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Highlights Abstract
= A Physics-Constrained Transfer Learning Deep learning models for fault diagnosis face a trust deficit, struggling
(PCTL) framework is proposed, exploiting with poor generalization under varying operating conditions and 'black-
invariant physical fault patterns to move box' interpretability. Conventional transfer learning, reliant on statistical
beyond purely statistical ~alignment for alignment, fails to guarantee physical plausibility. We propose a Physics-
trustworthy diagnosis. Constrained Transfer Learning (PCTL) framework based on the core

= A 'diagnosis-verification-feedback' loop uses a
rule-based physics validator to supervise a
confidence predictor, deeply coupling model
confidence with the physical plausibility of its
decisions.

= The framework achieves superior cross-

insight that while raw signals vary, intrinsic physical fault patterns—Ilike
harmonic structures in the envelope spectrum—remain domain-
invariant. Its key innovation is a 'diagnosis-verification-feedback' loop.
In this loop, an external, rule-based module quantifies the physical
consistency of a diagnosis; this score, in turn, is used as a supervisory

domain accuracy and quantifiable signal to guide a confidence predictor, deeply coupling the model's self-
trustworthiness, enabling the model to reliably assessed confidence with physical plausibility. Our framework not only
self-assess and signal physically implausible achieves superior cross-domain diagnostic accuracy but also embeds
diagnoses with low confidence. reliable self-assessment, demonstrated by a strong correlation between

its predicted confidence and the underlying physical evidence. This
research offers a new paradigm for developing intelligent diagnostic
systems that are accurate, physically interpretable, and trustworthy.
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1. Introduction

1.1. Industrial Background and Research Motivation recent years, data-driven methods, particularly Deep Learning

(DL), have achieved significant success in fault diagnosis due

With the decpening of Industry 4.0 and the comprehensive to their powerful non-linear feature learning capabilities.

advancement of intelligent manufacturing, Prognostics and . .. . .
& £ £ However, despite achieving high accuracy on specific

Health Management[1] (PHM) has become a core technology datasets, DL models face a fundamental obstacle when deployed

for ensuring the safety, reliability, and efficient operation of . . . . . . ..
& ¥ v, p in real industrial environments: a trust deficit. This deficit stems

modern industrial systems. As a critical component of PHM . . .
Y P ’ from two core challenges. First, there is the issue [3]of model

fault  diagnosis — aims  to identify carly[2] ~equipment generalization reliability. The performance of DL models

malfunctions by analyzing sensor data, thereby preventin . . . . ..
y yzing v P £ heavily relies on the distributional consistency between training

catastrophic failures and optimizing maintenance strategies. In . . . . ..
P P & & and test data. Yet, in industrial reality, significant
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[4]discrepancies in data distribution (i.e., "domain shift") can address the core of the trust deficit. Their fundamental

arise due to variations in equipment, operating conditions, or limitation lies in the fact that statistical alignment alone cannot
even sensor types. This severely compromises the reliability of guarantee the physical plausibility of model decisions. A model
diagnostic results when a model trained on one piece of might achieve "correct" classifications by learning spurious
equipment is applied to another. Second, there is the "black- correlations common to both source and target domains but
box" nature of the decision-making process. Most DL models irrelevant to fault physics, rendering its internal reasoning
cannot provide decision-making rationales that align with process fragile and untrustworthy.

human engineers' cognitive logic[5]. In safety-critical domains This leads to a deeper[9] question: How should an ideal
such as aerospace, high-speed rail, and energy, a diagnostic cross-domain diagnostic model construct its decision-making
system [6]that cannot explain "why it made a particular process [10]to not only "know what" (make a diagnosis) but also
judgment" is difficult to adopt and trust. "know why" (based on physical laws), thereby earning the trust

1.2. Existing Methods and Their Limitations of engineers? To answer this question, we conducted [11]an

exploratory analysis.
To enhance model generalization, Transfer Learning (TL) has

been widely applied in cross-domain fault diagnosis tasks[7]. 1.3. Core Insight: From Apparent Discrepancies’ to

. . . 'Physical Commonalities'
Existing methods, such as strategies based on Maximum Mean y

Discrepancy (MMD) or Domain Adversarial Neural Networks We selected two widely recognized public datasets with distinct
(DANN), primarily focus on aligning the statistical distributions characteristics—CWRU (representing steady-state conditions)
[8]of source and target domains in the feature space. While and PU (representing transient conditions)—and compared their
these methods mitigate domain shift to some extent, they do not inner race fault signals, as shown in Figure 1.
Physical Invariance Analysis of Inner Race Faults Across Heterogeneous Datasets
CWRU: (a) Original Time Domain Signal PU: (b) Original Time Domain Signal
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Figure 1. Analysis of Physical Invariance of Inner Race Faults in Heterogeneous Datasets. (a, b) show the raw time-domain signals
from CWRU and PU datasets, respectively, exhibiting distinct morphologies. (c, d) present their corresponding FFT spectra, where
energy distribution and dominant frequency components show no clear correlation. (e, f) display the envelope spectra obtained after
envelope demodulation; both clearly reveal a "fundamental frequency + harmonic" family structure determined by the physical
mechanism of inner race faults (red dashed lines indicate theoretical BPFI harmonic positions), demonstrating a high degree of

pattern consistency.
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As depicted in Figures 1(a) through 1(d), the raw signals
from the two datasets exhibit substantial disparities, both in
their time-domain waveforms and their original Fast Fourier
Transform (FFT) spectra[12]. This stark signal variance visually
underscores the formidable challenge of cross-domain
diagnostics and elucidates why conventional transfer learning
methods, which rely on learning superficial statistical features,
often prove ineffective.

Conversely, a striking and universal [13]physical pattern
emerges when we employ envelope demodulation to probe the
inherent periodicities of the fault impulses. As illustrated in
Figures 1(e) and 1(f), despite drastic differences in signal origin,
morphology, and noise background, the envelope spectra from
both datasets reveal a remarkably consistent physical regularity:
a distinct harmonic family structure[14]. The locations of these
concentrated spectral peaks align precisely with the
theoretical Ball Pass Frequency of the Inner race (BPFI) and its
harmonics, calculated from the specific bearing parameters and
rotational speed of each setup.

