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Highlights Abstract

= Time series decomposition is applied to predict Automatic Train Protection (ATP) system reliability significantly
impacts rail safety and maintenance efficiency, but current strategies
lack data-driven spare parts optimization. We propose a hybrid failure
rate prediction model combining time-varying filtered empirical mode
decomposition (TVFEMD) and machine learning. First, ATP operational
data undergoes interval segmentation and zero-value preprocessing.
Next, grey wolf optimization (GWO) adaptively tunes TVFEMD
parameters to decompose failure rate series into intrinsic mode functions
(IMFs). Each IMF is independently predicted via weighted least squares
support vector machine (WLSSVM), with final outputs aggregated
through superposition. Validated using real ATP system data, the model
achieves 0.0028 MAE, 0.0066 RMSE, and 0.0139 MAPE for 10-minute
interval predictions with zero-inflated data, surpassing baseline
methods. Results confirm its effectiveness for ATP failure rate
forecasting.

ATP failure rates.

= The proposed model demonstrates robust
performance with small training datasets.

= A hybrid WLSSVM-temporal decomposition

framework is proposed.
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1. Introduction

As high-speed railways develop rapidly, China's train operation
control system (CTCS) has become a key technology to ensure
traffic safety, of which CTCS-3 level has been widely used as
the core system for high-speed railways of 300 km/h and above.
Fig. 1 shows a schematic of the overall structure of the CTCS-
3 and ATP system. Functioning as the essential safety-critical
component of CTCS-3, the ATP delivers continuous train state
monitoring and protection functionalities, with its reliability
representing the primary safeguard for railway operational
safety [1-2]. However, the long-term operation of the ATP

system is susceptible to environmental conditions like elevated

(*) Corresponding author.
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temperatures, vibration, electro-magnetic interference, etc. and
ageing of the equipment, with the risk of malfunction always
present 3. Once an abnormality occurs in the ATP system, it will
lead to the interruption of train operation and may even cause a
safety accident. Therefore, accurate prediction of the ATP
system's failure rate is a significant research topic for high-
speed rail to ensure safe operation.

The on-board ATP system, being vital for train operation
safety, requires scientifically grounded testing and maintenance
regimes 4. At present, the maintenance management of on-

board ATP equipment usually adopts the strategy of regular
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maintenance or ‘after-action maintenance’ based on experience
5. Regular maintenance ignores individual differences in
equipment and can lead to over- or under-maintenance, while
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the ‘after-the-fact maintenance’ model can lead to operational

disruptions due to the lack of an early warning mechanism for

failures [6-7].
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Fig. 1. Overall structure schematic of CTCS-3+ATP for the system.

Currently, data-driven prediction technology has been
widely used in predictive maintenance, demand prediction,
quality prediction, etc. 8. Data-driven ATP system failure
prediction can accurately predict the probability of failure and
achieve preventive maintenance by extracting key information
and analysing trends in the timing data in its operation log, thus
ensuring the efficiency and safety of system operation 9.

However, ATP system failure rate prediction faces serious
challenges, mainly stemming from the significant operating
data with nonlinear and nonstationary characteristics, and by
environmental conditions, operating conditions and equipment
status and other multiple factors 10. A single traditional method
has limitations in dealing with such complex data, and there is
an urgent need to develop more accurate and efficient failure
rate prediction models 11.

Existing research on failure rate time series prediction for
ATP systems remains scarce. This study consequently develops
a novel hybrid methodology integrating Grey Wolf Optimizer
(GWO)-based parameter optimisation, Time-Varying Filtered
Empirical Mode Decomposition (TVFEMD) for data
decomposition, and Weighted Least Squares Support Vector

Machine (WLSSVM) for predictive modelling. Depending on

the results of the model prediction, the allocation of spare parts
reserves and maintenance resources can be dynamically
optimised. Increasing reserves before the failure rate rises and
rationally allocating when it falls

resources improves

maintenance efficiency and reduces wastage.

2. Related Research

The failure rate prediction is a critical tool for the maintenance
and operation of ATP system in high-speed railways, and
a considerable number of studies have been conducted to
propose related prediction methods, such as Autoregressive
Integrated Moving Average (ARIMA) and Exponential
Smoothing Method (ESM) [12-13]. Yet, the ARIMA model has
significant limitations in dealing with the nonlinear dynamics
and nonstationary features of the ATP system time series of
failure rates due to its inherent assumptions of linearity and
smoothness 14. In addition, although neural networks can
capture the nonlinear features of data, their training process is
susceptible to overfitting [15-18]. In order to overcome these
limitations, time-frequency analysis methods have gradually
gained attention.

Empirical Mode Decomposition (EMD) operates as a fully

adaptive signal processing technique that analyzes complex
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waveforms by separating them into Intrinsic Mode Functions
(IMFs) and residual elements through an empirical, data-driven
approach [19-23].Although EMD has achieved significant
application results in many fields, it still has some problems [24-
29]. In order to improve the limitations of traditional EMD, Li
et al. proposed a time-varying filter empirical modal
decomposition (TVFEMD) method. Through adaptive time-
varying filtering, this method achieves concurrent modal
aliasing reduction and significant improvements in both
decomposition accuracy and frequency band separation
effectiveness 30. Ma et al. used TVFEMD method to
decompose millimetre-wave radar signals and successfully
extracted heart rate and respiratory signals by reconstructing
IMF components 31. Zang Xu et al. combined TVFEMD with
Sparrow Search Algorithm (SSA) optimised Least Squares
Support Vector Machine (LSSVM) in the diagnosis of latent
mechanical faults inside the transformer, which significantly
improved the diagnostic accuracy 32. Zhiyu Deng et al.
proposed a time-varying filter empirical modal quadratic
decomposition (TVFEMDII)-improved Deep Hybrid Kernel
Extreme Learning Machine (DHKELM) hybrid model, which
effectively extracts the implicit information in the complex
components through the quadratic decomposition strategy 33.
TAN et al. Processing Input Stacking Integration Algorithm
Parameters via Time-Varying Empirical Modal Decomposition
to Effectively Improve Machine Learning Models' Sensitivity to
Parameters 34. Yufeng Yin establishes a combined TVFEMD-
WOA-LSTM-ARMAX prediction model, which uses optimised
LSTM and Autoregressive Moving Average with Extra Input
(ARMAX) to predict the high and low frequency subsequences
decomposed by TVFEMD, respectively,with improved
prediction results Yufeng Yin establishes a combined
TVFEMD-WOA-LSTM-ARMAX prediction model, and uses
the optimised LSTM and Autoregressive Moving Average with
Extra Input (ARMAX) to improve the prediction effect of the
high and low frequency subsequences respectively decomposed
by TVFEMD 35.

