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Highlights  Abstract  

▪ A GDTP mechanism is proposed to 

dynamically control tree complexity in 

XGBoost. 

▪ DE-Fly combines DE, Firefly, and Mayfly 

algorithms in a multi-phase hybrid structure. 

▪ The enhanced GDTP-XGBoost improves wind 

power forecasting accuracy and speed. 

▪ Forecast precision enhances maintenance 

planning and system-level reliability decisions. 

 Accurate wind energy forecasting is essential for grid stability, energy-

demand balance, and the efficient use of renewables. Shallow learning 

methods are favored for their scalability and generalization ability, yet 

their performance strongly depends on proper hyperparameter tuning. 

This study introduces an enhanced XGBoost model with a Gradient-

Dynamic Tree Pruning (GDTP) mechanism to control tree complexity 

adaptively, optimized through a novel DE-Fly hybrid algorithm that 

integrates Differential Evolution, Firefly Algorithm, and Mayfly 

Algorithm. Experimental validation using real-world wind power data 

demonstrates that the proposed DE-Fly–optimized GDTP-XGBoost 

model achieves superior forecasting accuracy and significantly faster 

computation than conventional approaches. Beyond predictive 

performance, the framework provides practical benefits by supporting 

condition-based maintenance, enabling earlier anomaly detection, 

minimizing downtime, and enhancing the overall reliability of wind farm 

operations. 
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1. Introduction 

The global shift toward sustainable energy has made wind 

power one of the most significant renewable energy sources (1–

3). While weather data and historical generation records are 

becoming increasingly accessible, forecasting wind energy 

remains a challenging task. Many machine learning methods 

have been employed to enhance forecasting accuracy. However, 

their success often depends on choosing the proper model 

parameters. The failure of poorly tuned models to deliver the 

desired performance suggests the need for more effective, 

flexible forecasting methods that can adapt to various 

conditions (4,5). From a maintenance perspective, accurate 

forecasting helps reduce unnecessary load cycling, supports 

asset health monitoring, and extends system lifetime. It is 

important for enabling Condition-Based Maintenance (CBM) 

strategies by providing timely and precise energy output 

estimates, while supporting Reliability-Centered Maintenance 

(RCM) frameworks when deeper failure mode insights are 

required. 

Accurate wind energy forecasting is also important for daily 

operational decisions at wind farms. Short-term forecasts allow 

operators to better schedule and distribute generated power 

according to demand. They also help to adjust power 
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distribution to meet grid requirements. Forecasts serve as an 

early warning system for periods of high mechanical stress, 

allowing teams to plan preventive measures before failures 

occur. It becomes possible to schedule turbine maintenance 

according to expected periods of low production. In this way, 

forecasts become a practical decision support tool that links 

data-driven modeling with condition-based maintenance 

practices. 

Recent surveys have highlighted the growing influence of 

artificial intelligence (AI) and big data analytics in the realm of 

wind energy forecasting. Machine learning and hybrid AI 

methodologies have been particularly efficacious in managing 

data heterogeneity and uncertainty (6). Forecasting accuracy is 

continually being refined by methodological advances, which 

employ hybrid deep learning and signal decomposition 

strategies. For instance, Wang et al. in (7) developed an 

improved Wavenet with multi-head self-attention for multi-

step-ahead forecasting, demonstrating significant error 

reductions compared to classical AI models. Similarly, 

Nascimento et al. in (8) proposed a transformer-based deep 

neural network integrated with wavelet decomposition, showing 

enhanced accuracy and efficiency over Long-Short Term 

Memory (LSTM) in short-term wind speed and power 

prediction. Among the comparative studies most relevant to this 

research, Bouabdallaoui et al. (9) assessed Artificial Neural 

Networks (ANN), ANFIS, Decision Trees (DT), and Support 

Vector Machines (SVM), reporting an R² value of 0.95. 

Karaman (10) evaluated Convolutional Neural Network (CNN), 

LSTM, and Recurrent Neural Network (RNN) models, 

achieving an R² of 0.9574. The nonlinear behaviour of wind 

power generation is represented well by these advanced 

learning models. However, it is also highlighted that they are 

dependent on extensive hyperparameter tuning and 

considerable computational resources. Also, the fact that these 

methods are not easily explainable can make them less useful in 

real-life situations. Consequently, shallow learning approaches 

retain their high pertinence, delivering expeditious training, 

enhanced transparency, and dependable performance under 

conditions of limited data, which are of paramount importance 

for real-time wind power forecasting. 

Shallow learning methods are different from deep learning 

models because they can be trained quickly, are easier to 

understand, and work well with limited data. This makes them 

suitable for use in industrial settings where time is important 

(11). Extreme Gradient Boosting (XGBoost) is a type of 

machine learning and is very good at finding nonlinear models 

and dealing with noisy or incomplete data. However, careful 

model configuration is essential to fully leverage XGBoost's 

forecasting capabilities, particularly in critical systems where 

reliability and uninterrupted performance are vital (12–14). The 

connection between hyperparameters is the main reason for this 

situation. These parameters work together to determine how the 

model aligns with the data, balances bias and variance, and 

adapts to new situations it has not encountered before. Finding 

the best mix of different settings is hard because there are so 

many options, and they all depend on each other (15,16). 

Conventional approaches, such as grid or random search, are 

computationally intensive and often prove ineffective in 

identifying globally optimal configurations, resulting in 

suboptimal performance. Additionally, their rigid structure 

hinders their ability to adapt to different datasets or specific 

requirements, emphasizing the necessity for a more intelligent, 

adaptive, and automated tuning approach that can 

systematically enhance XGBoost for various forecasting 

scenarios (17). 

Nature-inspired metaheuristic algorithms are potent tools 

for hyperparameter optimization because of the limitations of 

manual and exhaustive search strategies. The mimicking of 

natural phenomena, such as biological evolution, swarm 

behaviour, or physical processes, enables efficient optimization 

of large, complex search spaces (18). Differential Evolution 

(DE), in particular, has been successfully applied to 

hyperparameter optimization in machine learning models, 

demonstrating its ability to improve generalization and prevent 

overfitting (19–21). Whale Optimization Algorithm (WOA) 

(22–24), Grey Wolf Optimizer (GWO) (25–27), and Firefly 

Algorithm (FA) have demonstrated success in various 

optimization problems by balancing global exploration and 

local exploitation (28,29). Nevertheless, most single-phase 

metaheuristics encounter difficulties such as premature 

convergence, limited fine-tuning capability, or becoming 

trapped in local optima when confronted with high-dimensional 

hyperparameter spaces. These limitations highlight the need for 

more effective hybrid optimization strategies that combine 
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different algorithmic strengths to achieve superior results 

(30,31). In recent years, hybrid metaheuristic approaches have 

been proposed to address the shortcomings of single-phase 

algorithms. One example is the Mountain Gazelle Optimization 

(MGO) integrated with the Nelder–Mead (NM) method 

(MGONM), which combines swarm-inspired exploration with 

simplex-based local refinement and has shown competitive 

results (32). Such studies illustrate the promise of hybrid 

methods in improving convergence reliability when tackling 

complex optimization problems. 