This discovery substantiates our core thesis: although raw
vibration signals from heterogeneous equipment are volatile and
equipment-specific, the underlying patterns dictated by the
physical fault mechanism are universal and domain-
invariant[15]. This Physical Pattern Invariance constitutes the
truly reliable "knowledge" that bridges disparate data domains
and serves as the cornerstone for constructing trustworthy

diagnostic models.
1.4. Proposed Method and Key Contributions

The preceding analysis reveals several critical challenges that
currently hinder progress in cross-domain fault diagnosis:

1.Superficial Knowledge Transfer: Prevailing Domain
Adaptation (DA) methods, such as DANN and JDA, primarily
seek to align statistical moments of marginal or joint probability
distributions. This "implicit" alignment offers[16] no guarantee
that the model internalizes the intrinsic physical principles
governing fault behavior, resulting in compromised
generalization performance when confronted with substantial
physical system variations.

2.Absence of Physical Grounding: In the pursuit of high
accuracy, most end-to-end deep learning models overlook the

physical plausibility of their diagnostic conclusions[17].

A model may achieve correct classification by exploiting
spurious statistical correlations, but its decision-making process,
lacking a physical foundation, fails to secure the trust of
engineers.

3.Unquantified Decision Uncertainty: Existing models
typically yield a categorical prediction without a reliable
confidence measure to articulate the diagnosis's credibility. An
ideal model should possess a self-assessment capability,
proactively signaling when its conclusions are physically
implausible.

To surmount these challenges, we introduce the Physics-
Constrained Transfer Learning (PCTL) framework. The central
tenet of PCTL is to transform physical knowledge from an
implicit attribute the model is expected to "discover" into
an explicit, quantifiable constraint integrated directly into
a closed-loop learning and validation process[18]. The PCTL
framework consists of two main components: a physical
knowledge encoding module and a novel physical consistency
verification module. During pre-training, the model learns
domain-invariant physical features via envelope spectrum
prediction and domain-adversarial training[19]. During fine-
tuning, the physical consistency verification module leverages
physical priors of the target equipment to cross-validate the
model's diagnosis against its predicted physical evidence,
yielding a physical consistency score. This score, in turn,
supervises a confidence predictor, compelling the model's self-
assessed confidence to be strongly correlated with the physical
plausibility of its decision.

The primary contributions of this work are threefold:

(1) We propose a novel transfer learning paradigm guided
by physical consistency verification. By introducing an external,
rule-based "physical referee" to supervise and constrain the
learning process, our paradigm transcends the limitations of
traditional methods that rely solely on statistical distribution
alignment[20]. This approach endows the deep model with
physical-level "insight." (2) We design a learning framework
featuring a closed-loop "Diagnose-Validate-Feedback"
mechanism. The PCTL framework, particularly through its
physical consistency verification and confidence learning
mechanisms during fine-tuning, establishes a complete
decision-and-validation loop. This empowers the model not

only to issue diagnoses but also to perform self-assessment of
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their physical reasonableness, thereby markedly enhancing
decision transparency and credibility[21]. (3) We achieve
a simultaneous enhancement of diagnostic performance and
model trustworthiness. Extensive cross-domain experiments on
public datasets demonstrate that the PCTL framework attains
superior diagnostic accuracy while its predicted confidence
exhibits a strong positive correlation with the physical
consistency score. This introduces a novel and effective metric
for quantifying the trustworthiness of intelligent diagnostic
models, which is of paramount importance for advancing the
adoption of Trustworthy Al in safety-critical industrial

applications.
2. Proposed Methodology

To overcome the challenges of reliability and trustworthiness in
transfer-based diagnosis across heterogeneous equipment—

a problem exacerbated by substantial domain shifts—we

propose the Physics-Constrained Transfer Learning
(PCTL) framework. Its core principle is to explicitly and
quantifiably integrate physical prior knowledge of faults into
the model's training and validation via a two-stage learning
process. The first stage, Physics-Guided Domain-Adversarial
Pre-training, is designed to learn a universal, domain-invariant
fault representation from source-domain data that is rich in
physical information. The second stage, Physics-Aware and
Consistency-Constrained Fine-tuning, aims to efficiently adapt
this universal knowledge to the target domain while
simultaneously ensuring the physical plausibility and credibility
of the model's diagnostic decisions through an innovative

closed-loop verification mechanism[22].
2.1. Overall Framework

The overall architecture of the PCTL framework, depicted in

Figure 2, is composed of two sequential stages:
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Figure 2. The overall architecture of the PCTL framework.
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Stage 1: Pre-training. This stage takes source domain data

(Source Data, Dg) and unlabeled target domain data (Target

Data, D,) as input. A Shared Encoder (E) extracts latent features.

The training is driven by three concurrent objectives: (i)
a Physics Predictor (Pppy ), trained via supervised learning,
forces the encoded features to reconstruct the original signal’s
envelope spectrum, thereby capturing underlying physical
patterns; (ii)) a Domain Discriminator ( Dy, ), through
adversarial training with the encoder, promotes the learning of
domain-invariant features; and (iii) a Condition Regressor
(Creg), acting as an auxiliary task, helps to disentangle features
related to operating conditions from those indicative of faults.
Stage 2: Fine-tuning. The weights of the pre-trained Shared
Encoder (E) are transferred and fine-tuned on a new model. This
stage utilizes a small set of labeled target domain data (Labeled
Target Data). The centerpiece of this stage, beyond a final
Classifier (C), is a Physics Consistency Verification Loop. This
loop incorporates an external Physics Validator and
a Confidence Predictor (Conf). Upon a diagnosis, the Physics
Validator evaluates the consistency between the model’s
conclusion and the predicted physical evidence, generating
a physical consistency score, Sphys. This score then serves as
the supervisory signal[23] to optimize the Confidence Predictor,
compelling a strong alignment between the model’s confidence

and the underlying physical principles.