The TVFEMD method, while capable of decomposing
failure rate time series into IMFs, necessitates coupling with
prediction models for comprehensive component analysis..
Support Vector Machine (SVM) shows advantages in the field

of fault prediction by virtue of its small-sample processing

capability and maximum interval regression characteristics [36-
37]. However, the traditional SVM has some restrictions in
addressing nonlinear problems. To solve this problem, LSSVM
reduces the computational complexity and improves the training
efficiency by introducing a quadratic cost function, but there is
still the problem of information loss [38-43]. Suykens et al.
proposed WLSSVM, which has achieved good application
results in areas such as fault prediction and diagnosis due to its
capability of excellent small sample processing 44. In recent
years, more and more studies have begun to combine WLSSVM
with other methods to construct more accurate hybrid prediction
models. R. Wang et al. combined the integrated empirical modal
decomposition Integrated Complete Ensemble Empirical Mode
Decom-position with Adaptive Noise (ICEEMDAN) with
WLSSVM to predict the decomposed photovoltaic power using
the improved WLSSVM algorithm of the slime mould
algorithm 45. In order to further optimise the prediction
performance of WLSSVM, Chen Kun et al. improved the Grey
Wolf Optimisation (GWO) algorithm, which was used for the
optimisation of penalty coefficients and kernel parameters of
the WLSSVM model 46. Lei Xiaoxing used the multivariate
universe algorithm to optimise the regularisation parameters
and kernel function parameters of the WLSSVM, and verified
that the improved WLSSVM was better than the LSSVM in
predicting small samples 47.

This paper combines the advantages of TVFEMD and
WLSSVM, and introduces GWO to optimise the parameter
selection problem of TVFEMD, and proposes the GWO-
TVFEMD-WLSSVM prediction model, and discusses the

effectiveness and applicability of the model.
3. Methodology
3.1. Optimisation parameters of the grey wolf algorithm

GWO simulates the social hierarchy and hunting mechanism of
wolf packs and achieves parameter optimisation through global
exploration and local exploitation. Let each grey wolf individual
represent a set of candidate [£,n] parameter combinations.

The grey wolf algorithm's population is divided into four
classes, a, b, ¢ and d, where a, b and ¢ wolves simulate the
process of tracking, encircling and striking prey by wolves, and
d wolves are guided by these three to perform search and update

operations 48.
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The GWO algorithm models three main behaviors:

The wolf encirclement process:

D=|C-X,t) - X (1)
Xt+1)=X,t)—4-D )
A(t) = 2d(t) - 7, — d(t) 3)
C =27, 4)
a(t) = @z Mgy (5)

D denotes the distance from other grey wolves to the leader
grey wolf, )?p(t) is the position of d-wolf in the current pack,
X (t + 1) is the updated position of d-wolf, t is the current
number of iterations, and A and C are the coefficient vectors.d
is the convergence factor,which decreases linearly from a,,,, to
Qmin With the number of iterations, T is the maximum number
of iterations, and #; and 7, are random vectors between [0,1].

The hunting process:

—

Da |61'X)a_)_()(t)|

Dy = |C, - Xy — X(0)| (6)
D-)c = |E3 ')?c _)?(t)|

X,=X,—A,-D,

X,=X,—-4,-D, @)
)?3 = -)c _l‘f3 'ﬁc

R(t+ 1) = Ftfatks ®)

3
where )?a, )?b and )?C are the positions of wolves a, b and c,
respectively, Ba, Bb and 5C are the distances between wolves

a, b and ¢ and wolf d, respectively, and X;, )?2 and X; are the
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lengths and directions of the steps taken by grey wolf d towards
wolves a, b and c, respectively.

The attack process is mainly affected by A, and the size of
|ff | determines the attack strategy of the grey wolves. When
|ff | > 1, the rest of the grey wolves will move away from the
leader grey wolf and expand the search range; when |ff | <1,
the pack will gradually shrink to encircle the prey and gradually
approach the optimal solution.

GWO assumes that the optimal individuals in the population
(i.e., a, b, and c) adequately reflect the high-quality solutions in
the search space, and uses these three to guide the updating
direction of the other individuals so as to achieve the global
optimum or near-optimum. During the iteration process, GWO
controls the search breadth and accuracy through random
coefficients to reduce the risk of falling into the local optimum.

While the Grey Wolf Optimizer (GWO) is originally
inspired by the social hierarchy and collaborative hunting
strategies of grey wolves in nature, its application in this study
is purely algorithmic rather than biological. There is no direct
physical or functional correspondence between the hunting
behavior of wolves and ATP. Instead, GWO is employed as
a global optimization tool to tune key hyperparameters within
the TVFEMD decomposition process.

