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Highlights  Abstract  

▪ Time series decomposition is applied to predict 

ATP failure rates. 

▪ The proposed model demonstrates robust 

performance with small training datasets. 

▪ A hybrid WLSSVM-temporal decomposition 

framework is proposed. 

 Automatic Train Protection (ATP) system reliability significantly 

impacts rail safety and maintenance efficiency, but current strategies 

lack data-driven spare parts optimization. We propose a hybrid failure 

rate prediction model combining time-varying filtered empirical mode 

decomposition (TVFEMD) and machine learning. First, ATP operational 

data undergoes interval segmentation and zero-value preprocessing. 

Next, grey wolf optimization (GWO) adaptively tunes TVFEMD 

parameters to decompose failure rate series into intrinsic mode functions 

(IMFs). Each IMF is independently predicted via weighted least squares 

support vector machine (WLSSVM), with final outputs aggregated 

through superposition. Validated using real ATP system data, the model 

achieves 0.0028 MAE, 0.0066 RMSE, and 0.0139 MAPE for 10-minute 

interval predictions with zero-inflated data, surpassing baseline 

methods. Results confirm its effectiveness for ATP failure rate 

forecasting. 
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1. Introduction 

As high-speed railways develop rapidly, China's train operation 

control system (CTCS) has become a key technology to ensure 

traffic safety, of which CTCS-3 level has been widely used as 

the core system for high-speed railways of 300 km/h and above. 

Fig. 1 shows a schematic of the overall structure of the CTCS-

3 and ATP system. Functioning as the essential safety-critical 

component of CTCS-3, the ATP delivers continuous train state 

monitoring and protection functionalities, with its reliability 

representing the primary safeguard for railway operational 

safety [1-2]. However, the long-term operation of the ATP 

system is susceptible to environmental conditions like elevated 

temperatures, vibration, electro-magnetic interference, etc. and 

ageing of the equipment, with the risk of malfunction always 

present 3. Once an abnormality occurs in the ATP system, it will 

lead to the interruption of train operation and may even cause a 

safety accident. Therefore, accurate prediction of the ATP 

system's failure rate is a significant research topic for high-

speed rail to ensure safe operation. 

The on-board ATP system, being vital for train operation 

safety, requires scientifically grounded testing and maintenance 

regimes 4. At present, the maintenance management of on-

board ATP equipment usually adopts the strategy of regular 

 

Eksploatacja i Niezawodnosc – Maintenance and Reliability 
Volume 28 (2026), Issue 2 

journal homepage: http://www.ein.org.pl 
 

 

Article citation info: 
Shi L, Li X, Yao W, Liang J, Zhao Y, Liu Y, Reliability Prediction Method for Onboard ATP Based on Optimized Empirical Mode 
Decomposition, Eksploatacja i Niezawodnosc – Maintenance and Reliability 2026: 28(2) http:/10.17531/ein/213708 

(*) Corresponding author. 
E-mail addresses: 

 
L. Shi (ORCID: 0009-0000-1742-0245) shil1215@foxmail.com, X. Li (ORCID: 0009-0007-1416-6473) lxr12231704@163.com, W. 

Yao (ORCID: 0009-0006-4351-6244) 1433997571@qq.com, J. Liang (ORCID: 0009-0004-9086-0131) ljywfc2021@126.com, Y. 

Zhao (ORCID: 0009-0009-5600-6835) yuan1841973853@163.com, Y. Liu (ORCID: 0009-0009-7741-1151) liuyazhil@163.com 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026 

 

maintenance or ‘after-action maintenance’ based on experience 

5. Regular maintenance ignores individual differences in 

equipment and can lead to over- or under-maintenance, while 

the ‘after-the-fact maintenance’ model can lead to operational 

disruptions due to the lack of an early warning mechanism for 

failures [6-7].
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Fig. 1. Overall structure schematic of CTCS-3+ATP for the system. 

Currently, data-driven prediction technology has been 

widely used in predictive maintenance, demand prediction, 

quality prediction, etc. 8. Data-driven ATP system failure 

prediction can accurately predict the probability of failure and 

achieve preventive maintenance by extracting key information 

and analysing trends in the timing data in its operation log, thus 

ensuring the efficiency and safety of system operation 9. 

However, ATP system failure rate prediction faces serious 

challenges, mainly stemming from the significant operating 

data with nonlinear and nonstationary characteristics, and by 

environmental conditions, operating conditions and equipment 

status and other multiple factors 10. A single traditional method 

has limitations in dealing with such complex data, and there is 

an urgent need to develop more accurate and efficient failure 

rate prediction models 11. 

Existing research on failure rate time series prediction for 

ATP systems remains scarce. This study consequently develops 

a novel hybrid methodology integrating Grey Wolf Optimizer 

(GWO)-based parameter optimisation, Time-Varying Filtered 

Empirical Mode Decomposition (TVFEMD) for data 

decomposition, and Weighted Least Squares Support Vector 

Machine (WLSSVM) for predictive modelling. Depending on 

the results of the model prediction, the allocation of spare parts 

reserves and maintenance resources can be dynamically 

optimised. Increasing reserves before the failure rate rises and 

rationally allocating resources when it falls improves 

maintenance efficiency and reduces wastage. 

2. Related Research 

The failure rate prediction is a critical tool for the maintenance 

and operation of ATP system in high-speed railways, and  

a considerable number of studies have been conducted to 

propose related prediction methods, such as Autoregressive 

Integrated Moving Average (ARIMA) and Exponential 

Smoothing Method (ESM) [12-13]. Yet, the ARIMA model has 

significant limitations in dealing with the nonlinear dynamics 

and nonstationary features of the ATP system time series of 

failure rates due to its inherent assumptions of linearity and 

smoothness 14. In addition, although neural networks can 

capture the nonlinear features of data, their training process is 

susceptible to overfitting [15-18]. In order to overcome these 

limitations, time-frequency analysis methods have gradually 

gained attention. 

Empirical Mode Decomposition (EMD) operates as a fully 

adaptive signal processing technique that analyzes complex 
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waveforms by separating them into Intrinsic Mode Functions 

(IMFs) and residual elements through an empirical, data-driven 

approach [19-23].Although EMD has achieved significant 

application results in many fields, it still has some problems [24-

29]. In order to improve the limitations of traditional EMD, Li 

et al. proposed a time-varying filter empirical modal 

decomposition (TVFEMD) method. Through adaptive time-

varying filtering, this method achieves concurrent modal 

aliasing reduction and significant improvements in both 

decomposition accuracy and frequency band separation 

effectiveness 30. Ma et al. used TVFEMD method to 

decompose millimetre-wave radar signals and successfully 

extracted heart rate and respiratory signals by reconstructing 

IMF components 31. Zang Xu et al. combined TVFEMD with 

Sparrow Search Algorithm (SSA) optimised Least Squares 

Support Vector Machine (LSSVM) in the diagnosis of latent 

mechanical faults inside the transformer, which significantly 

improved the diagnostic accuracy 32. Zhiyu Deng et al. 

proposed a time-varying filter empirical modal quadratic 

decomposition (TVFEMDII)-improved Deep Hybrid Kernel 

Extreme Learning Machine (DHKELM) hybrid model, which 

effectively extracts the implicit information in the complex 

components through the quadratic decomposition strategy 33. 