2.2. Stage 1: Physics-Guided Domain-Adversarial Pre-

training

The objective of the pre-training stage is to learn a transferable
feature representation from source-domain data that
encapsulates universal physical principles.

Vibration signals typically comprise both non-stationary
impulses caused by faults and periodic components generated
by machine rotation. To account for this, we design a hybrid
Shared Encoder (E). The encoder consists of a one-dimensional
residual network (ResNetlD) and a bidirectional long short-
term memory network (Bi-LSTM), followed by an attention
mechanism. Specifically, an input signal x is first fed into the
ResNet1D to extract its deep local structural features, f.,, =
ResNet1D(x). Concurrently, the raw signal x is processed by
the Bi-LSTM to capture its long-range temporal
dependencies[24], fisem = Bi-LSTM(x). Finally, both feature

vectors are concatenated and passed through an attention
module, which adaptively fuses them to produce the final
feature representation:

z = Attention(concat(fum, fistm) ) (D

To explicitly embed physical information about the fault into
the feature representation z, we introduce a Physics Predictor
(Pphy), implemented as a simple multi-layer perceptron (MLP).
Its task is to reconstruct the envelope spectrum senv of the
original signal x from the feature z. The envelope spectrum,
obtained via the Hilbert transform, effectively reveals the
periodicity of fault impulses and is a crucial piece of physical
evidence in diagnostic analysis. We define the Physics-Guided
Loss (Lphy) as the Mean Squared Error (MSE) between the
predicted envelope spectrum Pphy(z) and the ground-truth
envelope spectrum senv:

Lphy = ||Pphy(E(xs)) — Senv (xs)“% 2)
where x; is a signal from the source domain. This loss function
compels the encoder E to learn features that retain sufficient
physical information to reconstruct the critical fault harmonic
structures.

To eliminate equipment-specific “domain fingerprints” from
the feature z, we employ a domain-adversarial training
mechanism . A Domain Discriminator (Dg,,), also an MLP, is
introduced to distinguish whether a given feature z originates
from the source or target domain. We insert a Gradient Reversal
Layer (GRL) between the encoder E and the discriminator
Dgom - The GRL acts as an identity transformation during
forward propagation but multiplies the gradient from the
discriminator’s loss by a negative constant[25], —a, during
backpropagation.

Consequently, the optimization objective of the
discriminator Dy, is to minimize the domain classification
error, whereas the objective of the encoder E, due to the gradient
reversal, becomes maximizing this error. This adversarial game
ultimately forces the encoder E to generate features that are
indistinguishable to the discriminator Dg,,,, thereby achieving
domain invariance. The domain-adversarial loss, Lgom , 1S
defined as the standard Binary Cross-Entropy (BCE) loss:

Laom = —Ex;~ps[l0g Daom (E(x5))] — Ex,p,[log (1

— Daom (E(x¢)))] 3)
D, and D, represent the data distributions of the source and

target domains, respectively.
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The total objective function for the pre-training stage is
a weighted sum of the aforementioned losses:
Lyretrain = Lpny + AdomLaom + AconaLlcona 4)
where L.,,q is an auxiliary loss from the condition regressor,
and Agp, and Agpnq are hyperparameters that balance the
contribution of each loss term. By minimizing this objective
function, we obtain a pre-trained Shared Encoder E capable of

extracting domain-invariant physical features.

2.3. Stage 2: Physics-Aware and Consistency-Constrained

Fine-tuning

The objective of the fine-tuning stage is twofold: to adapt the
pre-trained universal knowledge to the target domain and to
establish the trustworthiness of the model's decisions.

We load the weights of the Shared Encoder E pre-trained in
Stage 1 and append a new, lightweight Classifier C (an MLP
structure). This classifier is responsible for mapping the target-
domain features z, = E (x;) to the final fault class probability
distribution[26], ¥preq = C(2.). The classification loss, Leqss,
employs a weighted cross-entropy function to address potential
class imbalance in the target domain data.

The core innovation of our framework resides in this stage.
We introduce an external, rule-based Physics Consistency
Verification (PCV) module, which does not participate in
gradient backpropagation but acts as an objective “physical
referee.” For each target-domain sample x,, after the model
yields a predicted class cppeq = argmax(ypred) , the PCV
module executes the verification process detailed in
Algorithm 1.

Algorithm 1 Physics Consistency Verification (PCV)
Module

Input: Predicted class cpqq, predicted envelope spectrum
Sprea = Ppny (E (xt)), target machine parameters (e.g., bearing
geometry, rotation speed f;.).

Output: Physics Consistency Score Sppys.

11 if Cppeq is ‘Normal’ then

2: // For normal state, score is high if no fault frequencies
are prominent.

3: Sphys <« 1 — mean_energy_at_fault_freqs(spred)

4: else

5: // Calculate theoretical characteristic fault frequency for

Cpred-

6: fenar < calculate_theoretical_freq(cpred, fr)

7. // Find energy peaks in S,.eq around fepe, and its
harmonics.

8: harmonic_scores « []

9: for h in {1,2,3} do // Check first 3 harmonics

10: peak energy “«
find _peak_energy_in_window(spred, h- fchar)

11: harmonic_scores.append(peak energy)

12: end for

13:// The score is the average prominence of these harmonic
peaks.

14: S,pys < mean(harmonic_scores)

15: end if

16: return S,p,,s // A score between 0 and 1.

The output of the PCV module, Sy, is a scalar value
between 0 and 1 that quantifies the extent to which the model’s
diagnosis is supported by its own predicted physical evidence.
Ahigher S, indicates a diagnosis that is more consistent with
physical principles.

To equip the model with a self-assessment capability, we
introduce a Confidence Predictor, Ccyy . It takes the encoded
feature z, as input and outputs a single confidence value,
Cmodet = Ceonf(2¢), representing the model’s belief in its own
diagnosis.

