuristic algorithms were used to tune the

hyperparameters and explore their impact on predictive
performance.

Key parameters such as the number of estimators
(n_estimators) and tree depth (max_depth) directly influence
the model's ability to learn patterns without overfitting.
Learning rate (learning rate), subsample ratio, and
colsample bytree determine how training data and features are
utilized, affecting the model's generalization capacity. Gamma
controls tree splitting sensitivity, encouraging structural
simplicity when set appropriately. The GDTP mechanism
adaptively manages these interactions to balance learning
precision and model efficiency. Table 5 compares the parameter
sets identified by each optimization algorithm, highlighting
their different tuning behaviors and guiding the selection of

robust configurations.

Table 5. Comparison of the Optimized Parameters of the XGBoost Model.

Method n_estimators max_depth learn_rate subsample colsample bytree Gamma
WOA 323 6 0.1317 0.7066 0.9160 2.8166
GWO 197 6 0.1598 0.7707 0.8784 3.8409

DE 187 5 0.1061 0.7938 0.9407 2.3516

DE-Fly 366 5 0.187 0.962 0.885 0.156

MGONM 311 5 0.163 0.915 0.891 1.8

Figures 6 and 7 present the performance evaluation of the
GDTP-XGBoost Regressor model in forecasting wind power
output. In Figure 6, the predicted values closely follow the
actual power trends over a selected 100-hour interval, capturing
both peak and valley patterns with moderate error. This visual
consistency indicates that the model can effectively adapt to the
dynamic nature of wind energy production. Figure 7 provides a

complementary perspective by plotting all actual versus

predicted values across the test dataset. The tight concentration
of points around the diagonal reference line suggests that the
model exhibits strong predictive accuracy and minimal bias.
The combination of these visualizations confirms the Gradient
Boosting model's capability to model nonlinear patterns in wind
energy data, though its performance is ultimately outperformed

by the proposed GDTP-XGBoost approach.
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Figure 6. Prediction and actual wind power values for 100
hours using GDTP-XGBoost.

According to Table 6, which is visualized in Figure 8, the
results show how the tested optimization algorithms perform
based on three key metrics: coefficient of determination (R?),
root mean square error (RMSE), and residual standard error
(RSE). Together, these measures compare the model's accuracy
and ability to explain variation in the target variable. The
coefficient of determination (R?) reflects how well the model
captures the variance in the data, with values closer to 1
indicating stronger predictive performance. In this study, the
DE-Fly—optimized GDTP-XGBoost model achieved an R? of
0.9892, showing a strong alignment between predicted and

actual
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Figure 7. Scatter plot of actual vs. predicted wind power with
the 1:1 reference line using GDTP-XGBoost.

values. The RMSE was employed to measure the average

deviation between predicted and observed values. A smaller

RMSE reflects higher forecasting precision. Among all tested
methods, the DE-Fly model achieved the lowest RMSE value
of 135.0388, demonstrating its strong ability to capture the
dynamics of wind power generation. This outcome indicates
that the proposed optimizer not only models underlying data
structures with accuracy but also reduces prediction errors more
consistently than competing algorithms. For maintenance
planning, this improvement is especially valuable, as reliable
forecasts support earlier fault identification, load management,
and efficient scheduling, thereby increasing turbine availability
and reducing the likelihood of unscheduled stoppages. In
addition, lower RMSE values make it possible to recognize
abnormal deviations between expected and actual output at an
early stage, providing practical warning signs of mechanical
stress or potential failures. Such information allows
maintenance teams to act preventively, limiting unexpected
interruptions and extending the operational life of key
components.

Table 6. Performance Metric Comparison of the DE-Fly
Enhanced GDTP-XGBoost.

