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Highlights  Abstract  

▪ A Physics-Constrained Transfer Learning 

(PCTL) framework is proposed, exploiting 

invariant physical fault patterns to move 

beyond purely statistical alignment for 

trustworthy diagnosis. 

▪ A 'diagnosis-verification-feedback' loop uses a 

rule-based physics validator to supervise a 

confidence predictor, deeply coupling model 

confidence with the physical plausibility of its 

decisions. 

▪ The framework achieves superior cross-

domain accuracy and quantifiable 

trustworthiness, enabling the model to reliably 

self-assess and signal physically implausible 

diagnoses with low confidence. 

 Deep learning models for fault diagnosis face a trust deficit, struggling 

with poor generalization under varying operating conditions and 'black-

box' interpretability. Conventional transfer learning, reliant on statistical 

alignment, fails to guarantee physical plausibility. We propose a Physics-

Constrained Transfer Learning (PCTL) framework based on the core 

insight that while raw signals vary, intrinsic physical fault patterns—like 

harmonic structures in the envelope spectrum—remain domain-

invariant. Its key innovation is a 'diagnosis-verification-feedback' loop. 

In this loop, an external, rule-based module quantifies the physical 

consistency of a diagnosis; this score, in turn, is used as a supervisory 

signal to guide a confidence predictor, deeply coupling the model's self-

assessed confidence with physical plausibility. Our framework not only 

achieves superior cross-domain diagnostic accuracy but also embeds 

reliable self-assessment, demonstrated by a strong correlation between 

its predicted confidence and the underlying physical evidence. This 

research offers a new paradigm for developing intelligent diagnostic 

systems that are accurate, physically interpretable, and trustworthy. 
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1. Introduction 

1.1. Industrial Background and Research Motivation 

With the deepening of Industry 4.0 and the comprehensive 

advancement of intelligent manufacturing, Prognostics and 

Health Management[1] (PHM) has become a core technology 

for ensuring the safety, reliability, and efficient operation of 

modern industrial systems. As a critical component of PHM, 

fault diagnosis aims to identify early[2] equipment 

malfunctions by analyzing sensor data, thereby preventing 

catastrophic failures and optimizing maintenance strategies. In 

recent years, data-driven methods, particularly Deep Learning 

(DL), have achieved significant success in fault diagnosis due 

to their powerful non-linear feature learning capabilities. 

However, despite achieving high accuracy on specific 

datasets, DL models face a fundamental obstacle when deployed 

in real industrial environments: a trust deficit. This deficit stems 

from two core challenges. First, there is the issue [3]of model 

generalization reliability. The performance of DL models 

heavily relies on the distributional consistency between training 

and test data. Yet, in industrial reality, significant 
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[4]discrepancies in data distribution (i.e., "domain shift") can 

arise due to variations in equipment, operating conditions, or 

even sensor types. This severely compromises the reliability of 

diagnostic results when a model trained on one piece of 

equipment is applied to another. Second, there is the "black-

box" nature of the decision-making process. Most DL models 

cannot provide decision-making rationales that align with 

human engineers' cognitive logic[5]. In safety-critical domains 

such as aerospace, high-speed rail, and energy, a diagnostic 

system [6]that cannot explain "why it made a particular 

judgment" is difficult to adopt and trust. 

1.2. Existing Methods and Their Limitations 

To enhance model generalization, Transfer Learning (TL) has 

been widely applied in cross-domain fault diagnosis tasks[7]. 

Existing methods, such as strategies based on Maximum Mean 

Discrepancy (MMD) or Domain Adversarial Neural Networks 

(DANN), primarily focus on aligning the statistical distributions 

[8]of source and target domains in the feature space. While 

these methods mitigate domain shift to some extent, they do not 

address the core of the trust deficit. Their fundamental 

limitation lies in the fact that statistical alignment alone cannot 

guarantee the physical plausibility of model decisions. A model 

might achieve "correct" classifications by learning spurious 

correlations common to both source and target domains but 

irrelevant to fault physics, rendering its internal reasoning 

process fragile and untrustworthy. 

This leads to a deeper[9] question: How should an ideal 

cross-domain diagnostic model construct its decision-making 

process [10]to not only "know what" (make a diagnosis) but also 

"know why" (based on physical laws), thereby earning the trust 

of engineers? To answer this question, we conducted [11]an 

exploratory analysis. 

1.3. Core Insight: From 'Apparent Discrepancies' to 

'Physical Commonalities' 

We selected two widely recognized public datasets with distinct 

characteristics—CWRU (representing steady-state conditions) 

and PU (representing transient conditions)—and compared their 

inner race fault signals, as shown in Figure 1.