Many existing metaheuristic algorithms demonstrate strong 

optimization performance, yet their tendency to rely 

predominantly on either exploration or exploitation often limits 

their adaptability across diverse problem types. Algorithms 

biased toward global exploration may struggle with precision in 

the fine-tuning phase, while those focused on local exploitation 

risk premature convergence and suboptimal solutions (33–35). 

This trade-off becomes particularly important when tuning 

complex machine learning models, where both parameter 

optimization and dynamic structural control are required. 

Managing model complexity during training is a key 

challenge in developing reliable forecasting systems. This study 

addresses the issue by introducing a Gradient-Dynamic Tree 

Pruning (GDTP) mechanism that adjusts tree expansion based 

on gradient feedback. The goal is to avoid unnecessary growth 

in the model while maintaining high predictive power. Although 

such strategies have clear advantages, they are rarely integrated 

into automated machine learning setups. In this study, to close 

this gap, a refined XGBoost model enhanced with GDTP and 

optimized through a hybrid, multi-stage approach is presented. 

The accompanying optimizer, DE-Fly, operates in phases, first 

exploring broadly with DE, then narrowing the search using the 

FA, and finally fine-tuning solutions via the Mayfly Algorithm 

(MA). This coordination allows both the model structure and its 

parameters to adapt jointly and effectively. When tested on 

actual wind energy data, the framework not only achieved 

stronger forecasting results than traditional methods but also 

proved computationally efficient, making it well-suited for 

maintenance scheduling, system reliability assessments, and 

clean energy integration. The main research gaps addressed in 

this study are as follows: 

Lack of Integrated Hyperparameter and Structural 

Optimization: Existing studies on XGBoost optimization 

primarily focus on hyperparameter tuning without addressing 

the dynamic control of tree structure. Current methods fail to 

incorporate gradient-based pruning, which can significantly 

improve model generalization and computational efficiency by 

preventing unnecessary tree growth. 

Limited Adaptation Problem-Specific Search Spaces: 

Although various optimization techniques have been applied to 

machine learning models, most rely on static or problem-

agnostic search strategies. These methods struggle to adapt to 

the unique characteristics of wind energy forecasting tasks, 

which require dynamic exploration of high-dimensional and 

problem-specific parameter spaces. 

Absence of Multi-Phase Optimization Frameworks 

Combining Exploration, Exploitation, and Fine-Tuning: 

Existing optimization strategies often merge or overlook the 

distinction between exploration, exploitation, and fine-tuning 

phases. This lack of structured coordination hinders their ability 

to balance global search and local refinement, resulting in 

suboptimal solutions and inconsistent performance. 

Contribution of the Study 

This study introduces a novel optimization framework that 

addresses these gaps by proposing the DE-Fly Optimizer, which 

sequentially integrates DE for exploration, FA for exploitation, 

and MA for fine-tuning. This multi-phase optimization strategy 

tunes XGBoost's conventional hyperparameters and optimizes 

the GDTP mechanism to control tree complexity adaptively. 

The proposed framework significantly enhances forecasting 

accuracy, computational efficiency, and model generalisation. 

2. Proposed DE-Fly Method 

The proposed DE-Fly method builds upon well-established 

metaheuristic algorithms, namely Differential Evolution (19), 

the Firefly Algorithm (36), and the Mayfly Algorithm (37), 

which are integrated into a coordinated multi-phase framework 

as shown in pseudo-code below. 

The DE method is used in the first stage of the hybrid 

algorithm. DE provides an advantage in generating optimal 

solutions in the initial population due to its ability to perform an 

efficient global search in an ample solution space. The basic 

mechanisms of this method consist of mutation, crossover, and 

selection. Firstly, the mutation process, as given in Equation 1, 
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is performed. 

𝜗𝑖
𝑘+1 = 𝜒𝑟1

𝑘 + 𝐹 ∙ (𝜒𝑟2
𝑘 − 𝜒𝑟3

𝑘 ) (1) 

Where, 𝜗𝑖
𝑘+1 is the mutated solution for the i-th individual, 𝜒𝑟1

𝑘 , 

𝜒𝑟2
𝑘  , 𝜒𝑟3

𝑘   are randomly selected positions of three distinct 

individuals from the current population, and F is the differential 

weight factor within the range [0, 2]. After mutation, new 

individuals are created by combining the mutated solution with 

the existing population using crossover. The crossover 

operation is defined in Equation 2. 

𝑢𝑖
𝑘+1 = {

𝜗𝑖
𝑘+1,   𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝜒𝑖
𝑘 ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

Where, 𝑢𝑖
𝑘+1  is the offspring of the i-th individual after 

crossover, 𝑟𝑎𝑛𝑑𝑗  is a random value in [0, 1], CR is the crossover 

probability  in the range [0, 1], and 𝑗𝑟𝑎𝑛𝑑  is a randomly chosen 

index. In the selection step, the fitness of each new individual is 

evaluated, and the best individuals are selected for the next 

generation. The best solution is determined by equation 3. 

𝑔𝑘+1 =  𝑎𝑟𝑔 min
𝑖

𝑓(𝑢𝑖
𝑘+1) (3) 

Where 𝑔𝑘+1 is the global best solution at iteration k+1, and f is 

the objective function. The best solution from the DE phase is 

transferred to the FA as part of the initial population shown in 

Equation 4. 

𝑃𝐹𝑖𝑟𝑒𝑓𝑙𝑦
0 =  𝜒𝐷𝐸

∗  (4) 

The FA is based on the movement of fireflies influenced by 

their brightness. Brightness is inversely proportional to the 

objective function value; brighter individuals represent better 

solutions. The position of each Firefly is updated according to 

equation 5. 

𝜒𝑖
𝑘+1 = 𝜒𝑖

𝑘 + 𝛽𝑒−𝛾𝑟𝑖𝑗 ∙ (𝜒𝑗
𝑘 − 𝜒𝑖

𝑘) + 𝛼 ∙ 𝜀 (5) 

Where, 𝜒𝑖
𝑘+1 is the updated position of the i-th individual, 𝛽 

is the attraction coefficient, 𝛾 is the light absorption coefficient, 

𝑟𝑖𝑗   is the distance between fireflies i and j, 𝛼  is the 

randomization parameter, and 𝜀 is random noise. The objective 

function is minimized at each iteration, and the brightest Firefly 

is determined. The best solution is then passed to the MA, as 

shown in equation 6. 