Crucially, instead of allowing the model to learn confidence
“out of thin air,” we use the objective physical consistency score
Sphys from the PCV module to supervise it. The consistency-
constraint 10ss, Leonsistency» 15 defined as the Mean Squared
Error between the model’s predicted confidence and the
physical consistency score:

Leonsistency = ||Ceonr(E(xXt)) = Spnys|13 (5)

This loss function establishes a powerful feedback loop: if
the model makes a physically implausible diagnosis (Sppys is
low) but exhibits high confidence (Cjpqe; 18 high), Leonsistency
will be large. The resulting gradient will penalize both the
Confidence Predictor C¢,ps and the Encoder E, forcing them to
adjust. Over time, the model learns to assign high confidence
only when its diagnostic conclusion is strongly supported by
physical evidence.

The total objective function for the fine-tuning stage
integrates the classification task and the trustworthiness

constraint:
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Lfinetune = Lclass + Aconsistencchonsistency (6)

where Aconsistency 15 @ key hyperparameter that balances
classification accuracy and decision credibility. By minimizing
this function on a small amount of labeled target-domain data,
the PCTL framework ultimately yields diagnoses that are both

accurate and physically trustworthy.
3. Experimental Setup

To comprehensively and rigorously evaluate the effectiveness
and superiority of the proposed Physics-Constrained Transfer
Learning (PCTL) framework, we have designed a series of
challenging cross-domain fault diagnosis experiments. This
chapter provides a detailed account of the datasets used, the
construction of cross-domain transfer scenarios, the baseline

methods for performance comparison, the implementation

Table 1. Detailed parameters of the datasets used in this study.

details of our model, and the metrics for comprehensive

evaluation.
3.1. Datasets Description

This study aims to validate the efficacy of the proposed PCTL
framework in cross-heterogeneous-bearing fault diagnosis tasks.
To this end, we primarily utilize two internationally recognized
rolling datasets ~ with  distinct

bearing physical

characteristics[27]: the Case Western Reserve University
(CWRU) dataset and the Paderborn University (PU) dataset.
Furthermore, to investigate the framework's ability to learn and
generalize universal physical laws, we incorporate the gearbox
dataset from the IEEE PHM 2012 Data Challenge for
auxiliary validation. The key parameters of these datasets are

summarized in Table 1.

Datase Bearing Type Fault Type Characteristics
. Lab-based steady-state conditions; faults induced by Electrical
CWRU SKF 6205-2RS 0.007-0.021 in. Discharge Machining (EDM).
PU 6203 Natural wear Full run-to-failure llfecycle; includes natural wear and
accelerated degradation processes.
Industrial competition context; complex operating conditions
PHM 2012 - Natural wear

with multi-stage degradation.

Case Western Reserve University (CWRU) Dataset: As the
most classic benchmark dataset in the field of bearing fault
diagnosis, CWRU (Figure 3) features faults that are artificially
induced using Electrical Discharge Machining (EDM). The

resulting signal characteristics are distinct, making it well-
suited for validating the fundamental performance of algorithms

under steady-state operating conditions.

Dynamometer

Figure 3. The experimental test rig for the Case Western Reserve University (CWRU) dataset. This setup uses EDM to create

artificial bearing faults.
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Paderborn University (PU) Dataset: This dataset (Figure 4) complete failure. Its signal characteristics are more complex and
contains faults generated from natural wear and accelerated life more closely resemble those found in real-world industrial

tests, covering the entire lifecycle from a healthy state to settings.

Rolling BearingTest
Module

Sprocket Wheel

Torque Measuring Load Motor
Motor Shafts

Figure 4. The full run-to-failure bearing test rig for the Paderborn University (PU) dataset, used to collect data from natural

degradation processes.

IEEE PHM 2012 Data Challenge Dataset: This dataset learn fundamental vibration degradation laws—independent of
(Figure 5) originates from a real-world industrial challenge. It specific components—from a complex system containing
is particularly noteworthy that the primary fault objects in this multiple vibration sources (e.g., gear meshing, shaft rotation,
dataset are gearboxes. We include it in our study to construct bearings) and effectively transfer this knowledge for accurate
a highly challenging transfer scenario. This allows us to test bearing diagnosis.

whether our PCTL framework can successfully disentangle and

NI DAQ card 4| Pressure regulator . Cylinder Pressure l Force sensor I Bearing tested Accelerometers

|

soo |
- d
d .
4
= ‘
i :
o

B O
. b
AC Motor Speed sensor Torquemeter | | Coupling Thermocouple

Figure 5. The gearbox fault prognostics test rig for the IEEE PHM 2012 Data Challenge.
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3.2. Cross-Domain Scenarios

To comprehensively evaluate the performance of the PCTL
framework, we have designed a series of cross-domain transfer
tasks of increasing difficulty. In each task, we adhere to the
standard definition of transfer learning: the dataset used for pre-

training is defined as the source domainDy, with its labeled data

Table 2. Configuration of the cross-domain transfer tasks.

denoted as{(x;, y5)}; the dataset used for fine-tuning and testing
is defined as the target domain D, with its data denoted as
{ x; }.experiments primarily focus on bidirectional transfer
between the two core bearing datasets (CWRU and PU) and also
construct cross-component transfer tasks from the gearbox
dataset to the bearing datasets. The specific task configurations

are detailed in Table 2.

Source Domain Target Domain

Task (Pre-training) (Fine-tuning) Core Challenge
T1 CWRU PU Steady-state — Variable conditions; Artificial fault — Natural wear
T2 PU CWRU Variable conditions — Steady-state; Natural wear — Artificial fault
T3 PHM 2012 CWRU Cross-component transfer; Industrial — Lab (steady-state)
T4 PHM 2012 PU Cross-component transfer; Industrial — Lab (variable conditions)

In all tasks, we follow the Unsupervised Domain Adaptation
(UDA) setting for pre-training, where source-domain data is
labeled and target-domain data is unlabeled. During the fine-
tuning stage, we use a small, labeled subset of the target domain

to update the model parameters.
3.3. Baselines for Comparison

To validate the superiority of our proposed PCTL framework,
we select several representative categories of methods for
comparison:

1. No Transfer:

Source Only: A model is trained exclusively on source-
domain data and then directly tested on the target domain. This
baseline measures the magnitude of the domain shift.

Target Only: A model is trained from scratch using only the
small, labeled subset of the target-domain data.