TAN et al. Processing Input Stacking Integration Algorithm 

Parameters via Time-Varying Empirical Modal Decomposition 

to Effectively Improve Machine Learning Models' Sensitivity to 

Parameters 34. Yufeng Yin establishes a combined TVFEMD-

WOA-LSTM-ARMAX prediction model, which uses optimised 

LSTM and Autoregressive Moving Average with Extra Input 

(ARMAX) to predict the high and low frequency subsequences 

decomposed by TVFEMD, respectively,with improved 

prediction results Yufeng Yin establishes a combined 

TVFEMD-WOA-LSTM-ARMAX prediction model, and uses 

the optimised LSTM and Autoregressive Moving Average with 

Extra Input (ARMAX) to improve the prediction effect of the 

high and low frequency subsequences respectively decomposed 

by TVFEMD 35. 

The TVFEMD method, while capable of decomposing 

failure rate time series into IMFs, necessitates coupling with 

prediction models for comprehensive component analysis.. 

Support Vector Machine (SVM) shows advantages in the field 

of fault prediction by virtue of its small-sample processing 

capability and maximum interval regression characteristics [36-

37]. However, the traditional SVM has some restrictions in 

addressing nonlinear problems. To solve this problem, LSSVM 

reduces the computational complexity and improves the training 

efficiency by introducing a quadratic cost function, but there is 

still the problem of information loss [38-43]. Suykens et al. 

proposed WLSSVM, which has achieved good application 

results in areas such as fault prediction and diagnosis due to its 

capability of excellent small sample processing 44. In recent 

years, more and more studies have begun to combine WLSSVM 

with other methods to construct more accurate hybrid prediction 

models. R. Wang et al. combined the integrated empirical modal 

decomposition Integrated Complete Ensemble Empirical Mode 

Decom⁃position with Adaptive Noise (ICEEMDAN) with 

WLSSVM to predict the decomposed photovoltaic power using 

the improved WLSSVM algorithm of the slime mould 

algorithm 45. In order to further optimise the prediction 

performance of WLSSVM, Chen Kun et al. improved the Grey 

Wolf Optimisation (GWO) algorithm, which was used for the 

optimisation of penalty coefficients and kernel parameters of 

the WLSSVM model 46. Lei Xiaoxing used the multivariate 

universe algorithm to optimise the regularisation parameters 

and kernel function parameters of the WLSSVM, and verified 

that the improved WLSSVM was better than the LSSVM in 

predicting small samples 47. 

This paper combines the advantages of TVFEMD and 

WLSSVM, and introduces GWO to optimise the parameter 

selection problem of TVFEMD, and proposes the GWO-

TVFEMD-WLSSVM prediction model, and discusses the 

effectiveness and applicability of the model. 

3. Methodology 

3.1. Optimisation parameters of the grey wolf algorithm 

GWO simulates the social hierarchy and hunting mechanism of 

wolf packs and achieves parameter optimisation through global 

exploration and local exploitation. Let each grey wolf individual 

represent a set of candidate [𝜉,n] parameter combinations. 

The grey wolf algorithm's population is divided into four 

classes, a, b, c and d, where a, b and c wolves simulate the 

process of tracking, encircling and striking prey by wolves, and 

d wolves are guided by these three to perform search and update 

operations 48. 
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The GWO algorithm models three main behaviors:  

The wolf encirclement process: 

𝐷⃗⃗ = |𝐶 ⋅ 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|          (1) 

𝑋 (𝑡 + 1) = 𝑋 𝑝(𝑡) − 𝐴 ⋅ 𝐷⃗⃗           (2) 

𝐴 (𝑡) = 2𝑎 (𝑡) ⋅ 𝑟 1 − 𝑎 (𝑡)          (3) 

𝐶 = 2𝑟 2            (4) 

𝑎(𝑡) = 𝑎
𝑡

𝑇
𝑚𝑖𝑛𝑚𝑎𝑥

𝑚𝑎𝑥
         (5) 

𝐷⃗⃗  denotes the distance from other grey wolves to the leader 

grey wolf, 𝑋 𝑝(𝑡) is the position of d-wolf in the current pack, 

𝑋 (𝑡 + 1)  is the updated position of d-wolf, t is the current 

number of iterations, and 𝐴  and 𝐶  are the coefficient vectors.𝑎  

is the convergence factor,which decreases linearly from 𝑎𝑚𝑎𝑥  to 

𝑎𝑚𝑖𝑛  with the number of iterations, T is the maximum number 

of iterations, and 𝑟 1 and 𝑟 2 are random vectors between [0,1]. 

The hunting process: 

{

𝐷⃗⃗ 𝑎 = |𝐶 1 ⋅ 𝑋 𝑎 − 𝑋 (𝑡)|

𝐷⃗⃗ 𝑏 = |𝐶 2 ⋅ 𝑋 𝑏 − 𝑋 (𝑡)|

𝐷⃗⃗ 𝑐 = |𝐶 3 ⋅ 𝑋 𝑐 − 𝑋 (𝑡)|

         (6) 

{

𝑋 1 = 𝑋 𝑎 − 𝐴 1 ⋅ 𝐷⃗⃗ 𝑎

𝑋 2 = 𝑋 𝑏 − 𝐴 2 ⋅ 𝐷⃗⃗ 𝑏

𝑋 3 = 𝑋 𝑐 − 𝐴 3 ⋅ 𝐷⃗⃗ 𝑐

         (7) 

𝑋 (𝑡 + 1) =
𝑋⃗ 1+𝑋⃗ 2+𝑋⃗ 3

3
      (8) 

where 𝑋 𝑎 , 𝑋 𝑏  and 𝑋 𝑐  are the positions of wolves a, b and c, 

respectively, 𝐷⃗⃗ 𝑎 , 𝐷⃗⃗ 𝑏  and 𝐷⃗⃗ 𝑐  are the distances between wolves  

a, b and c and wolf d, respectively, and 𝑋 1, 𝑋 2 and 𝑋 3 are the 

lengths and directions of the steps taken by grey wolf d towards 

wolves a, b and c, respectively. 

The attack process is mainly affected by 𝐴 , and the size of 

|𝐴 |  determines the attack strategy of the grey wolves. When 

|𝐴 | > 1, the rest of the grey wolves will move away from the 

leader grey wolf and expand the search range; when |𝐴 | ≤ 1, 

the pack will gradually shrink to encircle the prey and gradually 

approach the optimal solution. 

GWO assumes that the optimal individuals in the population 

(i.e., a, b, and c) adequately reflect the high-quality solutions in 

the search space, and uses these three to guide the updating 

direction of the other individuals so as to achieve the global 

optimum or near-optimum. During the iteration process, GWO 

controls the search breadth and accuracy through random 

coefficients to reduce the risk of falling into the local optimum. 