𝑃𝑀𝑎𝑦𝑓𝑙𝑦
0 =  𝜒𝐹𝑖𝑟𝑒𝑓𝑙𝑦

∗  (6) 

The MA combines social and individual dynamics to find 

the optimal solution. The velocity and position of each 

individual are updated as equations 7 and 8. 

𝜗𝑖
𝑘+1 = 𝜔 ∙ 𝜗𝑖

𝑘 + 𝑐1𝑟1 ∙ (𝑝𝑖
𝑘 − 𝜒𝑖

𝑘) + 𝑐2𝑟2

∙ (𝑔𝑖
𝑘 − 𝜒𝑖

𝑘) 

 

(7) 

𝜒𝑖
𝑘+1 = 𝜒𝑖

𝑘 + 𝜗𝑖
𝑘+1 (8) 

Here, 𝜗𝑖
𝑘+1 is the velocity of the i-th individual at iteration k+1, 

𝜒𝑖
𝑘+1 Position of the i-th individual at iteration k+1, 𝜔 Inertia 

weight, 𝑐1  and 𝑐2  acceleration coefficients, 𝑟1  and 𝑟2  are 

random values in [0, 1], 𝑝𝑖
𝑘 is the personal best position of the 

i-th individual, 𝑔𝑖
𝑘   is the global best position. The MA also 

includes a mating mechanism to explore new solutions, as 

shown in equation 9. 

𝜒𝑐ℎ𝑖𝑙𝑑 = 𝛼𝜒𝑚𝑎𝑙𝑒 + (1 − 𝛼)𝜒𝑓𝑒𝑚𝑎𝑙𝑒 , 𝛼𝜖[0,1] (9) 

After mating, the offspring may undergo mutation to 

introduce randomness and improve exploration, as shown in 

equation 10. 

𝜒𝑚𝑢𝑡𝑎𝑡𝑒𝑑 = 𝜒𝑐ℎ𝑖𝑙𝑑 +  𝑁(0, 𝜎2) (10) 

The best individual is the final solution when the MA 

reaches the predefined number of iterations, as in equation 11. 

𝜒𝐹𝑖𝑛𝑎𝑙
∗ = 𝜒𝑀𝑎𝑦𝑓𝑙𝑦

∗  (11) 

Throughout the hybrid algorithm, the objective functions of 

3 different test functions are used to evaluate solutions and 

guide the optimization process. The final solution 𝜒𝐹𝑖𝑛𝑎𝑙
∗  , 

represents the best result found by the DE-Fly technique.  

 

In Figure 1, the working principle of the proposed DE-Fly is 

given as follows. 

1. All parameters for the DE algorithm are initialized. The 

initial population is randomly generated. 

In Figure 1, the working principle of the proposed DE-Fly is given as follows. 

PSEUDO CODE 

ALGORITHM DE_FLY 

INPUT: pop_size; max_iter_de; max_iter_fa; max_iter_ma; 

       bounds; objective f(·); 

       DE: F, CR;    FA: beta0, gamma, alpha;    MA: omega, c1, c2, mating_alpha, sigma 

BEGIN DE_FLY 

    #Phase I: Differential Evolution (global exploration) 

    P = Initialize_Population(pop_size, bounds); Evaluate_Fitness(P, f) 

    FOR k = 1 .. max_iter_de: 

        FOR each individual i in P: 

            v = Mutation_DE(P, i, F)                 # Eq.(1) 

            u = Crossover_DE(P[i], v, CR)            # Eq.(2) 

            P[i] = Selection_DE(P[i], u, f)          # Eq.(3) 

        END FOR 

    END FOR 

    best_de = Best(P)                                 # seed for FA  (Eq.(4)) 

    #Phase II: Firefly Algorithm (exploitation + diversity) 

    Fflies = Initialize_With_Seed(best_de, pop_size, bounds) 

    Evaluate_Fitness(Fflies, f) 

    FOR k = 1 .. max_iter_fa: 

        FOR each pair (i,j): 

            IF brightness(Fflies[i]) < brightness(Fflies[j]): 

                Fflies[i] = Firefly_Update(Fflies[i], Fflies[j], beta0, gamma, alpha, bounds)   #  Eq.(5) 

            END IF 

        END FOR 

        Update_Fitness(Fflies, f) 

    END FOR 

    best_fa = Best(Fflies)                            # seed for MA  ( Eq.(6)) 

    #Phase III: Mayfly Algorithm (fine-tuning) 

    M = Initialize_With_Seed(best_fa, pop_size, bounds); Init_Velocities(M); Init_Personals(M) 

    gbest = Best(M) 

    FOR k = 1 .. max_iter_ma: 

        FOR each mayfly i in M: 

            v_i = omega*v_i + c1*rand()*(pbest_i - x_i) + c2*rand()*(gbest - x_i)                #  Eq.(7) 

            x_i = Project_Bounds(x_i + v_i, bounds)                                              #  Eq.(8) 

        END FOR 

        # mating + mutation (optional) 

        FOR each (male,female) in Pairs(M): 

            child = mating_alpha*male + (1-mating_alpha)*female                                  #  Eq.(9) 

            child = Project_Bounds(child + Normal(0, sigma^2), bounds)                           #  Eq.(10) 

            Insert_If_Better(M, child, f) 

        END FOR 

        Update_Personal_And_Global_Bests(M, f) 

    END FOR 

    RETURN gbest                                                                               

# χ_Final* (Eqs.11,14) 

END DE_FLY 
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2. Differential mutation is performed: The difference vector 

between three randomly selected individuals is generated and 

added to the positions of the existing individuals. 

3. The crossover process is applied: Each individual is 

crossed with the mutated solution to create new individuals. 

4. Selection process is performed: The new and existing 

populations are compared according to the cost function, and 

the most suitable individuals are selected. 

5. The DE algorithm terminates when it reaches the 

specified number of iterations or error criteria. The best solution 

is passed to the FA: 

𝑃𝐹𝑖𝑟𝑒𝑓𝑙𝑦
0 =  𝜒𝐷𝐸

∗  (12) 

6. Initialize all parameters for the FA. The best solution from 

the DE is included in the initial population.

 

Figure 1. Flowchart of the DE-Fly Optimizer. 
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7. In each iteration of the FA, the brightness is calculated 

according to the cost functions of the individuals. Individuals 

gravitate towards brighter individuals. The randomization term 

ensures diversity.  