2. Conventional Transfer Learning:

Fine-tuning: A model is pre-trained on the source-domain
data, after which the entire pre-trained encoder is fine-tuned
using the small, labeled subset of the target domain.

DANN (Domain-Adversarial Neural Network): A classic
domain-adversarial network that learns domain-invariant
features through adversarial training with a gradient reversal
layer.

JDA (Joint Distribution Adaptation): A classic method that
aligns both marginal and conditional distributions
simultaneously.

3. State-of-the-Art Contrastive Learning:

TF-C (Time-Frequency Consistency): A state-of-the-art
self-supervised contrastive learning framework for time series.
TF-C pre-trains an encoder by treating the representations of the
time-domain and frequency-domain views of the same signal
sample as a positive pair, and those from different samples as
negative pairs. It uses a contrastive loss (e.g., NT-Xent) to
maximize the agreement between positive pairs. For our
comparison, this pre-trained encoder is then fine-tuned on the
labeled target data, representing a powerful baseline for
representation learning.

4. Ablation Study: To verify the necessity of each innovative
component in the PCTL framework, we design the following
variants:

PCTL w/o Phy: The PCTL framework without the physics-
guided loss (L, ) during the pre-training stage.

PCTL w/o Dom: The PCTL framework without the domain-
adversarial loss (Lg,,,) during the pre-training stage.

PCTL w/o Cons: The PCTL framework without the core
innovation of the fine-tuning stage—the physical consistency

constraint 10ss (Lconsistency)-
3.4. Implementation Details

All experiments were conducted in a unified hardware and
software environment to ensure fair comparison.

Data Preprocessing: Raw vibration signals were segmented
into samples of 1024 data points. We employed overlapping
sampling to augment the number of samples. All samples were

standardized using z-score normalization.
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Network Architecture: The ResNetlD in the Shared
Encoder contains 4 residual blocks and outputs a 128-
dimensional feature vector. The hidden layer dimension of the
Bi-LSTM is 128. All MLPs (used for the predictor,
discriminator, classifier, etc.) consist of 2 fully connected layers
with ReLU activation functions.

Training Parameters:Pre-training Stage: We used the Adam
optimizer with a learning rate of 1e-3 and a batch size of 64 for
100 epochs. The loss weights were set to A1;,,,= 0.1 and A.pnq
=0.5.

Fine-tuning Stage: We used the Adam optimizer with a
smaller learning rate for the encoder (1e-5) and a larger learning
rate for the newly added classifier and confidence predictor (1e-
4). The batch size was 32, and training ran for 50 epochs. The

consistency loss weight was set to Acopsistency = 0.2
3.5. Evaluation Metrics

To comprehensively evaluate our proposed method from the
dual perspectives of diagnostic performance and model
trustworthiness, we employ the following evaluation metrics:

1.Accuracy: This is the standard metric for classification
performance, defined as the ratio of correctly classified samples
to the total number of test samples:

Number of Correct Predictions

Accuracy = (7

Total Number of Test Samples

2.Physics Consistency Score (PCS): This is a novel metric
we propose to quantify the physical trustworthiness of a model.
It is calculated as the average of the physical consistency scores
(Sphys, derived from the PCV module as described in Section
2.3) for all correctly classified samples in the test set. A higher
PCS indicates that the model not only makes correct diagnoses
but also that its conclusions are supported by stronger physical

evidence[28].

1 @
PCS = S 8
[Scorrectl iesc%rrect phys ( )

Where S.orect 18 the set of correctly classified samples.
3.Trustworthiness Distribution

Plots: We plot the Probability Density Functions (PDFs) of the

Analysis:Confidence

confidence scores assigned by the model to both correctly and
incorrectly classified samples. For a trustworthy model, these
two distributions should be clearly separated.

Pearson Correlation Coefficient: We compute the Pearson
correlation coefficient between the model's predicted
confidence, Cmoqer, and its physical consistency score, Sppys.
A high positive correlation coefficient (close to 1) serves as

strong quantitative evidence of the model's trustworthiness.
4. Results and Discussion

This chapter aims to comprehensively evaluate the proposed
PCTL framework through a series of integrated experiments.
We will first present the quantitative performance of PCTL on
multiple cross-domain transfer tasks, comparing it against
existing baseline methods. Subsequently, we will conduct an in-
depth analysis of the contributions of each key component
within the framework via ablation studies. Finally, we will focus
on dissecting the model's performance in terms of physical
consistency and decision trustworthiness to validate the core

advantages of our method.
4.1. Quantitative Performance Comparison

To validate the overall performance of the PCTL framework, we
conducted experiments on the four cross-domain transfer tasks
defined in Table 2. Table 3 presents a detailed comparison of
PCTL against all baseline methods on two key metrics:
diagnostic Accuracy and the Physics Consistency Score (PCS).
All results are reported as the mean + standard deviation of 5

independent trials.

Table 3. Performance comparison of different methods on cross-domain transfer tasks (Mean & Std. Dev.).

Task Method Accuracy (%) PCS
Source Only 354+2.1 0.0617
Target Only 382=+1.5 0.0389

T1: CWRU—PU Fine-tuning 65.1+£0.8 0.1971
DANN 546+ 1.1 0.2198
TF-C 66.3+1.8 0.3168
PCTL(Ours) 99.1+0.5 0.7353
Source Only 412425 0.0992
Target Only 55.9+0.7 0.3184

T2: PU-CWRU Fine-tuning 50.4+1.1 0.2992
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DANN 33.7+11.7 0.2093
TF-C 59.3+2.2 0.2674
PCTL(Ours) 98.8+04 0.7189
Source Only 25.7+3.0 0.0811
Target Only 16.7£3.7 0.1671
T3: PHM—CWRU Fine-tuning 63£1.8 0.4330
DANN 61.3+3.9 0.4844
TF-C 57.3+3.1 0.2136
PCTL(Ours) 99.2+0.3 0.7398
Source Only 289+2.38 0.1221
Target Only 25.33+3.2 0.1079
T4: PHM—PU Fine-tuning 44.18+4.2 0.2697
DANN 49.36+7.0 0.3783
TF-C 58.3%1.3 0.2118
PCTL(Ours) 97.5+0.7 0.5811

To provide a more intuitive visualization of the PCTL

framework's classification performance across tasks, Figure 6

displays its confusion matrices for tasks T1 through T4.