During the iterative optimisation process, the grey wolf
algorithm eventually obtains the combination of parameters that
minimises the envelope entropy by renewing the positions of
the individuals, schematically shown in Fig. 2.

o

~__—» Surround the prey

Chase the prey

Fig. 2. Schematic flow of the grey wolf algorithm.
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In ATP failure rate prediction , the GWO-optimized
parameters significantly enhance the TVFEMD decomposition
quality. Comparative experiments show that this adaptive
optimization improves prediction accuracy and stability over
fixed-parameter variants. Compared with other traditional
optimization algorithms, GWO offers advantages such as
a simple mechanism and fewer decisive parameters. By
simulating the optimal individual mechanism of wolf-pack
hunting behavior with relatively low parameter requirements, it
achieves a balance between global exploration and local
exploitation, outperforming Particle Swarm Optimization (PSO)
and Genetic Algorithm (GA). These characteristics enable
GWO to avoid entrapment in local extrema when addressing
nonlinear and nonstationary time series optimization, thereby
ensuring both decomposition accuracy and computational
efficiency while meeting real-time application requirements.

In the context of ATP failure rate prediction, the underlying
time series data are highly nonlinear, nonstationary, and often
corrupted with noise. To improve the interpretability and
predictive utility of such data, the TVFEMD method is
introduced to extract multiscale features from the original signal.
However, the decomposition performance of TVFEMD is
sensitive to parameter selection, and manual tuning is prone to
suboptimal configurations. The GWO algorithm solves this
challenge by adaptively searching for the optimal parameter pair,
specifically, the filter bandwidth threshold ¢ and the filter order
n, to minimise the envelope entropy and thus improve the
quality of the decomposed components 49.

Envelope entropy is a metric for signal complexity based on
information entropy, indicating the sparsity properties of the
signal 50. In the GWO optimisation process, the envelope
entropy is adopted as the objective feature to find the minimal
local entropy as the optimisation goal, thus guiding the
parameter search process 51. Literature 51 has proposed the use
of envelope of entropy to measure the decomposition
effectiveness of an algorithm, and the envelope entropy H can
be expressed as:

H=-%L PlogP )

N is the aggregate amount of IMFs obtained by
disaggregation and P; is the normalised energy of the i-th

component of the signal, defined as:

Ej

Pi = Z}V— E; (10)

E; denotes the energy of the i-th component of the

signal,which is calculated as:
t
E; = ft21|1MFi(t)|2dt (11)

IMF;(t) denotes the i-th eigenmode function, t, and t, are
the time ranges of the signal.

Through the above process, the optimised TVFEMD method
can effectively decompose the failure rate time series into
several IMFs with different time scales and frequency

characteristics.
3.2. Principle of TVFEMD

In this paper, the input data for TVFEMD decomposition refers
to the failure rate time series derived from ATP system operation
logs. This signal captures the temporal evolution of fault
frequency within fixed time intervals and serves as the basis for
multiscale decomposition and prediction. The specific
construction and preprocessing procedures for this sequence are
detailed in Section 4.1.

TVFEMD optimises the signal decomposition process by
constructing a time-varying filter (TVF) through a B-spline
approximation to obtain better noise immunity and mode

separation 52. The flowchart is shown in Fig. 3.

Input failure rate time series

[
v

Calculate the instantaneous amplitude and instantaneous phase.
¥
Interpolate to compute local mean

¥

Instantaneous v

mean, Realign the cut-off frequency
instantaneous .
envelope, T 1.7 2 Reconstruct the signal

¥

>

stopping criterion

v

v Y
IMFs
¥

Fig. 3. Flowchart of TVFEMD.
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The main steps in TVFEMD are:

1) Calculate the local cut-off frequency

The Hilbert transform of an N-component signalX (t) yields
its analytic signal Z(t) , Z(t) which can be expressed as
a combination of two signals as:

Z(t) =X(t) +j-HX()) = A(t)e/?1® = q,(t)e/*1® +

a,(t)e/92(® (12)
where H(X(t)) is the Hilbert transform of X(t), A(t) denotes the
instantaneous amplitude, and ¢ (t) denotes the instantaneous
phase. a; and a, are the amplitudes of the first and second
components respectively, and ¢, (t) and @, (t) are the phases of
the first and second components respectively.

Specifically, the instantaneous amplitude A(t) reflects the
energy magnitude or envelope strength of the signal at a given
moment in time, defined as:

A = X2 + HX (1)) (13)

The instantaneous phase @(t) then denotes the phase

evolution at that point, which is used to further calculate the

instantaneous frequency, defined as:

H(X(t
o(t) = arctan(%) (14)

When N = 2, the instantancous amplitude and instantaneous
phase of X(t) can be expressed as:
AX(t) = af(t) + af(t) + 2a,()ay (t) cos[p (t) — @2 (8)] (15)

1

9'(0) = 55 (@1 O@O) + ai(Day ()cos[e (1) — 92O
+05(8) (@3 () + a, (Daz (Dcos[e (£) — ¢2(O)])
+ 2 @ (O (Osinly (6) = 92 (0)]
~a;()a; ()sin[1(8) — 92 (D)

The TVF separates the similar components within the signal
by means of a local cut-off frequency, which can be
approximated as the bisecting frequency @y (t) of ¢, (t) and
P2(t).