 

Figure 1. Analysis of Physical Invariance of Inner Race Faults in Heterogeneous Datasets. (a, b) show the raw time-domain signals 

from CWRU and PU datasets, respectively, exhibiting distinct morphologies. (c, d) present their corresponding FFT spectra, where 

energy distribution and dominant frequency components show no clear correlation. (e, f) display the envelope spectra obtained after 

envelope demodulation; both clearly reveal a "fundamental frequency + harmonic" family structure determined by the physical 

mechanism of inner race faults (red dashed lines indicate theoretical BPFI harmonic positions), demonstrating a high degree of 

pattern consistency. 
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As depicted in Figures 1(a) through 1(d), the raw signals 

from the two datasets exhibit substantial disparities, both in 

their time-domain waveforms and their original Fast Fourier 

Transform (FFT) spectra[12]. This stark signal variance visually 

underscores the formidable challenge of cross-domain 

diagnostics and elucidates why conventional transfer learning 

methods, which rely on learning superficial statistical features, 

often prove ineffective. 

Conversely, a striking and universal [13]physical pattern 

emerges when we employ envelope demodulation to probe the 

inherent periodicities of the fault impulses. As illustrated in 

Figures 1(e) and 1(f), despite drastic differences in signal origin, 

morphology, and noise background, the envelope spectra from 

both datasets reveal a remarkably consistent physical regularity: 

a distinct harmonic family structure[14]. The locations of these 

concentrated spectral peaks align precisely with the 

theoretical Ball Pass Frequency of the Inner race (BPFI) and its 

harmonics, calculated from the specific bearing parameters and 

rotational speed of each setup. 

This discovery substantiates our core thesis: although raw 

vibration signals from heterogeneous equipment are volatile and 

equipment-specific, the underlying patterns dictated by the 

physical fault mechanism are universal and domain-

invariant[15]. This Physical Pattern Invariance constitutes the 

truly reliable "knowledge" that bridges disparate data domains 

and serves as the cornerstone for constructing trustworthy 

diagnostic models. 

1.4. Proposed Method and Key Contributions 

The preceding analysis reveals several critical challenges that 

currently hinder progress in cross-domain fault diagnosis: 

1.Superficial Knowledge Transfer: Prevailing Domain 

Adaptation (DA) methods, such as DANN and JDA, primarily 

seek to align statistical moments of marginal or joint probability 

distributions. This "implicit" alignment offers[16] no guarantee 

that the model internalizes the intrinsic physical principles 

governing fault behavior, resulting in compromised 

generalization performance when confronted with substantial 

physical system variations. 

2.Absence of Physical Grounding: In the pursuit of high 

accuracy, most end-to-end deep learning models overlook the 

physical plausibility of their diagnostic conclusions[17].  

A model may achieve correct classification by exploiting 

spurious statistical correlations, but its decision-making process, 

lacking a physical foundation, fails to secure the trust of 

engineers. 

3.Unquantified Decision Uncertainty: Existing models 

typically yield a categorical prediction without a reliable 

confidence measure to articulate the diagnosis's credibility. An 

ideal model should possess a self-assessment capability, 

proactively signaling when its conclusions are physically 

implausible. 

To surmount these challenges, we introduce the Physics-

Constrained Transfer Learning (PCTL) framework. The central 

tenet of PCTL is to transform physical knowledge from an 

implicit attribute the model is expected to "discover" into 

an explicit, quantifiable constraint integrated directly into  

a closed-loop learning and validation process[18]. The PCTL 

framework consists of two main components: a physical 

knowledge encoding module and a novel physical consistency 

verification module. During pre-training, the model learns 

domain-invariant physical features via envelope spectrum 

prediction and domain-adversarial training[19]. During fine-

tuning, the physical consistency verification module leverages 

physical priors of the target equipment to cross-validate the 

model's diagnosis against its predicted physical evidence, 

yielding a physical consistency score. This score, in turn, 

supervises a confidence predictor, compelling the model's self-

assessed confidence to be strongly correlated with the physical 

plausibility of its decision. 

The primary contributions of this work are threefold: 

(1) We propose a novel transfer learning paradigm guided 

by physical consistency verification. By introducing an external, 

rule-based "physical referee" to supervise and constrain the 

learning process, our paradigm transcends the limitations of 

traditional methods that rely solely on statistical distribution 

alignment[20]. This approach endows the deep model with 

physical-level "insight." (2) We design a learning framework 

featuring a closed-loop "Diagnose-Validate-Feedback" 

mechanism. The PCTL framework, particularly through its 

physical consistency verification and confidence learning 

mechanisms during fine-tuning, establishes a complete 

decision-and-validation loop. This empowers the model not 

only to issue diagnoses but also to perform self-assessment of 
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their physical reasonableness, thereby markedly enhancing 

decision transparency and credibility[21]. (3) We achieve  

a simultaneous enhancement of diagnostic performance and 

model trustworthiness. Extensive cross-domain experiments on 

public datasets demonstrate that the PCTL framework attains 

superior diagnostic accuracy while its predicted confidence 

exhibits a strong positive correlation with the physical 

consistency score. This introduces a novel and effective metric 

for quantifying the trustworthiness of intelligent diagnostic 

models, which is of paramount importance for advancing the 

adoption of Trustworthy AI in safety-critical industrial 

applications. 