Confusion Matrix Analysis for Cross-Domain Bearing Fault Classification
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Figure 6: Confusion matrices of the PCTL framework on various cross-domain transfer tasks. The subplots correspond to (a) task T4
(PHM—PU), (b) task T1 (CWRU—PU), (c) task T3 (PHM—CWRU), and (d) task T2 (PU—CWRU). In each matrix, the diagonal

elements represent the percentage of correct classifications, while the off-diagonal elements represent misclassifications. High

diagonal values and low off-diagonal values indicate superior classification performance.

Based on the experimental results in Table 3 and Figure 6,

we can draw the following key conclusions:

1.0Overall Superiority of the PCTL Framework: In all four
cross-domain tasks, our proposed PCTL framework achieved

overwhelmingly superior performance on both core metrics,

accuracy and PCS, comprehensively outperforming all baseline
methods. For instance, in task Tl (CWRU—PU), PCTL
achieved an accuracy of 99.1%, surpassing traditional Fine-
tuning (65.1%) and DANN (54.6%) by over 34 and 44

percentage points, respectively. The confusion matrices in
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Figure 6 further confirm that PCTL exhibits extremely high
classification precision across all categories, with minimal
misclassification rates and diagonal elements consistently
approaching 100%. This substantial performance advantage
remained consistent across all tasks, fully demonstrating the
effectiveness and robustness of the PCTL framework.
2.Capability to Handle Extreme Domain Shifts: In the most
challenging cross-component  transfer  tasks (T3:
PHM—CWRU and T4: PHM—PU), the domain gap is starkly
evident. The accuracy of the Source Only model plummets to
25.7% and 28.9%, respectively—nearly equivalent to random
guessing. This indicates fundamental differences in the signal
characteristics between gearboxes and bearings. Nevertheless,
even under these extreme challenges, the PCTL framework still

0f 99.2% (Figure 6(c))
and 97.5% (Figure 6(a)). This result strongly validates our core

achieved remarkable accuracies
thesis: PCTL can penetrate the superficial differences of
components to learn more fundamental, transferable physical
laws that govern degradation.

3.The Deeper Value Revealed by the PCS Metric: As
a metric for the physical plausibility of model decisions, PCS
offers profound insights beyond mere accuracy. We observe that
PCTL not only leads in accuracy but also consistently achieves
the highest PCS. For example, in task T2, the PCS of PCTL
(0.7189) is significantly higher than that of Target Only (0.3184)
and Fine-tuning (0.2992). This demonstrates that the correct
diagnoses made by PCTL are backed by stronger physical
evidence, rendering its decision-making process more reliable.
In contrast, while traditional transfer methods can improve
accuracy to some extent, their limited improvement in PCS

suggests a greater reliance on statistical fitting rather than

genuine physical insight.

4.Analysis of the DANN "Failure" Phenomenon: An
intriguing phenomenon occurred in task T2 (PU—CWRU),
where the accuracy of the classic DANN method was merely
33.7%, even lower than the non-transfer Source Only baseline
(41.2%), exhibiting clear "negative transfer." We surmise this is
because the signal characteristics of the PU dataset are more
complex and varied than those of CWRU. When DANN
forcibly aligns the overall distributions of the two domains, it
may erroneously transfer unique but fault-irrelevant complex
patterns from PU to the target domain, thereby interfering with
the diagnosis of simpler faults in CWRU. This very observation
highlights the advantage of PCTL: instead of blindly aligning
all features, PCTL selectively learns and transfers features with
universal  physical meaning through physics-guided
mechanisms, thus effectively mitigating the risk of negative

transfer.
4.2. Ablation Study

To dissect the PCTL framework and verify the indispensability
of its key internal components, we conducted a series of
rigorous ablation studies. On the most challenging cross-
component transfer task, T3 (PHM—CWRU), we compared the
full PCTL framework against three of its variants: 1) w/o Phy:
removing the physics-guided loss Ly, during pre-training; 2)
w/o Dom: removing the domain-adversarial loss L., during
pre-training; and 3) w/o Cons: removing the physical
consistency constraint Lcopsistency during fine-tuning. The
results are presented in Figure 7, which also includes two

baseline methods (Fine-tuning, DANN) for reference.

Ablation Study Results on Task T3 (PHM-CWRU)

{a) Diagnostic Accuracy

100 99:2%

80 75.5%
I

54.3%
45.3% i

Accuracy (%)

PCTL  wjoPhy wj/oDom wjo Cons Fine-tuning DANN

(Full)

63.0% 61.3%

Physics Consistency Score (PCS)

{b) Physical Consistency
0.9
= Complete PCTL
= Ablation Study
m Baseline Methods.

0.8 0.740

e
3

o
o

0.484
0.452

e
o

0.433

]
N

0.283 0.316

c
g

—
o

e o
29

e
o

PCTL  wjoPhy wj/oDom wj/o Cons Fine-tuning DANN
(Fully

Figure 7: Ablation study results on task T3 (PHM—CWRU). (a) Comparison of diagnostic accuracy among different models. (b)

Comparison of the Physics Consistency Score (PCS) among different models. The red bars represent the complete PCTL model,

orange bars represent its ablated variants, and gray bars represent the baseline methods.
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An in-depth analysis of Figure 7 leads to the following
conclusions:

1.Physics Guidance is the Cornerstone of Knowledge
Transfer.

Observing the w/o Phy variant, the removal of the physics-
guided loss causes the model's accuracy to plummet from 99.2%
to 75.5%, while the PCS also drops sharply from 0.740 to 0.452.
This clearly demonstrates that compelling the model to predict
the envelope spectrum during pre-training is the fundamental
reason for its ability to capture transferable physical patterns.
Without this explicit physical guidance, the model tends to learn
superficial, equipment-specific features from the source domain,
leading to a significant degradation in the effectiveness of
knowledge transfer when confronted with a vast domain gap.