While the Grey Wolf Optimizer (GWO) is originally 

inspired by the social hierarchy and collaborative hunting 

strategies of grey wolves in nature, its application in this study 

is purely algorithmic rather than biological. There is no direct 

physical or functional correspondence between the hunting 

behavior of wolves and ATP. Instead, GWO is employed as  

a global optimization tool to tune key hyperparameters within 

the TVFEMD decomposition process. 

During the iterative optimisation process, the grey wolf 

algorithm eventually obtains the combination of parameters that 

minimises the envelope entropy by renewing the positions of 

the individuals, schematically shown in Fig. 2.

 

Fig. 2. Schematic flow of the grey wolf algorithm. 
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In ATP failure rate prediction , the GWO-optimized 

parameters significantly enhance the TVFEMD decomposition 

quality. Comparative experiments show that this adaptive 

optimization improves prediction accuracy and stability over 

fixed-parameter variants. Compared with other traditional 

optimization algorithms, GWO offers advantages such as  

a simple mechanism and fewer decisive parameters. By 

simulating the optimal individual mechanism of wolf-pack 

hunting behavior with relatively low parameter requirements, it 

achieves a balance between global exploration and local 

exploitation, outperforming Particle Swarm Optimization (PSO) 

and Genetic Algorithm (GA). These characteristics enable 

GWO to avoid entrapment in local extrema when addressing 

nonlinear and nonstationary time series optimization, thereby 

ensuring both decomposition accuracy and computational 

efficiency while meeting real-time application requirements. 

In the context of ATP failure rate prediction, the underlying 

time series data are highly nonlinear, nonstationary, and often 

corrupted with noise. To improve the interpretability and 

predictive utility of such data, the TVFEMD method is 

introduced to extract multiscale features from the original signal. 

However, the decomposition performance of TVFEMD is 

sensitive to parameter selection, and manual tuning is prone to 

suboptimal configurations. The GWO algorithm solves this 

challenge by adaptively searching for the optimal parameter pair, 

specifically, the filter bandwidth threshold 𝜉 and the filter order 

n, to minimise the envelope entropy and thus improve the 

quality of the decomposed components 49.  

Envelope entropy is a metric for signal complexity based on 

information entropy, indicating the sparsity properties of the 

signal 50. In the GWO optimisation process, the envelope 

entropy is adopted as the objective feature to find the minimal 

local entropy as the optimisation goal, thus guiding the 

parameter search process 51. Literature 51 has proposed the use 

of envelope of entropy to measure the decomposition 

effectiveness of an algorithm, and the envelope entropy H can 

be expressed as: 

𝐻 = −∑ 𝑃𝑖 𝑙𝑜𝑔 𝑃𝑖
𝑁
𝑖=1           (9) 

N is the aggregate amount of IMFs obtained by 

disaggregation and 𝑃𝑖   is the normalised energy of the i-th 

component of the signal, defined as:  

𝑃𝑖 =
𝐸𝑖

∑ 𝐸𝑖
𝑁
𝑗=1

         (10) 

𝐸𝑖  denotes the energy of the i-th component of the 

signal,which is calculated as: 

𝐸𝑖 = ∫ |𝐼𝑀𝐹𝑖(𝑡)|
2𝑑𝑡

𝑡1
𝑡2

       (11) 

𝐼𝑀𝐹𝑖(𝑡) denotes the i-th eigenmode function, 𝑡0 and 𝑡1 are 

the time ranges of the signal。 

Through the above process, the optimised TVFEMD method 

can effectively decompose the failure rate time series into 

several IMFs with different time scales and frequency 

characteristics. 

3.2. Principle of TVFEMD 

In this paper, the input data for TVFEMD decomposition refers 

to the failure rate time series derived from ATP system operation 

logs. This signal captures the temporal evolution of fault 

frequency within fixed time intervals and serves as the basis for 

multiscale decomposition and prediction. The specific 

construction and preprocessing procedures for this sequence are 

detailed in Section 4.1. 

TVFEMD optimises the signal decomposition process by 

constructing a time-varying filter (TVF) through a B-spline 

approximation to obtain better noise immunity and mode 

separation 52. The flowchart is shown in Fig. 3. 

 

Fig. 3. Flowchart of TVFEMD. 
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The main steps in TVFEMD are: 

1) Calculate the local cut-off frequency 

The Hilbert transform of an N-component signal𝑋(𝑡) yields 

its analytic signal 𝑍(𝑡)  , 𝑍(𝑡)  which can be expressed as  

a combination of two signals as: 

𝑍(𝑡) = 𝑋(𝑡) + 𝑗 ⋅ 𝐻(𝑋(𝑡)) = 𝐴(𝑡)𝑒𝑗𝜑1(𝑡) = 𝑎1(𝑡)𝑒
𝑗𝜑1(𝑡) +

𝑎2(𝑡)𝑒
𝑗𝜑2(𝑡)  (12) 

where H(X(t)) is the Hilbert transform of X(t), A(t) denotes the 

instantaneous amplitude, and 𝜑 (𝑡) denotes the instantaneous 

phase. 𝑎1  and 𝑎2  are the amplitudes of the first and second 

components respectively, and 𝜑1(𝑡) and 𝜑2(𝑡) are the phases of 

the first and second components respectively. 

Specifically, the instantaneous amplitude 𝐴(𝑡)  reflects the 

energy magnitude or envelope strength of the signal at a given 

moment in time, defined as: 

𝐴(𝑡) = √𝑋(𝑡)2 + 𝐻(𝑋(𝑡))2       (13) 

The instantaneous phase 𝜑(𝑡)  then denotes the phase 

evolution at that point, which is used to further calculate the 

instantaneous frequency, defined as: 

𝜑(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝐻(𝑋(𝑡))

𝑋(𝑡)
)        (14) 

When 𝑁 = 2,  the instantaneous amplitude and instantaneous 

phase of 𝑋(𝑡) can be expressed as: 

𝐴2(𝑡) = 𝑎1
2(𝑡) + 𝑎2

2(𝑡) + 2𝑎1(𝑡)𝑎2(𝑡) 𝑐𝑜𝑠[𝜑1(𝑡) − 𝜑2(𝑡)] (15) 

𝜑′(𝑡) =
1

𝐴2(𝑡)
(𝜑1

′ (𝑡)(𝑎1
2(𝑡) + 𝑎1(𝑡)𝑎2(𝑡)𝑐𝑜𝑠[𝜑1(𝑡) − 𝜑2(𝑡)])

+𝜑2
′ (𝑡)(𝑎2

2(𝑡) + 𝑎1(𝑡)𝑎2(𝑡)𝑐𝑜𝑠[𝜑1(𝑡) − 𝜑2(𝑡)]))

+
1

𝐴2(𝑡)
(𝑎1

′ (𝑡)𝑎2(𝑡)𝑠𝑖𝑛[𝜑1(𝑡) − 𝜑2(𝑡)]

−𝑎2
′ (𝑡)𝑎2(𝑡)𝑠𝑖𝑛[𝜑1(𝑡) − 𝜑2(𝑡)])

(16)  

The TVF separates the similar components within the signal 

by means of a local cut-off frequency, which can be 

approximated as the bisecting frequency 𝜑𝑏𝑖𝑠
′ (𝑡)  of 𝜑1(𝑡)  and 

𝜑2(𝑡). 