2. Proposed Methodology 

To overcome the challenges of reliability and trustworthiness in 

transfer-based diagnosis across heterogeneous equipment— 

a problem exacerbated by substantial domain shifts—we 

propose the Physics-Constrained Transfer Learning 

(PCTL) framework. Its core principle is to explicitly and 

quantifiably integrate physical prior knowledge of faults into 

the model's training and validation via a two-stage learning 

process. The first stage, Physics-Guided Domain-Adversarial 

Pre-training, is designed to learn a universal, domain-invariant 

fault representation from source-domain data that is rich in 

physical information. The second stage, Physics-Aware and 

Consistency-Constrained Fine-tuning, aims to efficiently adapt 

this universal knowledge to the target domain while 

simultaneously ensuring the physical plausibility and credibility 

of the model's diagnostic decisions through an innovative 

closed-loop verification mechanism[22]. 

2.1. Overall Framework 

The overall architecture of the PCTL framework, depicted in 

Figure 2, is composed of two sequential stages:

 

Figure 2. The overall architecture of the PCTL framework. 
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Stage 1: Pre-training. This stage takes source domain data 

(Source Data, 𝐷𝑠 ) and unlabeled target domain data (Target 

Data, 𝐷𝑡) as input. A Shared Encoder (𝐸) extracts latent features. 

The training is driven by three concurrent objectives: (i)  

a Physics Predictor ( 𝑃𝑝ℎ𝑦  ), trained via supervised learning, 

forces the encoded features to reconstruct the original signal’s 

envelope spectrum, thereby capturing underlying physical 

patterns; (ii) a Domain Discriminator ( 𝐷𝑑𝑜𝑚 ), through 

adversarial training with the encoder, promotes the learning of 

domain-invariant features; and (iii) a Condition Regressor 

(𝐶𝑟𝑒𝑔), acting as an auxiliary task, helps to disentangle features 

related to operating conditions from those indicative of faults. 

Stage 2: Fine-tuning. The weights of the pre-trained Shared 

Encoder (E) are transferred and fine-tuned on a new model. This 

stage utilizes a small set of labeled target domain data (Labeled 

Target Data). The centerpiece of this stage, beyond a final 

Classifier (C), is a Physics Consistency Verification Loop. This 

loop incorporates an external Physics Validator and  

a Confidence Predictor (Conf). Upon a diagnosis, the Physics 

Validator evaluates the consistency between the model’s 

conclusion and the predicted physical evidence, generating  

a physical consistency score, Sphys. This score then serves as 

the supervisory signal[23] to optimize the Confidence Predictor, 

compelling a strong alignment between the model’s confidence 

and the underlying physical principles. 

2.2. Stage 1: Physics-Guided Domain-Adversarial Pre-

training 

The objective of the pre-training stage is to learn a transferable 

feature representation from source-domain data that 

encapsulates universal physical principles. 

Vibration signals typically comprise both non-stationary 

impulses caused by faults and periodic components generated 

by machine rotation. To account for this, we design a hybrid 

Shared Encoder (E). The encoder consists of a one-dimensional 

residual network (ResNet1D) and a bidirectional long short-

term memory network (Bi-LSTM), followed by an attention 

mechanism. Specifically, an input signal 𝑥 is first fed into the 

ResNet1D to extract its deep local structural features, 𝑓𝑐𝑛𝑛 =

ResNet1D(𝑥) . Concurrently, the raw signal 𝑥  is processed by 

the Bi-LSTM to capture its long-range temporal 

dependencies[24], 𝑓𝑙𝑠𝑡𝑚 = Bi-LSTM(𝑥) . Finally, both feature 

vectors are concatenated and passed through an attention 

module, which adaptively fuses them to produce the final 

feature representation: 

 𝑧 = Attention(concat(𝑓cnn, 𝑓lstm))                                      (1) 

To explicitly embed physical information about the fault into 

the feature representation z, we introduce a Physics Predictor 

(Pphy), implemented as a simple multi-layer perceptron (MLP). 