2.Domain Adaptation is Key to Ensuring Generalization.

For the w/o Dom variant, removing the domain-adversarial
module results in a catastrophic performance collapse, with its
accuracy (45.8%) and PCS (0.283) falling far below those of the
simple Fine-tuning method (63.0%, 0.433). This aligns with our
expectations, as domain adaptation is the core mechanism for
bridging the distribution gap between the source and target
domains and ensuring the model's generalization capability.
This result powerfully demonstrates that physics guidance and
domain adaptation are complementary and indispensable within
the PCTL framework: the former ensures the model learns the
"right knowledge" (physical laws), while the latter ensures this
knowledge can be "correctly applied" (generalized across
domains) to new equipment.

3.Consistency Constraint is the "Final Mile" to Model
Trustworthiness.

The results from the w/o Cons variant offer the most
profound insight of this study. When the physical consistency
constraintL yysistency 1S removed, the model's accuracy drops
significantly from 99.2% to 54.3%. However, the change in its
PCS is even more revealing: it plummets from 0.740 to 0.316, a
score even lower than that of Fine-tuning (0.433) and DANN
(0.484).

This phenomenon unveils the core value ofL¢onsistency: it is
not merely an auxiliary tool for improving accuracy but rather
a "calibrator" that enforces alignment between the model's
decisions and physical principles. Without this constraint, the

model, in its unilateral pursuit of optimizing the classification

boundary during fine-tuning, may learn physically implausible
shortcuts, leading to a large number of diagnoses that are
"coincidentally correct” but "physically wrong." The role
ofLonsistency 18 precisely to sever this path to "high-accuracy
pseudo-intelligence" through a "diagnose-validate-feedback"
loop, guiding the model toward a truly "physically trustworthy"
decision-making paradigm.

In summary, the ablation study systematically validates the
rationale and necessity of each designed component within the
PCTL framework. Physics guidance, domain adaptation, and
the consistency constraint form an organic whole, working in
synergy to achieve a simultaneous improvement in the model's

diagnostic performance and trustworthiness.
4.3. Analysis of Physical Consistency and Trustworthiness

This section delves into the performance of the PCTL
framework in enhancing model trustworthiness, which is a core
highlight of this paper. We will systematically demonstrate how
the PCTL framework achieves physically interpretable and
highly credible decisions through both qualitative case-study
visualizations and quantitative evaluations of macroscopic

performance.

4.3.1. Case Study: Visualizing the Decision-Making

Process

To intuitively illustrate how the PCTL model makes physically
trustworthy decisions, we constructed two typical simulated
samples based on the physical characteristics of task T3
(PHM—CWRU) for a case study, as shown in Figure 8. Using
simulated samples allows us to eliminate extraneous noise from
real signals, thereby revealing the core logic of the model's
decision-making more clearly.

Case (a) - Correct and Confident Diagnosis: In this
idealized inner-race fault case, the model assigns a high
confidence score of 0.98. Observing its predicted envelope
spectrum (the physical evidence), we can clearly see significant
energy peaks at the theoretical BPFI frequency (162 Hz, which
is highly consistent with the theoretical value of 162.18 Hz for
the CWRU dataset under 1797 RPM) and its second and third
harmonics. This indicates that the model's diagnostic conclusion
is highly consistent with the physical evidence it provides, and
its high confidence is built upon a solid physical foundation.

Case (b) - Incorrect but '"Honest" Diagnosis: In this
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challenging case with ambiguous features, the model
misclassifies the sample as a "Ball Fault" but provides an
extremely low confidence score of only 0.35. This is equivalent
to the model "warning" the user: "I cannot confirm the physical
plausibility of this diagnosis." Observing its predicted envelope
spectrum, we find that its energy distribution is chaotic, with no

discernible features at the theoretical BSF frequency. The PCTL

framework, through its PCV module, captures this "mismatch
between evidence and conclusion" and compels the model to
output low confidence. This ability to "remain modest when
making a mistake" is a key characteristic of Trustworthy Al as
it effectively prevents the propagation of erroneous diagnostic

results to decision-makers.

Figure 4. Visualization of PCTL Model Decision Process
{lllustrating the Physical Consistency Validation (PCV) Module)
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Figure 8. Visualization of the PCTL model's decision-making process. (a) An ideal sample correctly diagnosed as an Inner-race Fault

(IF) with high model confidence. Its predicted envelope spectrum clearly shows peaks that are highly consistent with the theoretical

BPFI harmonics. (b) A challenging sample with ambiguous features, misdiagnosed as a Ball Fault (BF) but with very low model

confidence. Its predicted envelope spectrum is chaotic and shows no clear correlation with the theoretical BSF frequency.

4.3.2. Quantitative Evaluation of Trustworthiness

After understanding the model's working mechanism

through typical case studies, we further conduct a quantitative

Figure 5. Trustworthiness Quantification of the PCTL Model
{Validating the deep binding of model confidence and physical plausibility}
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Figure 9: Quantitative analysis of the PCTL model's trustworthiness. (a) A scatter plot of the model's predicted confidence versus the

physical consistency score on the entire test set of task T3, showing a strong positive correlation. (b) The probability density

distributions of confidence scores for correct and incorrect predictions on the same test set, showing a clear separation.
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Strong Correlation between Confidence and Physical
Plausibility: We analyzed the relationship between the model’s
predicted confidence, ¢,,,4¢1, and its physical consistency score,
Spnys- As shown in Figure 9(a), the two exhibit a strong positive
correlation (Pearson correlation coefficient p = 0.83). This
eloquently demonstrates that the confidence of the PCTL model
is no longer blind but is deeply tethered to the physical
plausibility of its decisions. The stronger the physical evidence,
the more confident the model becomes.