! !
’ _ 91(O)+ea() _ 1m200)-11(0)
s (1) =B = (16)

Solve for the values of a, (t) and a,(t), let:
B1(8) = las(t) — ax(t)] (17)
B2(t) = a1 (t) + ax(t) (18)
B1(t) and B,(t) are obtained by interpolating the local
extrema estimates of A(t). Setting a,(t) = a,(t), the values of
a, (t) and a, (t) can be solved for. Let:
m(t) = p1(®[af (t) — a;(®)ay ()] + @z () [as(t) —
a; (t)a,(t)] (19)

(16)

12(8) = p1(O)[ai (t) + a1 (Daz (O] + p5(O)[a3 (6) +
a; (t)a, (1] (20)
11(t) and 1, (t) can be obtained by interpolating the local
extremes of @1 (t)A2(t). Solving for the values of n,(t) and
n2(t), a,(t) and a,(t), and substituting into Eq. (16) gives the
local cut-off frequency of the signal.
2) B-spline approximate filtering of the input signal
Let f™(t) be the nth order B-spline order and m be the
section sequence step, the signal in this B-spline space is

defined as:
g(t) = T c(OB™(= — k) (21)

Where c(k) is the B-spline coefficient. Given m and n,
determine c(k) such that the approximation error is minimised
and substitute into Eq. (21).

m () = [pm * X]um * by (t) (22)

Constructing the new signal h(t) with a local cut-off
frequency and using the extreme points of h(t) as nodes, a B-
spline approximation filter is used on the input signal X(t),
which results in a filter of m(t).

h(t) = cos[f phs(t) dt] (23)

3) Verify that the remnant signal satisfies the stopping
criterion

The weighted average of instantaneous frequencies (WAIF)

of each component can be defined as:

2 ! 2 !
aZ (Dl (O)+a3 (e (t)
a%(t)+a3(t) (24)

Pavg ® =
According to Loughlin instantaneous bandwidth, the
instantaneous bandwidth is defined as the standard deviation of
the WAIF, then the two-component instantaneous bandwidth

can be expressed as:

2 2
al“(O)+al”(t)
Biougniin(t) = J Zoran T

When Bjpoyugniin(t) is small enough, the signal can be

2 a3 (0} (D-h®)’ 25)
(a3(t)+a3 ()’

considered as an IMF. Define 6(t) to measure the extent to
which Bjgygniin(t) deviates from the WAIF, which is the
stopping criterion. Given a threshold &, the signal is considered
to be IMF when 6(t) < &, otherwise set X(t) = X(t) — m(t),

and repeat the screening process.

0(t) = _Pavg® (26)

BLaughlin(t)
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3.3. WLSSVM forecasts

Literature [53] used the &-SVR model for prediction and
demonstrated that the ATP failure rate time series has volatility
and randomness, and some data points may contain richer fault
characteristics or higher information weights. In order to adapt
to the non-stationarity and local volatility characteristics of ATP
fault rate data, this paper introduces the WLSSVM, and
constructs a sample weighting mechanism on the basis of
LSSVM to optimise the model performance. The objective
function of LSSVM is given in Eq. (28).

Jw,&) = lwli? + 13, &2 (27)

Where y is the penalty coefficient and all training samples share
the same penalty coefficient. WLSSVM introduces a weight
matrix in front of the error term to adjust its influence in the
error term.This feature makes WLSSVM more suitable for
complex time series with strong volatility and non-stationarity
such as the ATP failure rate series.The objective function of

WLSSVM can be expressed as follows:
1
Jw, &) = lIwll? + L3, w? (28)

w is the weight vector. The weight vector w is not defined
in the WLSSVM model by an explicit function, but is obtained
by solving the optimisation problem indirectly by the
Lagrangian dyadic method, which means the set of directional
coefficients in the eigenspace of the kernel function mapped to
the regression function with the largest contribution to the
regression function. &; is the prediction error, W; is the weight
factor of the samples, which is used to adjust the contribution of
each sample in the error term and can be expressed as:

1

- @i=9)? (29)

i

y; is the true value of sample i and P; is the model prediction.

N is the total number of samples. Set i =1,2,...,N , the
constraints are:
yi=wlep(x)+b+¢ (30)
b is the bias term. ¢(x;) is the mapping function that
nonlinearly maps the input sample x; to the high-dimensional
feature space, and y; is the actual output value of the sample. To
remove the constraints, the Lagrange multiplier method is used

to construct the Lagrange function:

1 1
Lw,b, ¢, a) = ;||W||2 + EZ?’:l W;E? —

Y a who(x) +b+§& — il (1)
Where a = [aq, ay,...,ay]T is the Lagrange multiplier.

The Karush-Kuhn-Tucker (KKT) condition for the
optimisation problem 1is obtained by taking the partial
derivatives of each variable w, b, ¢ and a and setting them to
zero. Substituting the KKT condition into the constraints, the
weight vector w can be expressed as a weighted linear
combination of the projections of the training samples in the
feature space.

w =YL, a; up(x) (32)

By eliminating the original variables w, ; and b, the matrix
represents the constraints for all the samples , obtaining the joint
equation.

a=Q+w 1y (33)

0;; =K(x;,x;) is the kernel matrix, K(x;%;)=
qb(x,-)Tqb(xj) is the kernel function, which is used to compute
the similarity between the input samples; W is the weight
diagonal matrix, and W =diag(W,,W,,....Wy) , y=
[V1,V2,...,¥n]T are the target value vectors of the samples.

By solving the system of equations to get a and b

[(1) Q +1;|/-1] [Z] - [2] (34)

The final WLSSVM prediction function can be expressed as
follows.

fG) = EiLiaiK(x,x) +b (35)

K(x,x;) is the kernel function, which represents the
mapping relationship between the input samples and the
training samples.In this paper, we use the RBF kernel function,

which is denoted as:

K(x,x;) = exp (— M) (36)

202

Where o is the nuclear parameter.
3.4. GWO-TVFEMD-WLSSVM model

In this paper, GWO is used to optimise the parameters of
TVFEMD, and then the optimised TVFEMD algorithm is
employed to decimate the failure rate time series to establish the
GWO-TVFEMD-WLSSVM failure rate prediction model, with
the following main steps, and the flowchart is shown in Fig. 4.

1) Input failure rate time series. Preprocess the ATP failure
rate data and classify the training set and test set.

2) Setting initial parameters and initialising grey wolf

populations. Set the relevant parameters of the GWO algorithm
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and the TVFEMD algorithm, and use the parameters of
TVFEMD as the optimisation-seeking target.