𝜑𝑏𝑖𝑠
′ (𝑡) =

𝜑1
′ (𝑡)+𝜑2

′ (𝑡)

2
=

𝜂2(𝑡)−𝜂1(𝑡)

4𝑎1(𝑡)𝑎2(𝑡)
       (16) 

Solve for the values of 𝑎1(𝑡) and 𝑎2(𝑡), let: 

𝛽1(𝑡) = |𝑎1(𝑡) − 𝑎2(𝑡)|        (17) 

𝛽2(𝑡) = 𝑎1(𝑡) + 𝑎2(𝑡)        (18) 

𝛽1(𝑡)  and 𝛽2(𝑡)  are obtained by interpolating the local 

extrema estimates of 𝐴(𝑡). Setting 𝑎1(𝑡) ≥ 𝑎2(𝑡), the values of 

𝑎1(𝑡) and 𝑎2(𝑡) can be solved for. Let: 

𝜂1(𝑡) = 𝜑1
′ (𝑡)[𝑎1

2(𝑡) − 𝑎1(𝑡)𝑎2(𝑡)] + 𝜑2
′ (𝑡)[𝑎2

2(𝑡) −

                                            𝑎1(𝑡)𝑎2(𝑡)]            (19) 

𝜂2(𝑡) = 𝜑1
′ (𝑡)[𝑎1

2(𝑡) + 𝑎1(𝑡)𝑎2(𝑡)] + 𝜑2
′ (𝑡)[𝑎2

2(𝑡) +

                                           𝑎1(𝑡)𝑎2(𝑡)]            (20) 

𝜂1(𝑡) and 𝜂2(𝑡) can be obtained by interpolating the local 

extremes of 𝜑1
′ (𝑡)𝐴2(𝑡) . Solving for the values of 𝜂1(𝑡)  and 

𝜂2(𝑡), 𝑎1(𝑡) and 𝑎2(𝑡), and substituting into Eq. (16) gives the 

local cut-off frequency of the signal. 

2) B-spline approximate filtering of the input signal 

Let 𝛽𝑛(𝑡)  be the nth order B-spline order and m be the 

section sequence step, the signal in this B-spline space is 

defined as: 

𝑔𝑚
𝑛 (𝑡) = ∑ 𝑐(𝑘)𝛽𝑛(

𝑡

𝑚
− 𝑘)∞

𝑘=−∞        (21) 

Where 𝑐(𝑘)  is the B-spline coefficient. Given m and n, 

determine 𝑐(𝑘) such that the approximation error is minimised 

and substitute into Eq. (21). 

𝑔𝑚
𝑛 (𝑡) = [𝑝𝑚

𝑛 ∗ 𝑥]↓𝑚 ∗ 𝑏𝑚
𝑛 (𝑡)       (22) 

Constructing the new signal ℎ(𝑡)  with a local cut-off 

frequency and using the extreme points of ℎ(𝑡) as nodes, a B-

spline approximation filter is used on the input signal 𝑋(𝑡) , 

which results in a filter of 𝑚(𝑡). 

ℎ(𝑡) = 𝑐𝑜𝑠[∫𝜑𝑏𝑖𝑠
′ (𝑡) 𝑑𝑡]        (23) 

3) Verify that the remnant signal satisfies the stopping 

criterion 

The weighted average of instantaneous frequencies (WAIF) 

of each component can be defined as: 

𝜑𝑎𝑣𝑔(𝑡) =
𝑎1

2(𝑡)𝜑1
′ (𝑡)+𝑎2

2(𝑡)𝜑2
′ (𝑡)

𝑎1
2(𝑡)+𝑎2

2(𝑡)
       (24) 

According to Loughlin instantaneous bandwidth, the 

instantaneous bandwidth is defined as the standard deviation of 

the WAIF, then the two-component instantaneous bandwidth 

can be expressed as: 

𝐵𝐿𝑜𝑢𝑔ℎ𝑙𝑖𝑛(𝑡) = √
𝑎1

′ 2
(𝑡)+𝑎2

′ 2
(𝑡)

𝑎1
2(𝑡)+𝑎2

2(𝑡)
+

𝑎1
2(𝑡)𝑎2

2(𝑡)(𝜑1
′ (𝑡)−𝜑2

′ (𝑡))
2

(𝑎1
2(𝑡)+𝑎2

2(𝑡))
2    (25) 

When 𝐵𝐿𝑜𝑢𝑔ℎ𝑙𝑖𝑛(𝑡)  is small enough, the signal can be 

considered as an IMF. Define 𝜃(𝑡)  to measure the extent to 

which 𝐵𝐿𝑜𝑢𝑔ℎ𝑙𝑖𝑛(𝑡)  deviates from the WAIF, which is the 

stopping criterion. Given a threshold 𝜉, the signal is considered 

to be IMF when 𝜃(𝑡) ≤ 𝜉, otherwise set 𝑋(𝑡) = 𝑋(𝑡) − 𝑚(𝑡), 

and repeat the screening process. 

𝜃(𝑡) =
𝜑𝑎𝑣𝑔(𝑡)

𝐵𝐿𝑜𝑢𝑔ℎ𝑙𝑖𝑛(𝑡)
        (26) 
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3.3. WLSSVM forecasts 

Literature [53] used the ε-SVR model for prediction and 

demonstrated that the ATP failure rate time series has volatility 

and randomness, and some data points may contain richer fault 

characteristics or higher information weights. In order to adapt 

to the non-stationarity and local volatility characteristics of ATP 

fault rate data, this paper introduces the WLSSVM, and 

constructs a sample weighting mechanism on the basis of 

LSSVM to optimise the model performance. The objective 

function of LSSVM is given in Eq. (28). 

𝐽(𝑤, 𝜉) =
1

2
‖𝑤‖2 +

𝛾

2
∑ 𝜉𝑖

2𝑁
𝑖=1       (27) 

Where 𝛾 is the penalty coefficient and all training samples share 

the same penalty coefficient. WLSSVM introduces a weight 

matrix in front of the error term to adjust its influence in the 

error term.This feature makes WLSSVM more suitable for 

complex time series with strong volatility and non-stationarity 

such as the ATP failure rate series.The objective function of 

WLSSVM can be expressed as follows: 

𝐽(𝑤, 𝜉) =
1

2
‖𝑤‖2 +

𝛾

2
∑ 𝑊𝑖𝜉𝑖

2𝑁
𝑖=1        (28) 

𝑤 is the weight vector. The weight vector 𝑤 is not defined 

in the WLSSVM model by an explicit function, but is obtained 

by solving the optimisation problem indirectly by the 

Lagrangian dyadic method, which means the set of directional 

coefficients in the eigenspace of the kernel function mapped to 

the regression function with the largest contribution to the 

regression function. 𝜉𝑖 is the prediction error, 𝑊𝑖 is the weight 

factor of the samples, which is used to adjust the contribution of 

each sample in the error term and can be expressed as: 

𝑊𝑖 =
1

(𝑦𝑖−𝑦̂𝑖)
2         (29) 

𝑦𝑖  is the true value of sample i and 𝑦̂𝑖 is the model prediction. 