8. The FA terminates when it reaches the specified number 

of iterations or error criteria. The brightest individual (best 

solution) is transferred to the MA: 

𝑃𝑀𝑎𝑦𝑓𝑙𝑦
0 =  𝜒𝐹𝑖𝑟𝑒𝑓𝑙𝑦

∗  (13) 

9. All parameters for the MA are initialized. The best 

solution from Firefly is used as the initial population. 

10. In each iteration of the MA, the speed and position of the 

individuals are updated. The mating process creates new 

individuals. The mutation process ensures that new individuals 

are provided with diversity in the solution space. 

11. The MA terminates when it reaches the specified number 

of iterations or error criteria. The best individual is considered 

the final solution: 

𝜒𝐹𝑖𝑛𝑎𝑙
∗ = 𝜒𝑀𝑎𝑦𝑓𝑙𝑦

∗  (14) 

12. The final best solution is reported as the result of the 

hybrid algorithm. 

3. Benchmark Test with CEC2019 

The CEC2019 benchmark set is widely used for evaluating the 

performance of optimization algorithms, as shown in Table 1 

(38,39). It was designed to test the effectiveness of evolutionary 

algorithms and meta-heuristic methods in solving real-world 

problems. Various challenging test functions are included, 

designed to assess the ability of algorithms to handle complex 

problems. These functions are characterized by being multi-

modal, non-separable, and high-dimensional. Algorithms are 

evaluated on how well they navigate complex search spaces, 

and the suite has become a standard testbed frequently 

employed to demonstrate the effectiveness of newly proposed 

optimization methods (40–42). 

All experiments were conducted on a workstation equipped 

with an AMD Ryzen 9 7950X 16-core/32-thread processor (5.7 

GHz), 64 GB DDR5 7200 MHz RAM, and an NVIDIA RTX 

3070 Ti GPU (8 GB). The algorithms were implemented in 

Python within the Visual Studio environment. Core libraries 

used include NumPy, Pandas, Scikit-learn, Matplotlib, and 

Seaborn for data preprocessing and visualization; XGBoost for 

regression modeling; and SciPy, along with custom Python 

implementations for metaheuristic optimizations. This 

computational setup ensured both efficiency in large-scale 

simulations and reproducibility of results.

Table 1. CEC2019 Test Functions. 

No. Function D Search Range Best 

ℱ1 Storn's Chebyshev Polynomial Fitting Problem 9 [–8192, 8192] 1 

ℱ2 Inverse Hilbert Matrix Problem 16 [−16,384, 16,384] 1 

ℱ3 Lennard–Jones Minimum Energy Cluster 18 [−4, 4] 1 

ℱ4 Rastrigin's Function 10 [−100, 100] 1 

ℱ5 Griewangk's Function 10 [−100, 100] 1 

ℱ6 Weierstrass Function 10 [−100, 100] 1 

ℱ7 Modified Schwefel's Function 10 [−100, 100] 1 

ℱ8 Expanded Schaffer's F6 Function 10 [−100, 100] 1 

ℱ9 Happy Cat Function 10 [−100, 100] 1 

ℱ10 Ackley Function 10 [−100, 100] 1 

 

The established benchmark has been further categorized into 

distinct groups: single-modal, multi-modal, composite, and  

a category devoted to real-world problems. The categorization 

in question facilitates the testing of algorithms concerning a 

wide range of theoretical and practical problems. In terms of 

performance evaluation, criteria such as solution quality, 

consistency, and computation are considered. CEC2019 

provides standardized test functions, enabling fair comparisons 

between algorithms. 

Table 2 reports the parameter settings of the proposed DE-

Fly and the compared algorithms. The term popsize represents 

the number of individuals in the population for all algorithms, 
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while max_iter denotes the maximum number of iterations. In 

DE, 𝐹  refers to the differential weight factor and 𝐶𝑅  to the 

crossover probability. In the FA, r is a random number drawn 

from [–1,1], whereas , ℓ𝑚𝑖𝑛  and , ℓ𝑚𝑎𝑥   indicate the lower and 

upper bounds of the light absorption coefficient. Within the MA, 

𝒸1 and 𝒸2 are acceleration coefficients that control the influence 

of personal and global best positions, and ω denotes the inertia 

weight balancing exploration and exploitation. In the WOA, 

 a is a convergence parameter linearly decreasing from 2 to 0, 

 𝑏  is a constant defining the bubble-net spiral motion, 𝑙  is  

a random parameter in [–1,1] controlling exploitation behaviour, 

and 𝑝 is the probability of the shrinking encircling mechanism. 

In the GWO, 𝑎 is again a linearly decreasing parameter, while 

𝐴 and 𝐶 are control coefficients derived from random vectors. 

For the MGO component of MGONM, 𝛼  represents leader 

influence, 𝛽  herd influence, 𝛿  escape strength, 𝑤  an inertia 

weight decreasing from 0.9 to 0.4, 𝑟 the adaptive search radius 

(1→0), and 𝑗𝑢𝑚𝑝_𝑝𝑟𝑜𝑏  the probability of a random jump. 

Finally, in the NM phase of MGONM, 𝛼 denotes the reflection 

coefficient, 𝛾  the expansion coefficient, 𝜌  the contraction 

coefficient, and 𝜎 the shrink coefficient.

Table 2. Optimization Algorithm Parameters. 

Algorithm Parameter Value 

DE-Fly 

DE popsize, max_iter, 𝐹, 𝐶𝑅 20,100,0.5,0.9 

FA r, ℓ𝑚𝑖𝑛 , ℓ𝑚𝑎𝑥  [−1,1], 0.0001,1 

MA 𝒸1, 𝒸2, 𝜔, 1.5, 1.5, 0.5 

WOA popsize, max
iter

, a, 𝑏, 𝑙, 𝑝 20,100, [2,0], 1, [−1,1], 0.5 

DE popsize, max_iter, 𝐹, 𝐶𝑅 20,100,0.5,0.9 

GWO popsize, max_iter, a, A, C 20,100, 2 → 0, [−𝑎, 𝑎], [0,2] 

MGONM 
MGO 

popsize, max
iter

, α, β, δ, w, r, 

jump_prob 

 

20,100,2,1.5,0.8,0.9, 0.9

→ 0.4, 1

→ 0, 0.1 

NM max
iter

, α, γ, ρ, σ 100, 1.0, 2.0, 0.5, 0.5 

 

Both Table 3 and Figure 2 present the outcomes of the 

CEC2019 benchmark suite. Overall, the proposed DE-Fly 

algorithm consistently provided superior or competitive results 

across the majority of test functions, outperforming classical DE, 

swarm-based methods (GWO and WOA), and the hybrid 

MGONM approach. For the Ackley function, DE-Fly obtained 

the lowest best value (21.01) and the lowest mean (21.42), with 

a minimal standard deviation (0.1), indicating highly reliable 

convergence. In the Storn's Chebyshev Polynomial Fitting 

Problem, DE-Fly produced the best value (3187), 

outperforming MGONM and DE by a considerable margin. 