Reliable Self-Assessment Capability: Furthermore, we
plotted the probability density functions of the confidence
scores for both correctly and incorrectly classified samples, as
shown in Figure 9(b). A significant separation between the two
distributions is evident: the confidence scores for correct
predictions are overwhelmingly concentrated above 0.9 (with a
mean of 0.785), whereas those for incorrect predictions are

primarily distributed below 0.5 (with a mean of 0.259). This

distinct separation (Separation ~0.526~0.526) and extremely
low overlap rate (<5%) prove that our model possesses
a reliable self-assessment capability, enabling it to effectively
distinguish between trustworthy and untrustworthy diagnostic

results.
4.4. Feature Visualization and Analysis

To gain a deeper understanding of why the PCTL framework
succeeds in various complex cross-domain scenarios, we
utilized the t-SNE dimensionality reduction technique to
visualize the high-dimensional features learned by the model in
the target domains of our four core transfer tasks. These
visualizations not only intuitively demonstrate the model's
classification capability but also reveal the intrinsic structure
and quality of the learned feature representations. All

visualization results are consolidated in Figure 10.
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Figure 10. t-SNE visualization of the target-domain features learned by the PCTL framework in different cross-domain transfer
tasks. (a) Task T1 (CWRU—PU); (b) Task T2 (PU—-CWRU); (c) Task T3 (PHM—CWRU); (d) Task T4 (PHM—PU). The clear

clustering structures and inter-class distances indicate that the model has learned high-quality, discriminative feature representations,

especially in the cross-component tasks, validating its ability to learn physical invariance.

As depicted in Figure 10, the PCTL framework

demonstrates exceptional feature learning capabilities across all
cross-domain transfer tasks.

First, in the typical bearing-to-bearing transfer tasks (T1:

CWRU—PU and T2: PU—-CWRU, corresponding to Figures
10(a) and 10(b)), despite significant differences in operating
conditions and fault morphologies between the source and target

domains, the PCTL framework successfully learns well-
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separated feature clusters for the target-domain data. Samples
within each class exhibit high intra-class compactness, while
maintaining significant inter-class distances. This intuitively
explains its excellent classification performance and proves
PCTL's robustness and bidirectional adaptability in handling
transfer problems between heterogeneous bearing systems.

Furthermore, we analyze the most challenging cross-
component transfer tasks (T3: PHM—CWRU and T4:
PHM—PU, corresponding to Figures 10(c) and 10(d)). In the
face of the immense domain gap introduced by differences in
component type, physical structure, and operating mechanism,
the PCTL framework still manages to learn high-quality feature
representations for the target-domain bearing faults, with fault
samples of different categories forming distinct and identifiable
clusters. This result provides powerful evidence for our core
thesis—that the model learns "physical invariance" rather
than "component-specific features." It indicates that the PCTL
framework is capable of penetrating the superficial layer of
signals to disentangle and extract universal degradation
principles—such as impacts, modulations, and harmonics—that
are independent of the specific mechanical component (e.g.,
a complex gearbox), thereby achieving generalization and
successful transfer across different mechanical systems.

In conclusion, the t-SNE visualization results provide
compelling evidence for the core advantage of the PCTL
framework: the features it learns are universal and rich in
physical information, enabling it to effectively tackle complex
domain shifts and cross-component challenges, thus achieving

both superior diagnostic performance and trustworthiness.
5. Conclusion

This paper addresses the "trust deficit" prevalent in existing
deep learning methods for fault diagnosis on heterogeneous
equipment, a problem characterized by weak generalization and
opaque decision-making processes. We posit that the root of this
issue lies in the tendency of conventional models to learn
equipment-specific, superficial statistical features, while
neglecting the intrinsic, invariant patterns dictated by the
underlying physical fault mechanisms. Based on this core
insight, we have designed and implemented a novel transfer
learning framework guided by physical consistency verification,

named PCTL.

The core innovation of the PCTL framework is that it no
longer passively expects the model to spontaneously grasp
physical principles. Instead, it explicitly and quantifiably
integrates physical prior knowledge into a closed-loop training
and validation process via two stages. In the pre-training
stage[29], through physics guidance and domain-adversarial
learning, the model is incentivized to encode a universal,
domain-invariant feature representation rich in physical
information. In the fine-tuning stage, an innovative "diagnose-
validate-feedback" mechanism is introduced: an external, rule-
based Physics Consistency Verification (PCV) module assesses
the physical plausibility of the model's diagnosis, and its
quantified score is used to supervise the learning of the model's
confidence. This design deeply binds the model's confidence to
the physical reasonableness of its decisions, fundamentally
enhancing its trustworthiness.

We conducted a comprehensive validation of the PCTL
framework on multiple challenging cross-domain transfer
tasks[30], spanning different operating conditions, fault types,
and even different mechanical components (bearings and
gearboxes). The experimental results powerfully demonstrate
the superiority of our method:

1.Superior Diagnostic Performance: PCTL achieved
state-of-the-art diagnostic accuracy across all cross-domain
tasks, exhibiting potent knowledge transfer and generalization
capabilities, especially in the most challenging cross-
component transfer scenarios.

2.Quantifiable Trustworthiness: More importantly, by
introducing the Physics Consistency Score (PCS) and
correlation analysis, we have, for the first time, quantitatively
evaluated the decision credibility of a transfer learning model.
Experiments show that PCTL's predicted confidence is highly
correlated with its physical consistency, and the model
possesses a reliable self-assessment capability, enabling it to
proactively issue low-confidence warnings when making
physically implausible diagnoses.

In conclusion, this research provides an effective and
physically interpretable new paradigm for tackling the problem
of transfer diagnosis across heterogeneous equipment. It not
only improves diagnostic accuracy but also significantly
enhances the transparency and reliability of the decision-

making process by endowing the model with physical-level
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"insight" and "introspection."

Although the PCTL framework has achieved encouraging
results, there are still avenues for further exploration[31].
Currently, the PCV module relies on known physical parameters
of the equipment (e.g., bearing geometry, rotational speed).
Future work could integrate the online, adaptive estimation of
these parameters

into the learning framework, thereby

achieving stronger "plug-and-play" capabilities for unknown

equipment. Furthermore, extending the framework to more
complex compound fault diagnosis scenarios and exploring its
applicability to other types of machinery (e.g., pumps, engines)
would be research directions of great value. We believe this
study has taken a solid step forward in promoting the deep
application of Trustworthy Al in safety-critical industrial

domains.
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