Its task is to reconstruct the envelope spectrum senv of the 

original signal x from the feature z. The envelope spectrum, 

obtained via the Hilbert transform, effectively reveals the 

periodicity of fault impulses and is a crucial piece of physical 

evidence in diagnostic analysis. We define the Physics-Guided 

Loss (Lphy) as the Mean Squared Error (MSE) between the 

predicted envelope spectrum Pphy(z) and the ground-truth 

envelope spectrum senv: 

      𝐿𝑝ℎ𝑦 = ||𝑃𝑝ℎ𝑦(𝐸(𝑥𝑠)) − 𝑠𝑒𝑛𝑣(𝑥𝑠)||2
2                                    (2) 

where 𝑥𝑠 is a signal from the source domain. This loss function 

compels the encoder 𝐸  to learn features that retain sufficient 

physical information to reconstruct the critical fault harmonic 

structures. 

To eliminate equipment-specific “domain fingerprints” from 

the feature 𝑧 , we employ a domain-adversarial training 

mechanism . A Domain Discriminator (𝐷𝑑𝑜𝑚), also an MLP, is 

introduced to distinguish whether a given feature 𝑧 originates 

from the source or target domain. We insert a Gradient Reversal 

Layer (GRL) between the encoder 𝐸  and the discriminator 

𝐷𝑑𝑜𝑚 . The GRL acts as an identity transformation during 

forward propagation but multiplies the gradient from the 

discriminator’s loss by a negative constant[25], −𝛼 , during 

backpropagation. 

Consequently, the optimization objective of the 

discriminator 𝐷𝑑𝑜𝑚  is to minimize the domain classification 

error, whereas the objective of the encoder 𝐸, due to the gradient 

reversal, becomes maximizing this error. This adversarial game 

ultimately forces the encoder 𝐸  to generate features that are 

indistinguishable to the discriminator 𝐷𝑑𝑜𝑚, thereby achieving 

domain invariance. The domain-adversarial loss, 𝐿𝑑𝑜𝑚 , is 

defined as the standard Binary Cross-Entropy (BCE) loss: 

𝐿𝑑𝑜𝑚 = −𝔼𝑥𝑠∼𝐷𝑠
[𝑙𝑜𝑔 𝐷𝑑𝑜𝑚 (𝐸(𝑥𝑠))] − 𝔼𝑥𝑡∼𝐷𝑡

[𝑙𝑜𝑔( 1

− 𝐷𝑑𝑜𝑚(𝐸(𝑥𝑡)))]                                 (3) 

𝐷𝑠 and 𝐷𝑡  represent the data distributions of the source and 

target domains, respectively. 
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The total objective function for the pre-training stage is  

a weighted sum of the aforementioned losses: 

𝐿𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛 = 𝐿𝑝ℎ𝑦 + 𝜆𝑑𝑜𝑚𝐿𝑑𝑜𝑚 + 𝜆𝑐𝑜𝑛𝑑𝐿𝑐𝑜𝑛𝑑                            (4) 

where 𝐿𝑐𝑜𝑛𝑑  is an auxiliary loss from the condition regressor, 

and 𝜆𝑑𝑜𝑚  and 𝜆𝑐𝑜𝑛𝑑  are hyperparameters that balance the 

contribution of each loss term. By minimizing this objective 

function, we obtain a pre-trained Shared Encoder 𝐸 capable of 

extracting domain-invariant physical features. 

2.3. Stage 2: Physics-Aware and Consistency-Constrained 

Fine-tuning 

The objective of the fine-tuning stage is twofold: to adapt the 

pre-trained universal knowledge to the target domain and to 

establish the trustworthiness of the model's decisions. 

We load the weights of the Shared Encoder 𝐸 pre-trained in 

Stage 1 and append a new, lightweight Classifier 𝐶  (an MLP 

structure). This classifier is responsible for mapping the target-

domain features 𝑧𝑡 = 𝐸(𝑥𝑡) to the final fault class probability 

distribution[26], 𝑦𝑝𝑟𝑒𝑑 = 𝐶(𝑧𝑡). The classification loss, 𝐿𝑐𝑙𝑎𝑠𝑠, 

employs a weighted cross-entropy function to address potential 

class imbalance in the target domain data. 

The core innovation of our framework resides in this stage. 

We introduce an external, rule-based Physics Consistency 

Verification (PCV) module, which does not participate in 

gradient backpropagation but acts as an objective “physical 

referee.” For each target-domain sample 𝑥𝑡 , after the model 

yields a predicted class 𝑐𝑝𝑟𝑒𝑑 = argmax(𝑦𝑝𝑟𝑒𝑑) , the PCV 

module executes the verification process detailed in  

Algorithm 1. 

Algorithm 1 Physics Consistency Verification (PCV) 

Module 

Input: Predicted class 𝑐𝑝𝑟𝑒𝑑 , predicted envelope spectrum 

𝑠𝑝𝑟𝑒𝑑 = 𝑃𝑝ℎ𝑦(𝐸(𝑥𝑡)), target machine parameters (e.g., bearing 

geometry, rotation speed 𝑓𝑟). 