Method R? RMSE RSE

WOA 0.9883 140.6290 0.01167
GWO 0.9879 142.7685 0.01203
DE 0.9872 146.7788 0.01272
MGONM 0.9887 138.5345 0.01116
DE-Fly 0.9892 135.0388 0.01076

The RSE achieved by DE-Fly was 0.01076, the lowest
among the compared models. This finding underlines the
algorithm's advantage in delivering accurate forecasts and
emphasizes its relevance for reliability-oriented applications.
Accurate prediction contributes directly to reducing operational
risks and strengthening turbine sustainability. The improved
performance over classical Differential Evolution and other
single-phase optimizers can be explained by the balanced
integration of its three stages: global exploration through DE,
local refinement with FA, and adaptive adjustment via MA. The
combination of these mechanisms avoids premature
convergence, accelerates search efficiency, and provides more
precise final solutions. Consequently, DE-Fly proves effective
not only for tuning hyperparameters but also for managing
structural complexity within the GDTP-XGBoost model,

leading to improved forecasting results and operational benefits.
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Figure 8. Performance Comparison of Algorithms on GDTP-XGBoost.

The proposed study is also compared with previously
published results on the same dataset, as shown in Table 7. In
(9), wind power prediction was carried out using ANN, ANFIS,
DT, and SVM, achieving an R? value of 0.95. Similarly, in (10),
deep learning-based methods such as ANN, CNN, LSTM, and
RNN were employed, with the best model yielding an R? of
0.9574. In addition to these literature benchmarks, several
regression and deep learning models were implemented in this
study for direct comparison. Among these, the classical Linear
Regression (LR) model yielded the lowest performance with an
R? of 0.8638, followed by ANN (0.9149) and Random Forest
(RF) (0.9496). Deep learning models such as Gated Recurrent
Unit (GRU) (0.96), LSTM (0.9515), and CNN (0.9809)

demonstrated strong performance on the dataset. Notably, the

DT model alone achieved an R? 0f 0.9668. However, the highest
accuracy was obtained by the proposed GDTP-XGBoost model
optimized via the DE-Fly algorithm, achieving an R? of 0.9892,
outperforming all other tested models as well as the best results
reported in (9) and (10). This improvement highlights the
strength of the proposed method in modeling complex,
nonlinear wind power generation dynamics and providing
highly reliable predictions for operational use. Additionally, an
ablation study was conducted by comparing the proposed
GDTP-XGBoost with the standard XGBoost. The results
confirmed the superiority of the proposed approach, achieving
an R? of 0.9892 with a training time of 0.18 s, compared to
0.9492 and 1.49 s for the baseline XGBoost, respectively.

Table 7. Performance Comparison of Proposed Models with Existing Studies.

Method o Performance Comparis;:ain )

XGBoost 0.9492 1.49
ANN 0.9149 7.13
RF 0.9496 0.49
Proposed GDTP-XGBoost 0.9892 0.18
DT 0.9668 0.05
LR 0.8638 0.01
CNN 0.9809 24
GRU 0.96 60.37
LST™M 0.9515 68.65
©) 0,95 NA
(10) 0,9574 85.8
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In addition to its predictive accuracy, the GDTP-XGBoost
framework also demonstrated a remarkable advantage in terms
of computational time efficiency. By dynamically pruning
unnecessary tree growth during training and employing the DE-
Fly optimizer for more targeted hyperparameter tuning, the
model converged faster than conventional XGBoost and deep
learning counterparts. This balance of accuracy and speed
underlines the practical suitability of the proposed approach for
real-time forecasting and maintenance decision support, where
both reliability and timely computation are essential.

The fact that the proposed GDTP-XGBoost framework
outperformed CNN and LSTM is particularly significant. While
deep learning models are effective at modeling temporal
dependencies, they typically require large datasets, extensive
training time, and considerable computational resources. In
contrast, tree-based methods, when equipped with adaptive
hyperparameters and structural tuning, can rival or surpass deep
learning performance at a fraction of the computational cost.
This balance of accuracy, efficiency, and interpretability makes
the proposed method especially attractive for real-time

forecasting and condition-based maintenance applications.
6. Conclusion

This study introduces a forecasting framework which integrates
XGBoost with the GDTP mechanism. The aim is to enhance the
accuracy of wind power predictions and to strengthen
operational reliability through predictive insights. The GDTP-
XGBoost configuration is engineered to curtail superfluous
model proliferation while retaining its capacity for

generalisation, thus enhancing its aptitude to discern variations
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