3) Perform parameter optimisation search. Fitness values for
each individual grey wolf decomposition result are calculated,
and the optimal parameters are searched iteratively to finally
obtain the optimal TVFEMD parameters.

4) TVFEMD decomposition using optimal parameters. The

time series data of failure rates is subjected to decomposition

via the optimized TVFEMD.

5) A WLSSVM prediction model was built separately for
each component. For each IMF component and residual term,
build a separate WLSSVM model for prediction.

6) Get the prediction results. The predictions of all the sub-
sequences were integrated to obtain the f final estimates of the
failure rate data. The predictive effectiveness of the model was

also estimated using metrics including RMSE, MAE and MAPE.

(a)

Calculate the time

series of failure rate

Update the position ks
of the gray wolf

_Ie Satisfaction of
1 N termination conditions
Y D .L I
= Obtain the optimal parameter
Preprocess the data combination

Use WLSSVM for

Set the optimization range of A
prediction

TVFEMD

Perform time-varying

filtering processing

Initialize the Grey Wolf
Algorithm

Withdrawal of

”\*” Overlay of
Decompose signals with projected
TVFEMD under varying results
pagnéiirconicndiiog Kleet the conditions of the
IMF
Caleulate the fitness of each — End
decomposition result I Y

Parameter optimisation and signal decomposition stages

)

Caleulate the time series of
failure rate

GWO optimises the parameters of

= ] —orl

Use WLSSVM
for prediction

Use WLSSVM
for prediction

Use WLSSVM
for prediction

Use WLSSVM
for prediction

WLSSVM for
prediction

vl vl vn-1 vn

Obtain the
final result

Model forecasting stage
Fig. 4. Flowchart of the GWO-TVFEMD-WLSSVM model.
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While previous studies such as 53 employed chaos-based modeling strategies for ATP failure rate series, assuming the presence of
strong deterministic nonlinear dynamics, our method follows a data-driven decomposition—prediction paradigm. Preliminary nonlinear
analysis on our dataset revealed only weak low-dimensional structure, and no consistent evidence of chaotic behavior. Therefore, no
explicit chaotic dynamics model is constructed in this paper, but these complex time-evolutionary properties provide important
theoretical insights in the model selection process. Given the stochastic, noisy, and nonstationary characteristics of real-world ATP
fault data, the integration of TVFEMD and WLSSVM provides a more flexible and robust modeling alternative without relying on

strict dynamical assumptions.
4. Case study
4.1. data processing

The figures in this article are derived from the ATP system's operating logs. These log texts record information about faults that
occur during the actual operation of the ATP system. Based on the semantic characteristics of the ATP system operation log, ‘failure’
is defined as events that can be captured by the alarm log and have engineering impact, such as communication anomalies, module
failures, hardware fluctuations, and so on, that occur during the operation of the system. To automatically extract and analyse the
operational data of the on-board ATP system, the first step is to process the text. Keywords are extracted from the existing fault case
database to establish

a fault case thesaurus as shown in

Table 1. Thesaurus of some fault cases.

Fault Alarm Statements Clarification Keywords
VDX EBRI port switched to invalid Safety input/output unit (VDX) EBR1 port switched to invalid invalid
VDX EBRI port switched to valid ~ VDX EBRI1 port switched to active valid
BI-H VDX1:IN1 I/O failed It is recommended to refer to the corresponding fault case processing failed
BI-H EBRI1 state wrong BI-H EBRI1 status error wrong

BI-H EBRI1 feedback timeout. EBR1 relay faulty, consider replacing
EBRI1 relay

Abnormalities detected in tests performed by the VDX unit on the FS
output port at 32ms intervals

BI-H EBRI1 feedback timeout feedback timeout

CO018E000C016E03CA001 C018

Regular expressions are used to match the text of running logs and filter the entries containing keywords from the log files. Based
on the existing case base, the same fault is usually accompanied by multiple alarm messages, and the time intervals of these alarm
messages usually do not exceed 10 minutes. Therefore, in this paper, fault alarm statements are classified and organised in 5-minute
and 10-minute intervals.The failure rate is calculated according to Eq. (38), where f and t; are the number of failures and the working

hours in the ith day, respectively.

N .
A =Zizali (37)

- Nt

The sliding window approach combined with the Z-Score criterion is used in this paper to identify outliers, when the absolute value
of the Z-Score at a point exceeds 2, it is considered as an outlier and is replaced with the rolling mean at that location, and the optimal
window size is defined by cross-validation. Model validation employs a conventional 70% training and 30% testing partition,
maintaining rigorous separation between development and evaluation datasets to guarantee unbiased assessment of generalization
characteristics.

This paper adopts a time series-based modelling approach. Different from the traditional reliability theory, which often models
“failure’ as a system state crossing a failure surface in

a multidimensional covariate space (e.g., stress-strength model), the constructed time series of failure rate essentially reflects the
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dynamic evolution of the system state in the time dimension. Although the failure boundaries are not explicitly constructed, the multi-
scale decomposition of the signals by TVFEMD can extract the intrinsic behavioural characteristics of the system under different
degradation modes, thus forming a data-driven equivalent expression of the idea of ‘crossing the failure surface’, which is suitable for

engineering scenarios lacking multi-dimensional physical characterization.
4.2. Data source

To validate the accuracy of the proposed GWO-TVFEMD-WLSSVM model, the operational data of the on-board ATP system of a
road section from December 2021 to July 2022 is selected as a case study, and the number of faults is extracted and calculated. The
failure rate is calculated in terms of days, and two time series of failure rate by date are generated. Each data point in the sequence
represents the failure frequency within a fixed time window (e.g, 5 or 10 minutes), forming
a univariate time series with temporal ordering and nonstationary characteristics.