N is the total number of samples. Set 𝑖 = 1,2, . . . , 𝑁  , the 

constraints are: 

𝑦𝑖 = 𝑤𝑇𝜙(𝑥𝑖) + 𝑏 + 𝜉𝑖         (30) 

𝑏  is the bias term. 𝜙(𝑥𝑖)  is the mapping function that 

nonlinearly maps the input sample 𝑥𝑖 to the high-dimensional 

feature space, and 𝑦𝑖  is the actual output value of the sample. To 

remove the constraints, the Lagrange multiplier method is used 

to construct the Lagrange function: 

𝐿(𝑤, 𝑏, 𝜉, 𝛼) =
1

2
‖𝑤‖2 +

1

2
∑ 𝑊𝑖𝜉𝑖

2𝑁
𝑖=1 −

                     ∑ 𝛼𝑖
𝑁
𝑖=1 [𝑤𝑇𝜙(𝑥𝑖) + 𝑏 + 𝜉𝑖 − 𝑦𝑖]    (31) 

Where 𝛼 = [𝛼1, 𝛼2, . . . , 𝛼𝑁]𝑇  is the Lagrange multiplier. 

The Karush-Kuhn-Tucker (KKT) condition for the 

optimisation problem is obtained by taking the partial 

derivatives of each variable 𝑤, 𝑏, 𝜉  and 𝛼  and setting them to 

zero. Substituting the KKT condition into the constraints, the 

weight vector 𝑤  can be expressed as a weighted linear 

combination of the projections of the training samples in the 

feature space. 

𝑤 = ∑ 𝛼𝑖
𝑁
𝑖=1 𝜇𝑖𝜙(𝑥𝑖)        (32) 

By eliminating the original variables 𝑤, 𝜉𝑖 and 𝑏, the matrix 

represents the constraints for all the samples , obtaining the joint 

equation. 

𝛼 = (Ω + 𝑊−1)−1𝑦        (33) 

𝛺𝑖𝑗 = 𝐾(𝑥𝑖 , 𝑥𝑗)  is the kernel matrix, 𝐾(𝑥𝑖 , 𝑥𝑗) =

𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗) is the kernel function, which is used to compute 

the similarity between the input samples; 𝑊  is the weight 

diagonal matrix, and 𝑊 = 𝑑𝑖𝑎𝑔(𝑊1,𝑊2, . . . ,𝑊𝑁)  , 𝑦 =

[𝑦1 , 𝑦2, . . . , 𝑦𝑁]𝑇 are the target value vectors of the samples. 

By solving the system of equations to get 𝛼 and 𝑏 

[0 1𝑇

1 Ω + 𝑊−1] [
𝑏
𝛼
] = [

0
𝑦
]        (34) 

The final WLSSVM prediction function can be expressed as 

follows. 

𝑓(𝑥) = ∑ 𝑎𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏𝑁
𝑖=1        (35) 

𝐾(𝑥, 𝑥𝑖)  is the kernel function, which represents the 

mapping relationship between the input samples and the 

training samples.In this paper, we use the RBF kernel function, 

which is denoted as: 

𝐾(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (−
‖𝑥−𝑥𝑖‖

2

2𝜎2 )        (36) 

Where 𝜎 is the nuclear parameter. 

3.4. GWO-TVFEMD-WLSSVM model 

In this paper, GWO is used to optimise the parameters of 

TVFEMD, and then the optimised TVFEMD algorithm is 

employed to decimate the failure rate time series to establish the 

GWO-TVFEMD-WLSSVM failure rate prediction model, with 

the following main steps, and the flowchart is shown in Fig. 4. 

1) Input failure rate time series. Preprocess the ATP failure 

rate data and classify the training set and test set. 

2) Setting initial parameters and initialising grey wolf 

populations. Set the relevant parameters of the GWO algorithm 
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and the TVFEMD algorithm, and use the parameters of 

TVFEMD as the optimisation-seeking target. 

3) Perform parameter optimisation search. Fitness values for 

each individual grey wolf decomposition result are calculated, 

and the optimal parameters are searched iteratively to finally 

obtain the optimal TVFEMD parameters. 

4) TVFEMD decomposition using optimal parameters. The 

time series data of failure rates is subjected to decomposition 

via the optimized TVFEMD. 

5) A WLSSVM prediction model was built separately for 

each component. For each IMF component and residual term, 

build a separate WLSSVM model for prediction. 

6) Get the prediction results. The predictions of all the sub-

sequences were integrated to obtain the f final estimates of the 

failure rate data. The predictive effectiveness of the model was 

also estimated using metrics including RMSE, MAE and MAPE.

 

Parameter optimisation and signal decomposition stages 

 

Model forecasting stage 

Fig. 4. Flowchart of the GWO-TVFEMD-WLSSVM model. 
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While previous studies such as 53 employed chaos-based modeling strategies for ATP failure rate series, assuming the presence of 

strong deterministic nonlinear dynamics, our method follows a data-driven decomposition–prediction paradigm. Preliminary nonlinear 

analysis on our dataset revealed only weak low-dimensional structure, and no consistent evidence of chaotic behavior. Therefore, no 

explicit chaotic dynamics model is constructed in this paper, but these complex time-evolutionary properties provide important 

theoretical insights in the model selection process. Given the stochastic, noisy, and nonstationary characteristics of real-world ATP 

fault data, the integration of TVFEMD and WLSSVM provides a more flexible and robust modeling alternative without relying on 

strict dynamical assumptions. 

4. Case study 

4.1. data processing 

The figures in this article are derived from the ATP system's operating logs. These log texts record information about faults  that 

occur during the actual operation of the ATP system. Based on the semantic characteristics of the ATP system operation log, ‘failure’ 

is defined as events that can be captured by the alarm log and have engineering impact, such as communication anomalies, module 

failures, hardware fluctuations, and so on, that occur during the operation of the system. To automatically extract and analyse the 

operational data of the on-board ATP system, the first step is to process the text. Keywords are extracted from the existing fault case 

database to establish  

a fault case thesaurus as shown in 

.

Table 1. Thesaurus of some fault cases. 