Output: Physics Consistency Score 𝑆𝑝ℎ𝑦𝑠. 

1: if 𝑐𝑝𝑟𝑒𝑑 is ‘Normal’ then 

2: // For normal state, score is high if no fault frequencies 

are prominent. 

3: 𝑆𝑝ℎ𝑦𝑠 ← 1 − mean_energy_at_fault_freqs(𝑠𝑝𝑟𝑒𝑑) 

4: else 

5: // Calculate theoretical characteristic fault frequency for 

𝑐𝑝𝑟𝑒𝑑. 

6: 𝑓𝑐ℎ𝑎𝑟 ← calculate_theoretical_freq(𝑐𝑝𝑟𝑒𝑑 , 𝑓𝑟) 

7: // Find energy peaks in 𝑠𝑝𝑟𝑒𝑑  around 𝑓𝑐ℎ𝑎𝑟   and its 

harmonics. 

8: harmonic_scores ← [] 

9: for ℎ in {1,2,3} do // Check first 3 harmonics 

10: peak_energy ←

find_peak_energy_in_window(𝑠𝑝𝑟𝑒𝑑 , ℎ ⋅ 𝑓𝑐ℎ𝑎𝑟) 

11: harmonic_scores.append(peak_energy) 

12: end for 

13: // The score is the average prominence of these harmonic 

peaks. 

14: 𝑆𝑝ℎ𝑦𝑠 ← mean(ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐_𝑠𝑐𝑜𝑟𝑒𝑠) 

15: end if 

16: return 𝑆𝑝ℎ𝑦𝑠 // A score between 0 and 1. 

The output of the PCV module, 𝑆𝑝ℎ𝑦𝑠 , is a scalar value 

between 0 and 1 that quantifies the extent to which the model’s 

diagnosis is supported by its own predicted physical evidence. 

A higher 𝑆𝑝ℎ𝑦𝑠 indicates a diagnosis that is more consistent with 

physical principles. 

To equip the model with a self-assessment capability, we 

introduce a Confidence Predictor, 𝐶𝑐𝑜𝑛𝑓  . It takes the encoded 

feature 𝑧𝑡  as input and outputs a single confidence value, 

𝑐𝑚𝑜𝑑𝑒𝑙 = 𝐶𝑐𝑜𝑛𝑓(𝑧𝑡), representing the model’s belief in its own 

diagnosis. 

Crucially, instead of allowing the model to learn confidence 

“out of thin air,” we use the objective physical consistency score 

𝑆𝑝ℎ𝑦𝑠 from the PCV module to supervise it. The consistency-

constraint loss, 𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  , is defined as the Mean Squared 

Error between the model’s predicted confidence and the 

physical consistency score: 

      𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = ||𝐶𝑐𝑜𝑛𝑓(𝐸(𝑥𝑡)) − 𝑆𝑝ℎ𝑦𝑠||2
2                            (5) 

This loss function establishes a powerful feedback loop: if 

the model makes a physically implausible diagnosis (𝑆𝑝ℎ𝑦𝑠 is 

low) but exhibits high confidence (𝑐𝑚𝑜𝑑𝑒𝑙  is high), 𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  

will be large. The resulting gradient will penalize both the 

Confidence Predictor 𝐶𝑐𝑜𝑛𝑓  and the Encoder 𝐸, forcing them to 

adjust. Over time, the model learns to assign high confidence 

only when its diagnostic conclusion is strongly supported by 

physical evidence. 

The total objective function for the fine-tuning stage 

integrates the classification task and the trustworthiness 

constraint: 
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 𝐿𝑓𝑖𝑛𝑒𝑡𝑢𝑛𝑒 = 𝐿𝑐𝑙𝑎𝑠𝑠 + 𝜆𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦                 (6) 

where 𝜆𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦   is a key hyperparameter that balances 

classification accuracy and decision credibility. By minimizing 

this function on a small amount of labeled target-domain data, 

the PCTL framework ultimately yields diagnoses that are both 

accurate and physically trustworthy. 

3. Experimental Setup 

To comprehensively and rigorously evaluate the effectiveness 

and superiority of the proposed Physics-Constrained Transfer 

Learning (PCTL) framework, we have designed a series of 

challenging cross-domain fault diagnosis experiments. This 

chapter provides a detailed account of the datasets used, the 

construction of cross-domain transfer scenarios, the baseline 

methods for performance comparison, the implementation 

details of our model, and the metrics for comprehensive 

evaluation. 

3.1. Datasets Description 

This study aims to validate the efficacy of the proposed PCTL 

framework in cross-heterogeneous-bearing fault diagnosis tasks. 