In order to explore the effect of zero values on prediction, the non-zero sequence after removing zero values was further constructed
so as to obtain two sets of data, the original sequence (251 points) and the non-zero sequence (186 points), which represent the
operational characteristics of the actual system and the changes in the system dynamics during the fault event, respectively, and are
used for comparative analyses. As can be seen from the figure, the failure rate data under the 5-minute window is more volatile and
sparse, especially in the presence of a high number of zeros, and the dynamics of the data change more frequently. This makes the
model need to cope with more complex short-term fluctuations, and thus the prediction results under the S-minute window show greater
volatility. The data under the 10-minute window is time-aggregated, and the effects of noise and zero values are effectively suppressed,
resulting in a smoother prediction curve that shows a more stable trend. To comprehensively characterise the time series dataset, the
descriptive statistical analysis table is employed in this paper to show the overall characteristics of the data, as illustrated in

.By comparing statistics such as maximum, minimum, mean, that there are significant differences between the various data

standard deviation, skewness and kurtosis, it can be observed sets.

Table 2. Table of descriptive statistics analysed for the four datasets.

Max Min Mean Std Skewness Kurtosis
5-minute de-zeroed time series 66.667 0.043 2.684 8.340 5.122 33.147
5-minute time series with zeros 66.667 0 1.422 6.207 7.130 62.416
10-minute de-zeroed time series 20 0.046 0.961 2.449 5.897 41.703
10-minute time series with zeros 20 0 0.505 1.837 8.003 76.425
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Fig. 5. Time series of failure rates for different treatments.

The zero-valued data series show stronger sparsity and imbalance, especially in the 10-minute time granularity, its skewness and
kurtosis reach 8.003 and 76.425, respectively, indicating that most of the time period of the failure rate is zero, and there are a few time
periods with very high outliers. In contrast, after the de-zeroing process, the mean and standard deviation of the data are significantly
improved, and the information density is enhanced, providing a clearer signal representation for data-driven modelling.

Furthermore, the significant differences in skewness, kurtosis and standard deviation of the different datasets in Table 2 provide
theoretical support for the selection of modelling approaches. The highly skewed and heavy-tailed distributions reflect the abrupt and
clustered nature of failure events over time, thereby reinforcing the suitability of TVFEMD for isolating modal components with
distinct temporal-frequency characteristics. In parallel, the increased standard deviation and the presence of extreme values indicate
higher information concentration at certain time points, justifying the incorporation of WLSSVM with a sample-weighting mechanism

to enhance the model's sensitivity to critical instances and improve both predictive accuracy and robustness.
4.3. Determining model parameters and building model predictions

TVFEMD decomposition is used for the time series of this paper. The number of iterations for the grey wolf algorithm is chosen to be
100 and the population size to be 20. To avoid overdecomposition, reconstruction errors are used to identify the optimal numbers of
IMFs. The optimal number of Intrinsic Mode Functions is determined through a reconstruction-based validation approach, where
decomposed IMFs and residual components are combined to reconstruct the original signal, followed by error quantification between
the reconstructed and original signals. The reconstruction errors corresponding to each maximum number of IMFs are shown in

. Setting the optimal number of IMFs as 6. The fault rate time them respectively, and Fig. 6 shows the results of GWO-
series were decomposed based on the TVFEMD method, and TVFEMD decomposition of the four time series datasets.

the WLSSVM model was built for the components to predict

Table 3. Reconstruction errors for the optimal number of IMFs.

Number of IMFs 5-minute de-zeroed 5-minute with zero value 10-minute de-zeroed  10-minute with zero value
5 0.000020 0.000023 0.000009 0.000012
6 0.000020 0.000019 0.000009 0.000012
7 0.000021 0.000023 0.000009 0.000012
8 0.000021 0.000027 0.000010 0.000012
9 0.000023 0.000018 0.000013 0.000012
10 0.000020 0.000025 0.000011 0.000012
15 0.000022 0.000025 0.000012 0.000018
20 0.000024 0.000025 0.000012 0.000018
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Fig. 6. Decomposition results for different time series.

Before prediction, lag features are first created 54. The lag order determination employs both Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC), with an optimization range spanning 1 to 20. When optimal AIC and BIC values indicate

different lag orders, the median value is selected.

presents the component-specific optimal lag orders, which
are subsequently used to generate corresponding lag features for
each decomposed subsequence. These subsequences serve as
labels for the WLSSVM model, while their associated lag
features constitute the model inputs. Through grid search

methodology, optimal combinations of parameters are identified

Table 4. Optimal lag order for each time series component.

for each IMF component, with the regularization parameter C
ranging from 0.1 to 10000 and the kernel function parameter K1
varying between 0.1 and 10. The final prediction results,

AIC/BIC

5-minute time series with zeros

10-minute time series with zeros

5-minute de-zeroed time series

10-minute de-zeroed time series

Optimal AIC Corresponding Order
Optimal BIC Corresponding Order
Optimal AIC Corresponding Order
Optimal BIC Corresponding Order
Optimal AIC Corresponding Order
Optimal BIC Corresponding Order
Optimal AIC Corresponding Order
Optimal BIC Corresponding Order

obtained by aggregating all component predictions, are
visualized in Fig. 7.
IMF1 IMF2 1IMF3 IMF4 IMF5 IMF6 RF

20 16 20 20 20 10 1
15 16 20 17 20 10 1
15 20 19 18 14 10 1
15 20 14 16 12 10 1
16 17 20 18 16 7 1
16 17 20 15 16 7 1
13 18 12 10 6 5 1
13 13 11 6 6 5 1
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Fig. 7. Prediction results for different time series.

4.4. Assessment of indicators

In this paper, MAE, RMSE and MAPE are chosen to evaluate the model. For each of the four time series, their corresponding errors

are computed and summarized in

Table 5. Prediction errors for the four time series.