Fault Alarm Statements Clarification Keywords 

VDX EBR1 port switched to invalid Safety input/output unit (VDX) EBR1 port switched to invalid invalid 

VDX EBR1 port switched to valid VDX EBR1 port switched to active valid 

BI-H VDX1:IN1 I/O failed It is recommended to refer to the corresponding fault case processing failed 

BI-H EBR1 state wrong BI-H EBR1 status error wrong 

BI-H EBR1 feedback timeout 
BI-H EBR1 feedback timeout. EBR1 relay faulty, consider replacing 

EBR1 relay 
feedback timeout 

C018E000C016E03CA001 
Abnormalities detected in tests performed by the VDX unit on the FS 

output port at 32ms intervals 
C018 

 

Regular expressions are used to match the text of running logs and filter the entries containing keywords from the log files.  Based 

on the existing case base, the same fault is usually accompanied by multiple alarm messages, and the time intervals of these alarm 

messages usually do not exceed 10 minutes. Therefore, in this paper, fault alarm statements are classified and organised in 5-minute 

and 10-minute intervals.The failure rate is calculated according to Eq. (38), where 𝑓 and 𝑡𝑖 are the number of failures and the working 

hours in the ith day, respectively. 

𝜆 =
∑ 𝑓𝑖

𝑁
𝑖=1

∑ 𝑡𝑖
𝑁
𝑖=1

        (37) 

The sliding window approach combined with the Z-Score criterion is used in this paper to identify outliers, when the absolute value 

of the Z-Score at a point exceeds 2, it is considered as an outlier and is replaced with the rolling mean at that location, and the optimal 

window size is defined by cross-validation. Model validation employs a conventional 70% training and 30% testing partition, 

maintaining rigorous separation between development and evaluation datasets to guarantee unbiased assessment of generalization 

characteristics. 

This paper adopts a time series-based modelling approach. Different from the traditional reliability theory, which often models 

‘failure’ as a system state crossing a failure surface in  

a multidimensional covariate space (e.g., stress-strength model), the constructed time series of failure rate essentially reflects the 
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dynamic evolution of the system state in the time dimension. Although the failure boundaries are not explicitly constructed, the multi-

scale decomposition of the signals by TVFEMD can extract the intrinsic behavioural characteristics of the system under different 

degradation modes, thus forming a data-driven equivalent expression of the idea of ‘crossing the failure surface’, which is suitable for 

engineering scenarios lacking multi-dimensional physical characterization.  

4.2. Data source 

To validate the accuracy of the proposed GWO-TVFEMD-WLSSVM model, the operational data of the on-board ATP system of a 

road section from December 2021 to July 2022 is selected as a case study, and the number of faults is extracted and calculated. The 

failure rate is calculated in terms of days, and two time series of failure rate by date are generated. Each data point in the sequence 

represents the failure frequency within a fixed time window (e.g., 5 or 10 minutes), forming  

a univariate time series with temporal ordering and nonstationary characteristics.  

In order to explore the effect of zero values on prediction, the non-zero sequence after removing zero values was further constructed 

so as to obtain two sets of data, the original sequence (251 points) and the non-zero sequence (186 points), which represent the 

operational characteristics of the actual system and the changes in the system dynamics during the fault event, respectively, and are 

used for comparative analyses. As can be seen from the figure, the failure rate data under the 5-minute window is more volatile and 

sparse, especially in the presence of a high number of zeros, and the dynamics of the data change more frequently. This makes  the 

model need to cope with more complex short-term fluctuations, and thus the prediction results under the 5-minute window show greater 

volatility. The data under the 10-minute window is time-aggregated, and the effects of noise and zero values are effectively suppressed, 

resulting in a smoother prediction curve that shows a more stable trend. To comprehensively characterise the time series dataset, the 

descriptive statistical analysis table is employed in this paper to show the overall characteristics of the data, as illustrated in 

.By comparing statistics such as maximum, minimum, mean, 

standard deviation, skewness and kurtosis, it can be observed 

that there are significant differences between the various data 

sets.

Table 2. Table of descriptive statistics analysed for the four datasets. 

 Max Min Mean Std Skewness Kurtosis 

5-minute de-zeroed time series 66.667 0.043 2.684 8.340 5.122 33.147 

5-minute time series with zeros 66.667 0 1.422 6.207 7.130 62.416 

10-minute de-zeroed time series 20 0.046 0.961 2.449 5.897 41.703 

10-minute time series with zeros 20 0 0.505 1.837 8.003 76.425 

           

5-minute de-zeroed time series 5-minute time series with zeros 
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10-minute de-zeroed time series 10-minute time series with zeros 

Fig. 5. Time series of failure rates for different treatments. 

The zero-valued data series show stronger sparsity and imbalance, especially in the 10-minute time granularity, its skewness and 

kurtosis reach 8.003 and 76.425, respectively, indicating that most of the time period of the failure rate is zero, and there are a few time 

periods with very high outliers. In contrast, after the de-zeroing process, the mean and standard deviation of the data are significantly 

improved, and the information density is enhanced, providing a clearer signal representation for data-driven modelling. 

Furthermore, the significant differences in skewness, kurtosis and standard deviation of the different datasets in Table 2 provide 

theoretical support for the selection of modelling approaches. The highly skewed and heavy-tailed distributions reflect the abrupt and 

clustered nature of failure events over time, thereby reinforcing the suitability of TVFEMD for isolating modal components with 

distinct temporal-frequency characteristics. In parallel, the increased standard deviation and the presence of extreme values indicate 

higher information concentration at certain time points, justifying the incorporation of WLSSVM with a sample-weighting mechanism 

to enhance the model's sensitivity to critical instances and improve both predictive accuracy and robustness.  

4.3. Determining model parameters and building model predictions 

TVFEMD decomposition is used for the time series of this paper. The number of iterations for the grey wolf algorithm is chosen to be 

100 and the population size to be 20. To avoid overdecomposition, reconstruction errors are used to identify the optimal numbers of 

IMFs. The optimal number of Intrinsic Mode Functions is determined through a reconstruction-based validation approach, where 

decomposed IMFs and residual components are combined to reconstruct the original signal, followed by error quantification between 

the reconstructed and original signals. The reconstruction errors corresponding to each maximum number of IMFs are shown in 

. Setting the optimal number of IMFs as 6. The fault rate time 

series were decomposed based on the TVFEMD method, and 

the WLSSVM model was built for the components to predict 

them respectively, and Fig. 6 shows the results of GWO-

TVFEMD decomposition of the four time series datasets.

Table 3. Reconstruction errors for the optimal number of IMFs. 

Number of IMFs 5-minute de-zeroed 5-minute with zero value 10-minute de-zeroed 10-minute with zero value 

5 0.000020 0.000023 0.000009 0.000012 

6 0.000020 0.000019 0.000009 0.000012 

7 0.000021 0.000023 0.000009 0.000012 

8 0.000021 0.000027 0.000010 0.000012 

9 0.000023 0.000018 0.000013 0.000012 

10 0.000020 0.000025 0.000011 0.000012 

15 0.000022 0.000025 0.000012 0.000018 

20 0.000024 0.000025 0.000012 0.000018 
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5-minute de-zeroed time series 5-minute time series with zeros 

 

 

10-minute de-zeroed time series 10-minute time series with zeros 

Fig. 6. Decomposition results for different time series. 