To this end, we primarily utilize two internationally recognized 

rolling bearing datasets with distinct physical 

characteristics[27]: the Case Western Reserve University 

(CWRU) dataset and the Paderborn University (PU) dataset. 

Furthermore, to investigate the framework's ability to learn and 

generalize universal physical laws, we incorporate the gearbox 

dataset from the IEEE PHM 2012 Data Challenge for 

auxiliary validation. The key parameters of these datasets are 

summarized in Table 1.

Table 1. Detailed parameters of the datasets used in this study. 

Datase Bearing Type Fault Type Characteristics 

CWRU SKF 6205-2RS 0.007-0.021 in. 
Lab-based steady-state conditions; faults induced by Electrical 

Discharge Machining (EDM). 

PU 6203 Natural wear 
Full run-to-failure lifecycle; includes natural wear and 

accelerated degradation processes. 

PHM 2012 - Natural wear 
Industrial competition context; complex operating conditions 

with multi-stage degradation. 

 

Case Western Reserve University (CWRU) Dataset: As the 

most classic benchmark dataset in the field of bearing fault 

diagnosis, CWRU (Figure 3) features faults that are artificially 

induced using Electrical Discharge Machining (EDM). The 

resulting signal characteristics are distinct, making it well-

suited for validating the fundamental performance of algorithms 

under steady-state operating conditions.

 

Figure 3. The experimental test rig for the Case Western Reserve University (CWRU) dataset. This setup uses EDM to create 

artificial bearing faults. 
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Paderborn University (PU) Dataset: This dataset (Figure 4) 

contains faults generated from natural wear and accelerated life 

tests, covering the entire lifecycle from a healthy state to 

complete failure. Its signal characteristics are more complex and 

more closely resemble those found in real-world industrial 

settings.

 

Figure 4. The full run-to-failure bearing test rig for the Paderborn University (PU) dataset, used to collect data from natural 

degradation processes. 

IEEE PHM 2012 Data Challenge Dataset: This dataset 

(Figure 5) originates from a real-world industrial challenge. It 

is particularly noteworthy that the primary fault objects in this 

dataset are gearboxes. We include it in our study to construct  

a highly challenging transfer scenario. This allows us to test 

whether our PCTL framework can successfully disentangle and 

learn fundamental vibration degradation laws—independent of 

specific components—from a complex system containing 

multiple vibration sources (e.g., gear meshing, shaft rotation, 

bearings) and effectively transfer this knowledge for accurate 

bearing diagnosis.

 

Figure 5. The gearbox fault prognostics test rig for the IEEE PHM 2012 Data Challenge.  
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3.2. Cross-Domain Scenarios 

To comprehensively evaluate the performance of the PCTL 

framework, we have designed a series of cross-domain transfer 

tasks of increasing difficulty. In each task, we adhere to the 

standard definition of transfer learning: the dataset used for pre-

training is defined as the source domain𝐷𝑠, with its labeled data 

denoted as{(𝑥𝑠, 𝑦𝑠)}; the dataset used for fine-tuning and testing 

is defined as the target domain 𝐷𝑡  , with its data denoted as 

{ 𝑥𝑡 ..experiments primarily focus on bidirectional transfer 

between the two core bearing datasets (CWRU and PU) and also 

construct cross-component transfer tasks from the gearbox 

dataset to the bearing datasets. The specific task configurations 

are detailed in Table 2.

Table 2. Configuration of the cross-domain transfer tasks. 

Task 
Source Domain 

(Pre-training) 

Target Domain 

(Fine-tuning) 
Core Challenge 

T1 CWRU PU Steady-state → Variable conditions; Artificial fault → Natural wear 

T2 PU CWRU Variable conditions → Steady-state; Natural wear → Artificial fault 

T3 PHM 2012 CWRU Cross-component transfer; Industrial → Lab (steady-state) 

T4 PHM 2012 PU Cross-component transfer; Industrial → Lab (variable conditions) 

 

In all tasks, we follow the Unsupervised Domain Adaptation 

(UDA) setting for pre-training, where source-domain data is 

labeled and target-domain data is unlabeled. During the fine-

tuning stage, we use a small, labeled subset of the target domain 

to update the model parameters. 

3.3. Baselines for Comparison 

To validate the superiority of our proposed PCTL framework, 

we select several representative categories of methods for 

comparison: 

1. No Transfer: 

Source Only: A model is trained exclusively on source-

domain data and then directly tested on the target domain. This 

baseline measures the magnitude of the domain shift. 

Target Only: A model is trained from scratch using only the 

small, labeled subset of the target-domain data. 

2. Conventional Transfer Learning: 

Fine-tuning: A model is pre-trained on the source-domain 

data, after which the entire pre-trained encoder is fine-tuned 

using the small, labeled subset of the target domain. 