5-minute with zeros 10-minute with zeros  5-minute de-zeroed fault 10-minute de-zeroed fault
MAE 0.0097 0.0033 0.0050 0.0120
RMSE 0.0259 0.0094 0.0181 0.0257
MAPE 0.0452 0.0167 0.0130 0.0303
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Fig. 8. Failure rate prediction results.

As can be seen from the table, the 10-minute interval dataset is able to demonstrate a more stable prediction performance with the
smallest overall error when the zero value is included, and although the MAPE is slightly increased by the zero value, it has the smallest
absolute error, suggesting that the prediction is more superior at this time interval. The zero value represents the health state of the
system, which can help the model better capture the dynamics of the system during stable operation and fault occurrence, and avoid
overlooking the fault-free periods. By retaining the zero value, the failure prediction accuracy of the model can be improved.

The final prediction is shown in Fig. 8.

In order to further enhance the interpretability of the prediction results and the credibility of the model, this paper evaluates the
prediction stability of the WLSSVM model by means of the confidence interval estimation method based on residual analysis, and the
confidence band prediction curves of the prediction results are shown in Fig. 9. The prediction residuals of the training set containing
zero-value data at 10-minute intervals are analysed, and based on their distributional characteristics, the normal distribution is used to
fit the error, and the fluctuation range of the error is estimated by the standard deviation. Finally, based on the nature of normal

distribution, this paper constructs the corresponding 95% confidence interval for each prediction point.
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Fig. 9. Confidence band prediction curves for predicted results.
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4.5. Ablation experiment

To further evaluate the role of the Grey Wolf algorithm in TVFEMD parameter selection, this paper predicts the candidate solutions
generated during the real optimisation process as
a comparison set of fixed parameters input into TVFEMD. Fig. 10 shows the MAE, RMSE and MAPE for each parameter combination
[€,n], where [0.210,7] is the optimal solution. Comparative analysis reveals that while suboptimal parameter sets originate from
authentic GWO optimization, their predictive efficacy remains consistently below that of the optimal configuration. This finding

underscores the grey wolf algorithm’s significance in identifying high-performance TVFEMD parameters.
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Fig. 10. Error assessment metrics for the prediction results of each parameter combination.

Table 6 presents the runtime comparison between the TVFEMD and GWO-TVFEMD algorithms. As shown in the table, the training
phase of the GWO-TVFEMD requires approximately 354.6 seconds, which is longer than the fixed-parameter TVFEMD algorithm.
However, during the testing phase, the runtime of the GWO-TVFEMD algorithm increases only slightly compared with TVFEMD,
indicating that the additional computational cost is confined to the training stage and that GWO optimization does not significantly

affect the efficiency of practical applications.

Table 6. Runtime comparison between TVFEMD and GWO-TVFEMD.
Training time(s) Testing time(s) Overall time(s)

TVFEMD 8.622 0.017 8.642
GWO-
TVFEMD 354.554 0.042 355.453

To further validate the predictive ability of the models in order to more comprehensively assess their advantages in failure rate time
series prediction,four benchmark models are selected for comparative experiments and four sets of ablation experiments are designed
to validate them for different key factors. These experiments, all based on time series with 10-minute intervals and containing zero
values, systematically evaluate the effectiveness of the TVFEMD method, the value of parameter optimisation, and the advantages of
the WLSSVM in failure rate prediction.

presents a comparative performance assessment between absence of TVFEMD-based data processing. Fig. 11 displays
the standalone model and ablation variants when applied to boxplots contrasting prediction outcomes from the reference
zero-value-containing 10-minute test sequences. As shown in model and our GTW approach, with GTW denoting the
the table, although the WLSSVM model outperforms other integrated GWO-TVFEMD-WLSSVM methodology. The
single models in terms of predictive performance, its prediction GTW model performs significantly better on the test set
error remains higher than that of the proposed model due to the compared to other commonly used prediction models. The
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TVFEMD-WLSSVM model constructed with fixed parameters

in the figure uses a non-optimal combination randomly selected

Table 7. Indicators for assessing the results of the models.

from the results of multiple GWO runs.

Model MAE RMSE MAPE(%)
SVR 0.3562 0.9468 0.6310
LSTM 0.4443 0.9811 1.1858
ARIMA 0.4558 0.9674 0.7954
XGBoost 0.3682 0.9271 0.9087
10-minute time series with zero values WLSSVM 0.2330 0.8093 0.2671
EMD-WLSSVM 0.0886 0.1006 0.3500
TVFEMD-WLSSVM 0.0286 0.1652 0.0382
GWO-TVFEMD-SVR 0.2525 0.3676 1.1974
GWO-TVFEMD-New signal 0.4165 0.9788 0.6132
GWO-TVFEMD-WLSSVM 0.0028 0.0066 0.0139

[ Crriginal TG T Model [ ARTMA TSTM SVR

XGBoost | WLSSVM

ATP failure rate
(=]

-2 1 1 1

Original GI'W Model ARIMA

LSTM SVR XGBoost WLSSVM

Fig. 11. Comparison of single model prediction results.