Before prediction, lag features are first created 54. The lag order determination employs both Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC), with an optimization range spanning 1 to 20. When optimal AIC and BIC values indicate 

different lag orders, the median value is selected. 

 presents the component-specific optimal lag orders, which 

are subsequently used to generate corresponding lag features for 

each decomposed subsequence. These subsequences serve as 

labels for the WLSSVM model, while their associated lag 

features constitute the model inputs. Through grid search 

methodology, optimal combinations of parameters are identified 

for each IMF component, with the regularization parameter C 

ranging from 0.1 to 10000 and the kernel function parameter K1 

varying between 0.1 and 10. The final prediction results, 

obtained by aggregating all component predictions, are 

visualized in Fig. 7.

Table 4. Optimal lag order for each time series component. 

 AIC/BIC IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 RF 

5-minute time series with zeros 
Optimal AIC Corresponding Order 20 16 20 20 20 10 1 

Optimal BIC Corresponding Order 15 16 20 17 20 10 1 

10-minute time series with zeros 
Optimal AIC Corresponding Order 15 20 19 18 14 10 1 

Optimal BIC Corresponding Order 15 20 14 16 12 10 1 

5-minute de-zeroed time series 
Optimal AIC Corresponding Order 16 17 20 18 16 7 1 

Optimal BIC Corresponding Order 16 17 20 15 16 7 1 

10-minute de-zeroed time series 
Optimal AIC Corresponding Order 13 18 12 10 6 5 1 

Optimal BIC Corresponding Order 13 13 11 6 6 5 1 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026 

 

                 

5-minute de-zeroed fault time series results 5-minute time series results with zero values 

  

10-minute de-zeroed fault time series results 10-minute time series results with zero values 

Fig. 7. Prediction results for different time series. 

4.4. Assessment of indicators 

In this paper, MAE, RMSE and MAPE are chosen to evaluate the model. For each of the four time series, their corresponding errors 

are computed and summarized in 

. 

Table 5. Prediction errors for the four time series. 

 5-minute with zeros 10-minute with zeros 5-minute de-zeroed fault 10-minute de-zeroed fault 

MAE 0.0097 0.0033 0.0050 0.0120 

RMSE 0.0259 0.0094 0.0181 0.0257 

MAPE 0.0452 0.0167 0.0130 0.0303 
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Fig. 8. Failure rate prediction results. 

As can be seen from the table, the 10-minute interval dataset is able to demonstrate a more stable prediction performance with the 

smallest overall error when the zero value is included, and although the MAPE is slightly increased by the zero value, it has the smallest 

absolute error, suggesting that the prediction is more superior at this time interval. The zero value represents the health state of the 

system, which can help the model better capture the dynamics of the system during stable operation and fault occurrence, and avoid 

overlooking the fault-free periods. By retaining the zero value, the failure prediction accuracy of the model can be improved.  

The final prediction is shown in Fig. 8. 

In order to further enhance the interpretability of the prediction results and the credibility of the model, this paper evaluates the 

prediction stability of the WLSSVM model by means of the confidence interval estimation method based on residual analysis, and the 

confidence band prediction curves of the prediction results are shown in Fig. 9. The prediction residuals of the training set containing 

zero-value data at 10-minute intervals are analysed, and based on their distributional characteristics, the normal distribution is used to 

fit the error, and the fluctuation range of the error is estimated by the standard deviation. Finally, based on the nature of normal 

distribution, this paper constructs the corresponding 95% confidence interval for each prediction point.  

 

Fig. 9. Confidence band prediction curves for predicted results. 
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4.5. Ablation experiment 

To further evaluate the role of the Grey Wolf algorithm in TVFEMD parameter selection, this paper predicts the candidate solutions 

generated during the real optimisation process as  

a comparison set of fixed parameters input into TVFEMD. Fig. 10 shows the MAE, RMSE and MAPE for each parameter combination 

[𝜉 ,𝑛 ], where [0.210,7] is the optimal solution. Comparative analysis reveals that while suboptimal parameter sets originate from 

authentic GWO optimization, their predictive efficacy remains consistently below that of the optimal configuration. This finding 

underscores the grey wolf algorithm’s significance in identifying high-performance TVFEMD parameters. 

 

Fig. 10. Error assessment metrics for the prediction results of each parameter combination. 

Table 6 presents the runtime comparison between the TVFEMD and GWO-TVFEMD algorithms. As shown in the table, the training 

phase of the GWO-TVFEMD requires approximately 354.6 seconds, which is longer than the fixed-parameter TVFEMD algorithm. 

However, during the testing phase, the runtime of the GWO-TVFEMD algorithm increases only slightly compared with TVFEMD, 

indicating that the additional computational cost is confined to the training stage and that GWO optimization does not signif icantly 

affect the efficiency of practical applications. 

Table 6. Runtime comparison between TVFEMD and GWO-TVFEMD. 

 Training time(s) Testing time(s) Overall time(s) 

TVFEMD 8.622 0.017 8.642 

GWO-

TVFEMD 
354.554 0.042 355.453 

To further validate the predictive ability of the models in order to more comprehensively assess their advantages in failure rate time 

series prediction,four benchmark models are selected for comparative experiments and four sets of ablation experiments are designed 

to validate them for different key factors. These experiments, all based on time series with 10-minute intervals and containing zero 

values, systematically evaluate the effectiveness of the TVFEMD method, the value of parameter optimisation, and the advantages of 

the WLSSVM in failure rate prediction. 

 presents a comparative performance assessment between 

the standalone model and ablation variants when applied to 

zero-value-containing 10-minute test sequences. As shown in 

the table, although the WLSSVM model outperforms other 

single models in terms of predictive performance, its prediction 

error remains higher than that of the proposed model due to the 

absence of TVFEMD-based data processing. Fig. 11 displays 

boxplots contrasting prediction outcomes from the reference 

model and our GTW approach, with GTW denoting the 

integrated GWO-TVFEMD-WLSSVM methodology. The 

GTW model performs significantly better on the test set 

compared to other commonly used prediction models. The 
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TVFEMD-WLSSVM model constructed with fixed parameters 

in the figure uses a non-optimal combination randomly selected 

from the results of multiple GWO runs. 

 

Table 7. Indicators for assessing the results of the models. 

 Model MAE RMSE MAPE(%) 

10-minute time series with zero values 

SVR 0.3562 0.9468 0.6310 

LSTM 0.4443 0.9811 1.1858 

ARIMA 0.4558 0.9674 0.7954 

XGBoost 0.3682 0.9271 0.9087 

WLSSVM 0.2330 0.8093 0.2671 

EMD-WLSSVM 0.0886 0.1006 0.3500 

TVFEMD-WLSSVM 0.0286 0.1652 0.0382 

GWO-TVFEMD-SVR 0.2525 0.3676 1.1974 

GWO-TVFEMD-New signal 0.4165 0.9788 0.6132 

GWO-TVFEMD-WLSSVM 0.0028 0.0066 0.0139 

 

 

Fig. 11. Comparison of single model prediction results. 