Table 3. CEC2019 Performance Comparison. 

Function Metrics DE-Fly MGONM DE GWO WOA 

ℱ1 Best 

Mean 

Std 

3.187e+03 

1.563e+05 

1.860e+05 

7.310e+04 

1.967e+06 

2.035e+06 

6.045e+04 

2.286e+06 

3.374e+06 

7.021e+02 

8.963e+05 

1.586e+06 

1.143e+00 

5.084e+07 

6.744e+07 

ℱ2 Best 

Mean 

Std 

3.983e+00 

4.301e+00 

1.772e-01 

4.607e+00 

6.118e+00 

9.003e-01 

4.585e+00 

5.339e+00 

5.088e-01 

4.680e+00 

5.563e+00 

5.417e-01 

5.000e+00 

1.041e+01 

4.060e+00 

ℱ3 Best 

Mean 

Std 

1.409e+00 

5.512e+00 

2.453e+00 

2.422e+00 

6.287e+00 

1.625e+00 

7.951e+00 

1.028e+01 

7.435e-01 

1.532e+00 

5.288e+00 

2.163e+00 

4.929e+00 

7.854e+00 

1.568e+00 

ℱ4 Best 

Mean 

Std 

4.980e+00 

1.192e+03 

6.673e+03 

5.129e+01 

3.200e+02 

4.020e+02 

4.638e+01 

2.974e+03 

8.064e+03 

1.555e+02 

2.958e+03 

2.842e+03 

1.651e+04 

1.073e+05 

6.040e+04 

Function Metrics DE-Fly MGONM DE GWO WOA 
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ℱ5 Best 

Mean 

Std 

1.032e+00 

9.871e+02 

5.042e+03 

3.230e+00 

5.037e+02 

8.114e+02 

2.932e+00 

4.362e+03 

1.805e+04 

1.148e+02 

1.146e+04 

1.654e+04 

9.491e+04 

4.494e+05 

2.788e+05 

ℱ6 Best 

Mean 

Std 

1.841e+02 

1.900e+02 

1.700e+00 

1.843e+02 

1.879e+02 

1.886e+00 

1.906e+02 

1.922e+02 

6.988e-01 

1.894e+02 

1.919e+02 

1.020e+00 

1.872e+02 

1.908e+02 

1.306e+00 

ℱ7 Best 

Mean 

Std 

8.515e+02 

1.910e+03 

4.216e+02 

9.886e+02 

2.511e+03 

6.677e+02 

2.324e+03 

3.088e+03 

8.929e+02 

1.871e+03 

3.189e+03 

6.849e+02 

6.765e+03 

1.902e+04 

7.384e+03 

ℱ8 Best 

Mean 

Std 

3.204e+00 

4.028e+00 

3.594e-01 

3.631e+00 

4.678e+00 

3.981e-01 

4.223e+00 

4.801e+00 

1.730e-01 

3.562e+00 

4.426e+00 

3.856e-01 

4.112e+00 

4.983e+00 

2.619e-01 

ℱ9 Best 

Mean 

Std 

1.063e+00 

2.050e+00 

2.526e+00 

1.259e+00 

9.280e+00 

7.817e+00 

1.266e+00 

1.283e+02 

3.432e+02 

8.387e+00 

1.286e+02 

2.317e+02 

7.345e+02 

7.491e+03 

5.656e+03 

ℱ10 Best 

Mean 

Std 

2.101e+01 

2.142e+01 

1.000e-01 

2.102e+01 

2.128e+01 

1.695e-01 

2.136e+01 

2.166e+01 

1.154e-01 

2.140e+01 

2.167e+01 

1.139e-01 

2.133e+01 

2.156e+01 

1.214e-01 
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Figure 2. Heatmap of the Performance Comparison of Optimization Algorithms. 

Although WOA yielded a slightly lower best result, its mean 

and variance were significantly higher, demonstrating unstable 

behavior compared to DE-Fly. On the Expanded Schaffer's F6 

Function function, DE-Fly again reported the best performance 

(best = 3.204, mean = 4.028), with lower variance than 

MGONM, confirming consistent convergence. On more 

complex multimodal landscapes, DE-Fly maintained its 

superiority. For the Griewank’s function, DE-Fly achieved the 

lowest best (1.032) and mean (987.1) values, whereas other 

methods showed larger deviations. The Happy Cat function 

further confirmed this advantage, with DE-Fly yielding both the 

lowest best (1.063) and mean (2.050), far outperforming 

MGONM (9.280) and DE (128.3).  In the Inverse Hilbert Matrix 

Problem, DE-Fly achieved the best value (3.983) and the lowest 

mean (4.301), with a standard deviation (0.177) considerably 

smaller than those of competing methods, indicating strong 

robustness. For the Lennard–Jones Minimum Energy Cluster, 

DE-Fly again produced the best value (1.409) and lowest mean 

(5.512), surpassing MGONM (6.287) and DE (10.28). In the 

Rastrigin’s function, known for its highly multimodal surface, 

DE-Fly was the only optimizer that maintained competitive best 

(4.980) and mean (1192) values with reasonable stability, 

whereas MGONM, DE, and WOA suffered from high error 

variance. On the Modified Schwefel's Function, DE-Fly 

achieved the lowest best (851.5) and mean (1910), while 

alternative methods diverged significantly. Finally, for the 

Weierstrass function, DE-Fly closely approximated the global 

optimum with a best of 184.1 and a mean of 190.0, again 

recording the lowest variance among all tested algorithms. 

In summary, the DE-Fly algorithm consistently delivered 

superior results in terms of best solution quality, mean stability, 

and variance reduction across the CEC2019 test functions. 

These findings validate the effectiveness of the proposed multi-

phase framework and demonstrate its advantage over both 

single-phase optimizers and hybrid counterparts such as 

MGONM. 

4. GDTP Mechanism for XGBoost 

XGBoost builds its predictive model by adding trees in 

sequence, with each new tree aiming to reduce the residual 

errors of the ensemble. While this iterative approach improves 

the capacity to represent nonlinear patterns, it may also cause 

overfitting when tree depth and complexity increase excessively. 