Fig. 12 shows the line graphs of the prediction results of each ablation experiment, and according to Fig. 12 and

, it can be seen that the present model performs optimally on
the 10-minute zero-value-containing dataset, and the MAE is
reduced by 0.2497 and 0.4137 compared with that of the GWO-
TVFEMD-SVR model and the GWO-TVFEMD-New signal
model, respectively, which is closer to the real value; The
TVFEMD-WLSSVM model with optimised parameters of the
Grey Wolf algorithm is reduced by 96.03%, and the MAPE is
reduced by 33.61 percentage points compared to the EMD-
WLSSVM model, with greater reliability. The prediction results
of the GWO-TVFEMD-New signal model fluctuate less
numerically and show a tendency to approximate a horizontal
line, which indicates that it fails to adequately capture the
information about the differences between the frequency
components, and verifies the advantages of modality-

independent modelling in dealing with complex non-stationary

data.
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Fig. 12. Plot of prediction results for different combinations of

models on a 10-minute test set containing zero values.
5. Conclusion

1) The TVFEMD decomposition method significantly

improves the accuracy and stability of predictions. Currently

commonly wused single prediction models are often
unsatisfactory in dealing with such non-smooth and non-linear
time series. TVFEMD decomposition of the failure rate time
series transforms the original series into a set of relatively
smooth subsequences. Combining the advantages of signal
decomposition techniques and nonlinear modelling enables
WLSSVM to effectively capture the complex patterns of fault
rate changes and reduce the impact of non-smoothness and
strong nonlinearity on modelling accuracy.

2) The developed GWO-TVFEMD-WLSSVM hybrid
model outperforms traditional prediction methods across
multiple evaluation metrics. Empirical results indicate
consistently high prediction accuracy throughout various
operational periods, demonstrating close alignment between
predicted and observed failure rate patterns. This integrated
approach proves particularly effective for ATP system failure
rate estimation, establishing a reliable methodological
framework for similar reliability engineering applications.

3) The present study's validation is confined to ATP system
failure rate time series, which inherently limits the model's
generalizability across different operational contexts. To
advance model performance, future investigations will integrate
environmental and operational status variables, thereby
building more robust predictive frameworks with superior

accuracy and adaptation capacity.
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Appendix A

Thesaurus of fault cases

Ordinal Fault Alarm Statements Clarification Keywords
number
1 VDX EBRI1 port switched to invalid Safety 1nput/9utput unit (VDX.) EBRI port invalid
switched to ineffective
2 VDX EBRI1 port switched to valid VDX EBRI1 port switched to effective invalid
3 VDX RBR port switched to invalid VDX RBR port switched to ineffective invalid
4 VDX EBF port switched to invalid VDX EBF port switched to ineffective invalid
5 VDX bypass port switched to invalid VDX bypass port switched to ineffective invalid
6 VDX EBRI1 port switched to valid VDX EBRI1 port switched to active valid
7 VDX EBR2 port switched to valid VDX EBR2 port switched to active valid
8 VDX RBR port switched to valid VDX RBR port switched to active valid
9 VDX EBF port switched to valid VDX EBF port switched to active valid
10 VDX bypass port switched to valid VDX bypass port switches to active valid
11 BI-H VDX 1:IN1 IO failed It is recommended to refer to thp corresponding fault failed
case processing
12 BI-H VDX2:IN1 /O failed It is recommended to refer to thp corresponding fault failed
case processing
13 BI-H VDX 1:IN2 1O failed It is recommended to refer to thp corresponding fault failed
case processing
14 BI-H VDX2:IN2 /O failed It is recommended to refer to thp corresponding fault failed
case processing
15 BI-H VDX 1:IN3 /O failed It is recommended to refer to thp corresponding fault failed
case processing
16 BI-H VDX2:IN3 /O failed It is recommended to refer to thp corresponding fault failed
case processing
17 BI-H RBR state wrong BI-H RBR status error wrong
18 BI-H EBRI state wrong BI-H EBRI status error wrong
19 BI-H EBR2 state wrong BI-H EBR?2 status error wrong
20 BI-H BPR state wrong BI-H BPR status error wrong
21 BI-H EBFB state wrong BI-H EBFB status error wrong
22 BI-H RBR feedback timeout BI-H RBR feedback timeout.RB relay fault. timeout
23 BI-H EBRI feedback timeout BI-H EBRI1 feedback timeout.EBR1 relay failure.  timeout
24 BI-H EBR2 feedback timeout BI-H EBR2 feedback timeout. EBR2 relay failure.  timeout
25 BI-H BPR feedback timeout BI-H BPR feedback timeout.BP relay failure. timeout
26 BI-H EBFR feedback timeout BI-H EBFB feedback timeout. EBFB relay failure.  timeout
27 [STM] STM in failure state STM failure failure
28 [STM] STM in DA state failed STM disabled in DA state failed
29 direction control failure Direction control malfunction failure
30 DirCtrlPos err Abnormal status of the driver's seat err
31 Cab status fail Abnormal vehicle status fail
CAB
32 %(EPO]RT_CAB_NOT_STANDSTILL_DETECTED Full shutdown not detected NOT
33 Level changed to L2, orderby=0 Level has been changed to L2, Sort =0 orderby=0
34 Braketest failed in step 11 Brake Test Step 11 Failure failed
35 Wrong feedback. Timeout expires 66523 Feedback timeout wrong
36 Time 64623 BI-H EBFR state wrong BI-H EBFR status error wrong
37 Timeout Lifesign * life-signal abnormality Timeout
38 Brake Test step 0 failed Unable to initiate brake test failed
An exception was detected in the test performed by
39 Cco18 the VDX unit on the FS output port every 32ms. Cco18
Abnormalities detected in tests performed by the
40 co19 VDX unit on the FS output port at 5 second intervals Co19
41 C002 VDX Unit HR2 Port Test Failure C002
42 0028 Inconsistent VDX unit A/B code comparisons 0028
43 CO018E000C016E03CA001 Abnormalities detected in tests performed by the C018
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VDX unit on the FS output port at 32ms intervals

Appendix B
Convergence analysis indicators
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Figure 1. Algorithmic convergence curves for GWO.
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Figure 2. Training loss convergence curves for the WLSSVM on the 5-minute dataset.
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Figure 3. Trend plot of training error for WLSSVM on 5-minute dataset.
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Figure 4. Training loss convergence curves for the WLSSVM on the 10-minute dataset.
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Figure 5. Trend plot of training error for WLSSVM on 10-minute dataset.
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