Fig. 12 shows the line graphs of the prediction results of each ablation experiment, and according to Fig. 12 and 

, it can be seen that the present model performs optimally on 

the 10-minute zero-value-containing dataset, and the MAE is 

reduced by 0.2497 and 0.4137 compared with that of the GWO-

TVFEMD-SVR model and the GWO-TVFEMD-New signal 

model, respectively, which is closer to the real value; The 

TVFEMD-WLSSVM model with optimised parameters of the 

Grey Wolf algorithm is reduced by 96.03%, and the MAPE is 

reduced by 33.61 percentage points compared to the EMD-

WLSSVM model, with greater reliability. The prediction results 

of the GWO-TVFEMD-New signal model fluctuate less 

numerically and show a tendency to approximate a horizontal 

line, which indicates that it fails to adequately capture the 

information about the differences between the frequency 

components, and verifies the advantages of modality-

independent modelling in dealing with complex non-stationary 

data. 
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Fig. 12. Plot of prediction results for different combinations of 

models on a 10-minute test set containing zero values. 

5. Conclusion 

1) The TVFEMD decomposition method significantly 

improves the accuracy and stability of predictions. Currently 

commonly used single prediction models are often 

unsatisfactory in dealing with such non-smooth and non-linear 

time series.TVFEMD decomposition of the failure rate time 

series transforms the original series into a set of relatively 

smooth subsequences. Combining the advantages of signal 

decomposition techniques and nonlinear modelling enables 

WLSSVM to effectively capture the complex patterns of fault 

rate changes and reduce the impact of non-smoothness and 

strong nonlinearity on modelling accuracy. 

2) The developed GWO-TVFEMD-WLSSVM hybrid 

model outperforms traditional prediction methods across 

multiple evaluation metrics. Empirical results indicate 

consistently high prediction accuracy throughout various 

operational periods, demonstrating close alignment between 

predicted and observed failure rate patterns. This integrated 

approach proves particularly effective for ATP system failure 

rate estimation, establishing a reliable methodological 

framework for similar reliability engineering applications. 

3) The present study's validation is confined to ATP system 

failure rate time series, which inherently limits the model's 

generalizability across different operational contexts. To 

advance model performance, future investigations will integrate 

environmental and operational status variables, thereby 

building more robust predictive frameworks with superior 

accuracy and adaptation capacity.
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Appendix A 

Thesaurus of fault cases 

Ordinal 

number 
Fault Alarm Statements Clarification Keywords 

1 VDX EBR1 port switched to invalid 
Safety input/output unit (VDX) EBR1 port 

 switched to ineffective 
invalid 

2 VDX EBR1 port switched to valid VDX EBR1 port switched to effective invalid 

3 VDX RBR port switched to invalid VDX RBR port switched to ineffective invalid 

4 VDX EBF port switched to invalid VDX EBF port switched to ineffective invalid 

5 VDX bypass port switched to invalid VDX bypass port switched to ineffective invalid 

6 VDX EBR1 port switched to valid VDX EBR1 port switched to active valid 

7 VDX EBR2 port switched to valid VDX EBR2 port switched to active valid 

8 VDX RBR port switched to valid VDX RBR port switched to active valid 

9 VDX EBF port switched to valid VDX EBF port switched to active valid 

10 VDX bypass port switched to valid VDX bypass port switches to active valid 

11 BI-H VDX1:IN1 I/O failed 
It is recommended to refer to the corresponding fault 

case processing 
failed 

12 BI-H VDX2:IN1 I/O failed 
It is recommended to refer to the corresponding fault 

case processing 
failed 

13 BI-H VDX1:IN2 I/O failed 
It is recommended to refer to the corresponding fault 

case processing 
failed 

14 BI-H VDX2:IN2 I/O failed 
It is recommended to refer to the corresponding fault 

case processing 
failed 

15 BI-H VDX1:IN3 I/O failed 
It is recommended to refer to the corresponding fault 

case processing 
failed 

16 BI-H VDX2:IN3 I/O failed 
It is recommended to refer to the corresponding fault 

case processing 
failed 

17 BI-H RBR state wrong BI-H RBR status error wrong 

18 BI-H EBR1 state wrong BI-H EBR1 status error wrong 

19 BI-H EBR2 state wrong BI-H EBR2 status error wrong 

20 BI-H BPR state wrong BI-H BPR status error wrong 

21 BI-H EBFB state wrong BI-H EBFB status error wrong 

22 BI-H RBR feedback timeout BI-H RBR feedback timeout.RB relay fault. timeout 

23 BI-H EBR1 feedback timeout BI-H EBR1 feedback timeout.EBR1 relay failure. timeout 

24 BI-H EBR2 feedback timeout BI-H EBR2 feedback timeout.EBR2 relay failure. timeout 

25 BI-H BPR feedback timeout BI-H BPR feedback timeout.BP relay failure. timeout 

26 BI-H EBFR feedback timeout BI-H EBFB feedback timeout.EBFB relay failure. timeout 

27 [STM] STM in failure state STM failure failure 

28 [STM] STM in DA state failed STM disabled in DA state failed 

29 direction control failure Direction control malfunction failure 

30 DirCtrlPos err Abnormal status of the driver's seat err 

31 Cab status fail Abnormal vehicle status fail 

32 
[CAB] 

REPORT_CAB_NOT_STANDSTILL_DETECTED 
Full shutdown not detected NOT 

33 Level changed to L2, orderby=0 Level has been changed to L2, Sort = 0 orderby=0 

34 Braketest failed in step 11 Brake Test Step 11 Failure failed 

35 Wrong feedback. Timeout expires 66523 Feedback timeout wrong 

36 Time 64623 BI-H EBFR state wrong BI-H EBFR status error wrong 

37 Timeout Lifesign * life-signal abnormality Timeout 

38 Brake Test step 0 failed Unable to initiate brake test failed 

39 C018 
An exception was detected in the test performed by 

the VDX unit on the FS output port every 32ms. 
C018 

40 C019 
Abnormalities detected in tests performed by the 

VDX unit on the FS output port at 5 second intervals 
C019 

41 C002 VDX Unit HR2 Port Test Failure C002 

42 0028 Inconsistent VDX unit A/B code comparisons 0028 

43 C018E000C016E03CA001 Abnormalities detected in tests performed by the C018 
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VDX unit on the FS output port at 32ms intervals 

Appendix B 

Convergence analysis indicators 

 

 

5-minute interval data set 10-minute interval data set 

Figure 1. Algorithmic convergence curves for GWO. 
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Figure 2. Training loss convergence curves for the WLSSVM on the 5-minute dataset. 
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Figure 3. Trend plot of training error for WLSSVM on 5-minute dataset. 
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Figure 4. Training loss convergence curves for the WLSSVM on the 10-minute dataset. 
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Figure 5. Trend plot of training error for WLSSVM on 10-minute dataset. 