Conventional pruning strategies usually depend on fixed rules, 

such as a maximum depth limit or a constant gain threshold, and 

adaptive approaches often expand only those nodes that exceed 

a specified gain level (43,44). The GDTP mechanism differs by 

applying a gradient-based threshold that is updated at every 

boosting iteration. Through this adjustment, node expansion and 

pruning are regulated together according to the distribution of 

gradient information, ensuring that weak splits are removed and 

only effective expansions are retained. In this way, tree growth 

adapts to the learning dynamics, controlling model complexity 

while preserving predictive accuracy. 

4.1. Background on XGBoost Formulation 

XGBoost is a widely adopted tree-based ensemble learning 

algorithm that iteratively minimizes prediction error through 

additive model construction (45,46). It has been shown to 
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effectively handle nonlinear relationships, noisy or missing data, 

and high-dimensional feature spaces, making it one of the most 

robust shallow learning methods for forecasting tasks (47,48). 

Given a dataset with n observations {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛  , the 

predicted output 𝑦̂𝑖 is expressed as the sum of outputs from 𝐾 

DTs: 

𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖),    𝑓𝑘 ∈ ℱ

𝐾

𝑘=1

 (15) 

where ℱ denotes the functional space of regression trees. The 

learning objective at iteration 𝑡 is defined as: 

ℒ (𝑡) = ∑ 𝑙 (𝑦𝑖 , 𝑦̂𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖))

𝑛

𝑖=1

+ Ω(𝑓𝑡) (16) 

Here, 𝑙  represents the loss function, and Ω(𝑓𝑡)  is a 

regularization term penalizing model complexity, defined as: 

Ω(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝜔𝑗

2

𝑇

𝐽=1

 (17) 

where 𝑇 is the number of leaves in the tree, 𝜔𝑗  is the score on 

leaf 𝑗 , 𝛾,  and 𝜆  are regularization parameters controlling the 

trade-off between model fit and complexity. 

Using a second-order Taylor expansion, the objective can be 

approximated as: 

ℒ (𝑡) ≈ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡) (18) 

where 𝑔𝑖  and ℎ𝑖 are the first and second derivatives of the loss 

function with respect to the previous prediction 𝑦̂𝑖
(𝑡−1)

. 

4.2. Classical Split Gain Calculation 

During tree construction, XGBoost evaluates potential split 

points based on the split gain, defined as: 

Υ =
1

2
[

𝐺𝐿
2

𝐻𝐿 + 𝜆
+

𝐺𝑅
2

𝐻𝑅 + 𝜆
−

(𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 + 𝐻𝑅 + 𝜆
] − 𝛾 (19) 

where 𝐺𝐿 and 𝐻𝐿   are the sums of the first and second 

derivatives for the left child node, and 𝐺𝑅 and 𝐻𝑅  are the same 

for the right child node. A positive gain indicates that the split 

improves the objective and should be applied. 

4.3. Proposed GDTP Strategy 

In conventional XGBoost, the growth of trees is often limited 

by a fixed maximum depth. However, this static constraint may 

not be optimal for datasets with varying complexity across 

different regions of the feature space. To address this, we 

propose the GDTP mechanism, which introduces an adaptive, 

split-level pruning condition based on the split gain. 

The proposed pruning rule is defined as 𝐼𝑓 Υ <

𝛾𝑑𝑦𝑛 , 𝑡ℎ𝑒𝑛 𝑝𝑟𝑢𝑛𝑒 𝑡ℎ𝑒 𝑏𝑟𝑎𝑛𝑐ℎ , where 𝛾𝑑𝑦𝑛  is a dynamic 

gradient improvement threshold that governs whether a split 

should proceed or be terminated. To enable data-driven 

adaptability, 𝛾𝑑𝑦𝑛 is formulated as: 

𝛾𝑑𝑦𝑛 = 𝛼 ∙ Υ̅ (20) 

where 𝛼  is a tunable scaling factor, 𝛾  is the average gain 

observed in the previously constructed trees or branches. This 

formulation allows each branch to make pruning decisions 

based on the overall quality of splits observed throughout the 

model, ensuring that only meaningful branches are expanded. 

4.4. Integration with the DE-Fly Optimizer 

The proposed GDTP mechanism introduces an additional 

control layer into the XGBoost learning process by adaptively 

regulating the tree expansion based on the gradient-based 

dynamic threshold. 𝛾𝑑𝑦𝑛. 

 

Figure 3. Block diagram of the DE-Fly Optimized GDTP-

XGBoost framework for Wind Energy Forecasting. 

Finding an appropriate balance between the pruning threshold 

and other hyperparameters presents a complex, multi-

dimensional optimization problem that traditional methods 

often struggle to address efficiently (49). To overcome this 

challenge, the present study adopts the DE-Fly Optimizer, 

thereby enabling more effective tuning of the GDTP-XGBoost 

model. The overall optimization objective is formulated as 

follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒Θ,𝑎 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠(𝛩, 𝛾𝑑𝑦𝑛) = 𝛼 ∙ Υ (21) 

where 𝛩  a represents the standard XGBoost hyperparameters 
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and 𝛼  is the scaling factor controlling the dynamic pruning 

threshold. A balanced progression across both the 

hyperparameter space and the model's structural parameters is 

enabled by the structure of the proposed optimization approach.  

As shown in Figure 3, the DE-Fly algorithm makes the 

GDTP-XGBoost plan better by doing cost function checks over 

and over again, which creates a way to change the model so that 

it can do what is needed for forecasting. This flexibility enables 

the model to adapt to the particular attributes of the prediction 

task. So, the DE-Fly-optimised GDTP-XGBoost framework is 

pretty solid. It has got much strength, can be scaled up or down 

as needed, and is pretty efficient. It is not just about making 

better predictions, but also about making sure things are reliable, 

avoiding failures, and planning maintenance for wind energy 

systems. 

5. A Case Study on DE-Fly Enhanced GDTP-XGBoost 

This research examines the role of optimization algorithms in 

improving hyperparameter tuning within a GDTP-XGBoost 

forecasting framework, emphasizing applications in wind 

energy. In addition to achieving higher predictive accuracy, the 

approach contributes to operational practices by supporting 

maintenance planning and strengthening system reliability. In 

practice, accurate turbine output forecasts help engineers better 

understand system behavior and schedule timely interventions, 

especially crucial for wind farms relying on CBM and RCM 

protocols. 

 

Figure 4. Correlation of turbine and meteorological parameters. 
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The proposed model was evaluated using operational data 

from a wind farm in Yalova, Turkey, collected over the course 

of 2018 (50). SCADA data from Nordex N117/3600 turbines, 

including wind speed, wind direction, theoretical power, and 

actual output, were merged with meteorological records to 

enhance forecast reliability.  