DANN (Domain-Adversarial Neural Network): A classic 

domain-adversarial network that learns domain-invariant 

features through adversarial training with a gradient reversal 

layer. 

JDA (Joint Distribution Adaptation): A classic method that 

aligns both marginal and conditional distributions 

simultaneously. 

3. State-of-the-Art Contrastive Learning: 

TF-C (Time-Frequency Consistency): A state-of-the-art 

self-supervised contrastive learning framework for time series. 

TF-C pre-trains an encoder by treating the representations of the 

time-domain and frequency-domain views of the same signal 

sample as a positive pair, and those from different samples as 

negative pairs. It uses a contrastive loss (e.g., NT-Xent) to 

maximize the agreement between positive pairs. For our 

comparison, this pre-trained encoder is then fine-tuned on the 

labeled target data, representing a powerful baseline for 

representation learning. 

4. Ablation Study: To verify the necessity of each innovative 

component in the PCTL framework, we design the following 

variants: 

PCTL w/o Phy: The PCTL framework without the physics-

guided loss (𝐿𝑝ℎ𝑦) during the pre-training stage. 

 PCTL w/o Dom: The PCTL framework without the domain-

adversarial loss (𝐿𝑑𝑜𝑚) during the pre-training stage.  

PCTL w/o Cons: The PCTL framework without the core 

innovation of the fine-tuning stage—the physical consistency 

constraint loss (𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦). 

3.4. Implementation Details 

All experiments were conducted in a unified hardware and 

software environment to ensure fair comparison. 

Data Preprocessing: Raw vibration signals were segmented 

into samples of 1024 data points. We employed overlapping 

sampling to augment the number of samples. All samples were 

standardized using z-score normalization. 
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Network Architecture: The ResNet1D in the Shared 

Encoder contains 4 residual blocks and outputs a 128-

dimensional feature vector. The hidden layer dimension of the 

Bi-LSTM is 128. All MLPs (used for the predictor, 

discriminator, classifier, etc.) consist of 2 fully connected layers 

with ReLU activation functions. 

Training Parameters:Pre-training Stage: We used the Adam 

optimizer with a learning rate of 1e-3 and a batch size of 64 for 

100 epochs. The loss weights were set to 𝜆𝑑𝑜𝑚= 0.1 and 𝜆𝑐𝑜𝑛𝑑 

= 0.5. 

Fine-tuning Stage: We used the Adam optimizer with a 

smaller learning rate for the encoder (1e-5) and a larger learning 

rate for the newly added classifier and confidence predictor (1e-

4). The batch size was 32, and training ran for 50 epochs. The 

consistency loss weight was set to 𝜆𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 0.2. 

3.5. Evaluation Metrics 

To comprehensively evaluate our proposed method from the 

dual perspectives of diagnostic performance and model 

trustworthiness, we employ the following evaluation metrics: 

1.Accuracy: This is the standard metric for classification 

performance, defined as the ratio of correctly classified samples 

to the total number of test samples: 

      Accuracy =
Number of Correct Predictions

Total Number of Test Samples
                    (7) 

2.Physics Consistency Score (PCS): This is a novel metric 

we propose to quantify the physical trustworthiness of a model. 

It is calculated as the average of the physical consistency scores 

(𝑆𝑝ℎ𝑦𝑠, derived from the PCV module as described in Section 

2.3) for all correctly classified samples in the test set. A higher 

PCS indicates that the model not only makes correct diagnoses 

but also that its conclusions are supported by stronger physical 

evidence[28]. 

 𝑃𝐶𝑆 =
1

|𝑆correct|
∑

𝑖∈𝑆correct

𝑆phys
(𝑖)

                                                     (8) 

Where 𝑆correct is the set of correctly classified samples. 

3.Trustworthiness Analysis:Confidence Distribution 

Plots: We plot the Probability Density Functions (PDFs) of the 

confidence scores assigned by the model to both correctly and 

incorrectly classified samples. For a trustworthy model, these 

two distributions should be clearly separated. 

Pearson Correlation Coefficient: We compute the Pearson 

correlation coefficient between the model's predicted 

confidence, 𝑐𝑚𝑜𝑑𝑒𝑙  , and its physical consistency score, 𝑆𝑝ℎ𝑦𝑠 .  

A high positive correlation coefficient (close to 1) serves as 

strong quantitative evidence of the model's trustworthiness. 

4. Results and Discussion 

This chapter aims to comprehensively evaluate the proposed 

PCTL framework through a series of integrated experiments. 