The complete set of input features used in the forecasting 

model is summarized in Table 4, where each parameter is 

described in terms of its physical meaning, unit, and data source. 

For instance, prectotland denotes total land precipitation 

obtained from the MERRA-2 reanalysis dataset (mm/h), while 

cloud Cover represents the fraction of the sky obscured by 

clouds (0–1). Altogether, these variables provide both direct and 

indirect indicators of turbine performance, enabling the model 

to monitor load trends, identify anomalies, and evaluate 

component conditions within predictive maintenance systems. 

The original dataset contained 50,830 entries recorded at 10-

minute intervals, which were aggregated into hourly averages, 

resulting in 8,760 samples. To address missing values, 484 gaps 

were identified and filled using a combination of moving 

average and linear interpolation. For model evaluation, the 

dataset was divided into 70% training and 30% testing subsets, 

and all reported performance metrics were computed on the test 

set. 

Maintaining data consistency throughout this process was 

essential to ensure the accuracy of the model, particularly for 

applications where operational decisions rely on dependable 

forecasts. In this study, the forecasting task was defined as 

estimating the potential power output of the turbine given a set 

of meteorological conditions, rather than extending the 

prediction horizon. This design enables the model to anticipate 

turbine load levels under forecasted weather scenarios, 

supporting its practical use in condition-based maintenance 

applications. The forecasting model was trained on historical 

SCADA power data combined with meteorological records to 

capture the relationship between atmospheric conditions and 

turbine output, and this learned relationship was then used with 

forecasted meteorological inputs to estimate the turbine's 

potential future power generation.

 

Figure 5. Bivariate Pair Plot of Selected Traits. 
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Following data preparation, a correlation analysis was 

conducted to explore the relationships between input features 

and turbine power output. As shown in Figure 4 and the pairwise 

scatter plots in Figure 5, wind speed exhibits the strongest 

correlation with output power (R = 0.93), confirming its 

dominant role in wind energy forecasting. In contrast, variables 

such as air density and wind direction showed weaker 

associations (R = 0.12), indicating secondary influence.

Table 4. Description of the input parameters used in the forecasting model. 

Parameter Description Unit Source 

Wind Speed Hub-height wind velocity 𝑚/𝑠 SCADA 

Wind Direction Wind flow orientation at hub height ° SCADA 

Air Density Calculated from pressure and temperature 𝑘𝑔/𝑚³ MERRA-2 

Temperature Ambient air temperature °𝐶 MERRA-2 

Solar Irradiation Global tilted irradiation 𝑊/𝑚² MERRA-2 

Prectotland Total land precipitation 𝑚𝑚/ℎ MERRA-2 

Cloud Cover Fraction of sky obscured by clouds (0–1) – MERRA-2 

 

However, due to their indirect effects on turbine 

performance and atmospheric conditions, they were still 

included in the model. Similarly, temperature showed a weak 

negative correlation with R = -0.11, cloud cover with R = -0.09, 

and solar radiation with R = -0.06. This information helped 

identify the most relevant features to be used in machine 

learning models, enabling the model to focus on the most 

effective variables. 

The performance of the GDTP-XGBoost model is highly 

sensitive to its hyperparameter configuration, which affects 

learning dynamics, model complexity, and overall stability. 

These parameters also influence the reliability of downstream 

decisions, particularly in maintenance applications where 

accurate forecasts are used to inform operational planning. In 

this study, five metaheuristic algorithms were used to tune the 

hyperparameters and explore their impact on predictive 

performance. 

Key parameters such as the number of estimators 

(n_estimators) and tree depth (max_depth) directly influence 

the model's ability to learn patterns without overfitting. 

Learning rate (learning_rate), subsample ratio, and 

colsample_bytree determine how training data and features are 

utilized, affecting the model's generalization capacity. Gamma 

controls tree splitting sensitivity, encouraging structural 

simplicity when set appropriately. The GDTP mechanism 

adaptively manages these interactions to balance learning 

precision and model efficiency. Table 5 compares the parameter 

sets identified by each optimization algorithm, highlighting 

their different tuning behaviors and guiding the selection of 

robust configurations.

Table 5. Comparison of the Optimized Parameters of the XGBoost Model. 

Method n_estimators max_depth learn_rate subsample colsample_bytree Gamma 

WOA 323 6 0.1317 0.7066 0.9160 2.8166 

GWO 197 6 0.1598 0.7707 0.8784 3.8409 

DE 187 5 0.1061 0.7938 0.9407 2.3516 

DE-Fly 366 5 0.187 0.962 0.885 0.156 

MGONM 311 5 0.163 0.915 0.891 1.8 

 

Figures 6 and 7 present the performance evaluation of the 

GDTP-XGBoost Regressor model in forecasting wind power 

output. In Figure 6, the predicted values closely follow the 

actual power trends over a selected 100-hour interval, capturing 

both peak and valley patterns with moderate error. This visual 

consistency indicates that the model can effectively adapt to the 

dynamic nature of wind energy production. Figure 7 provides a 

complementary perspective by plotting all actual versus 

predicted values across the test dataset. The tight concentration 

of points around the diagonal reference line suggests that the 

model exhibits strong predictive accuracy and minimal bias. 

The combination of these visualizations confirms the Gradient 

Boosting model's capability to model nonlinear patterns in wind 

energy data, though its performance is ultimately outperformed 

by the proposed GDTP-XGBoost approach. 
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Figure 6. Prediction and actual wind power values for 100 

hours using GDTP-XGBoost. 

According to Table 6, which is visualized in Figure 8, the 

results show how the tested optimization algorithms perform 

based on three key metrics: coefficient of determination (R²), 

root mean square error (RMSE), and residual standard error 

(RSE). Together, these measures compare the model's accuracy 

and ability to explain variation in the target variable. The 

coefficient of determination (R²) reflects how well the model 

captures the variance in the data, with values closer to 1 

indicating stronger predictive performance. In this study, the 

DE-Fly–optimized GDTP-XGBoost model achieved an R² of 

0.9892, showing a strong alignment between predicted and 

actual 

 

Figure 7. Scatter plot of actual vs. predicted wind power with 

the 1:1 reference line using GDTP-XGBoost. 

values. The RMSE was employed to measure the average 

deviation between predicted and observed values. A smaller 

RMSE reflects higher forecasting precision. Among all tested 

methods, the DE-Fly model achieved the lowest RMSE value 

of 135.0388, demonstrating its strong ability to capture the 

dynamics of wind power generation. This outcome indicates 

that the proposed optimizer not only models underlying data 

structures with accuracy but also reduces prediction errors more 

consistently than competing algorithms. For maintenance 

planning, this improvement is especially valuable, as reliable 

forecasts support earlier fault identification, load management, 

and efficient scheduling, thereby increasing turbine availability 

and reducing the likelihood of unscheduled stoppages. In 

addition, lower RMSE values make it possible to recognize 

abnormal deviations between expected and actual output at an 

early stage, providing practical warning signs of mechanical 

stress or potential failures. Such information allows 

maintenance teams to act preventively, limiting unexpected 

interruptions and extending the operational life of key 

components. 

Table 6. Performance Metric Comparison of the DE-Fly 

Enhanced GDTP-XGBoost. 

Method R2 RMSE RSE 

WOA 0.9883 140.6290 0.01167 

GWO 0.9879 142.7685 0.01203 

DE 0.9872 146.7788 0.01272 

MGONM 0.9887 138.5345 0.01116 

DE-Fly 0.9892 135.0388 0.01076 

The RSE achieved by DE-Fly was 0.01076, the lowest 

among the compared models. This finding underlines the 

algorithm's advantage in delivering accurate forecasts and 

emphasizes its relevance for reliability-oriented applications. 

Accurate prediction contributes directly to reducing operational 

risks and strengthening turbine sustainability. The improved 

performance over classical Differential Evolution and other 

single-phase optimizers can be explained by the balanced 

integration of its three stages: global exploration through DE, 

local refinement with FA, and adaptive adjustment via MA. The 

combination of these mechanisms avoids premature 

convergence, accelerates search efficiency, and provides more 

precise final solutions. Consequently, DE-Fly proves effective 

not only for tuning hyperparameters but also for managing 

structural complexity within the GDTP-XGBoost model, 

leading to improved forecasting results and operational benefits. 
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Figure 8. Performance Comparison of Algorithms on GDTP-XGBoost. 

The proposed study is also compared with previously 

published results on the same dataset, as shown in Table 7. In 

(9), wind power prediction was carried out using ANN, ANFIS, 

DT, and SVM, achieving an R² value of 0.95. Similarly, in (10), 

deep learning-based methods such as ANN, CNN, LSTM, and 

RNN were employed, with the best model yielding an R² of 

0.9574. In addition to these literature benchmarks, several 

regression and deep learning models were implemented in this 

study for direct comparison. Among these, the classical Linear 

Regression (LR) model yielded the lowest performance with an 

R² of 0.8638, followed by ANN (0.9149) and Random Forest 

(RF) (0.9496). Deep learning models such as Gated Recurrent 

Unit (GRU) (0.96), LSTM (0.9515), and CNN (0.9809) 

demonstrated strong performance on the dataset. Notably, the 

DT model alone achieved an R² of 0.9668. However, the highest 

accuracy was obtained by the proposed GDTP-XGBoost model 

optimized via the DE-Fly algorithm, achieving an R² of 0.9892, 

outperforming all other tested models as well as the best results 

reported in (9) and (10). This improvement highlights the 

strength of the proposed method in modeling complex, 

nonlinear wind power generation dynamics and providing 

highly reliable predictions for operational use. Additionally, an 

ablation study was conducted by comparing the proposed 

GDTP-XGBoost with the standard XGBoost. The results 

confirmed the superiority of the proposed approach, achieving 

an R² of 0.9892 with a training time of 0.18 s, compared to 

0.9492 and 1.49 s for the baseline XGBoost, respectively.

Table 7. Performance Comparison of Proposed Models with Existing Studies. 

Method 
Performance Comparison 

R2 Train Time (sec.) 

XGBoost 0.9492 1.49 

ANN 0.9149 7.13 

RF 0.9496 0.49 

Proposed GDTP-XGBoost 0.9892 0.18 

DT 0.9668 0.05 

LR 0.8638 0.01 

CNN 0.9809 24 

GRU 0.96 60.37 

LSTM 0.9515 68.65 

(9) 0,95 NA 

(10) 0,9574 85.8 
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In addition to its predictive accuracy, the GDTP-XGBoost 

framework also demonstrated a remarkable advantage in terms 

of computational time efficiency. By dynamically pruning 

unnecessary tree growth during training and employing the DE-

Fly optimizer for more targeted hyperparameter tuning, the 

model converged faster than conventional XGBoost and deep 

learning counterparts. This balance of accuracy and speed 

underlines the practical suitability of the proposed approach for 

real-time forecasting and maintenance decision support, where 

both reliability and timely computation are essential. 

The fact that the proposed GDTP-XGBoost framework 

outperformed CNN and LSTM is particularly significant. While 

deep learning models are effective at modeling temporal 

dependencies, they typically require large datasets, extensive 

training time, and considerable computational resources. In 

contrast, tree-based methods, when equipped with adaptive 

hyperparameters and structural tuning, can rival or surpass deep 

learning performance at a fraction of the computational cost. 

This balance of accuracy, efficiency, and interpretability makes 

the proposed method especially attractive for real-time 

forecasting and condition-based maintenance applications. 

6. Conclusion 

This study introduces a forecasting framework which integrates 

XGBoost with the GDTP mechanism. The aim is to enhance the 

accuracy of wind power predictions and to strengthen 

operational reliability through predictive insights. The GDTP-

XGBoost configuration is engineered to curtail superfluous 

model proliferation while retaining its capacity for 

generalisation, thus enhancing its aptitude to discern variations 

in wind speed. To further refine performance, the DE-Fly 

optimiser is used to adjust the hyperparameters automatically. 

In a study that looked at how well different strategies could 

predict wind turbine performance, the DE-Fly–optimized 

GDTP-XGBoost model was better than other strategies at 

predicting how well turbines would perform. Maintenance 

planning is supported by stronger predictive quality, which also 

reduces reliance on corrective repairs and enables more 

effective data-driven management in wind energy systems. The 

framework has forecasting capability. This contributes directly 

to maintenance and reliability practices. Precise predictions 

show possible mechanical problems early on, which helps with 

condition-based maintenance by doing things at the right time 

and in the right way. Long-term application in reliability-

focused environments is supported by the integrated 

optimisation process, which also improves model stability. For 

this reason, the model is used not only to predict the future, but 

also to make sure that the company can continue to work 

effectively. 

Planned future work involves a comprehensive evaluation of 

the GDTP-XGBoost model’s adaptability across multiple 

energy domains, geographical settings, and time series 

scenarios. The next steps will be to develop the DE-Fly 

optimiser to handle multi-objective problems and to incorporate 

the forecasting framework into real-time maintenance platforms. 

Here, any differences between forecasts and actual data can 

indicate problems with individual components. The study will 

also be extended to additional wind farm sites and turbine types 

to verify the broader applicability of the proposed approach.
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