We will first present the quantitative performance of PCTL on 

multiple cross-domain transfer tasks, comparing it against 

existing baseline methods. Subsequently, we will conduct an in-

depth analysis of the contributions of each key component 

within the framework via ablation studies. Finally, we will focus 

on dissecting the model's performance in terms of physical 

consistency and decision trustworthiness to validate the core 

advantages of our method. 

4.1. Quantitative Performance Comparison 

To validate the overall performance of the PCTL framework, we 

conducted experiments on the four cross-domain transfer tasks 

defined in Table 2. Table 3 presents a detailed comparison of 

PCTL against all baseline methods on two key metrics: 

diagnostic Accuracy and the Physics Consistency Score (PCS). 

All results are reported as the mean ± standard deviation of 5 

independent trials.

Table 3. Performance comparison of different methods on cross-domain transfer tasks (Mean ± Std. Dev.). 

Task Method Accuracy (%) PCS 

 Source Only 35.4 ± 2.1 0.0617 

 Target Only 38.2 ± 1.5 0.0389 

T1: CWRU→PU Fine-tuning 65.1 ± 0.8 0.1971 

 DANN 54.6 ± 1.1 0.2198 

 TF-C 66.3±1.8 0.3168 

 PCTL(Ours) 99.1 ± 0.5 0.7353 

 Source Only 41.2 ± 2.5 0.0992 

 Target Only 55.9±0.7 0.3184 

T2: PU→CWRU Fine-tuning 50.4±1.1 0.2992 
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 DANN 33.7±11.7 0.2093 

 TF-C 59.3±2.2 0.2674 

 PCTL(Ours) 98.8 ± 0.4 0.7189 

 Source Only 25.7 ± 3.0 0.0811 

 Target Only 16.7±3.7 0.1671 

T3: PHM→CWRU Fine-tuning 63±1.8 0.4330 

 DANN 61.3±3.9 0.4844 

 TF-C 57.3±3.1 0.2136 

 PCTL(Ours) 99.2 ± 0.3 0.7398 

 Source Only 28.9 ± 2.8 0.1221 

 Target Only 25.33±3.2 0.1079 

T4: PHM→PU Fine-tuning 44.18±4.2 0.2697 

 DANN 49.36±7.0 0.3783 

 TF-C 58.3±1.3 0.2118 

 PCTL(Ours) 97.5 ± 0.7 0.5811 

 

To provide a more intuitive visualization of the PCTL 

framework's classification performance across tasks, Figure 6 

displays its confusion matrices for tasks T1 through T4.

 

Figure 6: Confusion matrices of the PCTL framework on various cross-domain transfer tasks. The subplots correspond to (a) task T4 

(PHM→PU), (b) task T1 (CWRU→PU), (c) task T3 (PHM→CWRU), and (d) task T2 (PU→CWRU). In each matrix, the diagonal 

elements represent the percentage of correct classifications, while the off-diagonal elements represent misclassifications. High 

diagonal values and low off-diagonal values indicate superior classification performance. 

Based on the experimental results in Table 3 and Figure 6, 

we can draw the following key conclusions: 

1.Overall Superiority of the PCTL Framework: In all four 

cross-domain tasks, our proposed PCTL framework achieved 

overwhelmingly superior performance on both core metrics, 

accuracy and PCS, comprehensively outperforming all baseline 

methods. For instance, in task T1 (CWRU→PU), PCTL 

achieved an accuracy of 99.1%, surpassing traditional Fine-

tuning (65.1%) and DANN (54.6%) by over 34 and 44 

percentage points, respectively. The confusion matrices in 
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Figure 6 further confirm that PCTL exhibits extremely high 

classification precision across all categories, with minimal 

misclassification rates and diagonal elements consistently 

approaching 100%. This substantial performance advantage 

remained consistent across all tasks, fully demonstrating the 

effectiveness and robustness of the PCTL framework. 

2.Capability to Handle Extreme Domain Shifts: In the most 

challenging cross-component transfer tasks (T3: 

PHM→CWRU and T4: PHM→PU), the domain gap is starkly 

evident. The accuracy of the Source Only model plummets to 

25.7% and 28.9%, respectively—nearly equivalent to random 

guessing. This indicates fundamental differences in the signal 

characteristics between gearboxes and bearings. Nevertheless, 

even under these extreme challenges, the PCTL framework still 

achieved remarkable accuracies of 99.2% (Figure 6(c)) 

and 97.5% (Figure 6(a)). This result strongly validates our core 

thesis: PCTL can penetrate the superficial differences of 

components to learn more fundamental, transferable physical 

laws that govern degradation. 

3.The Deeper Value Revealed by the PCS Metric: As  

a metric for the physical plausibility of model decisions, PCS 

offers profound insights beyond mere accuracy. We observe that 

PCTL not only leads in accuracy but also consistently achieves 

the highest PCS. For example, in task T2, the PCS of PCTL 

(0.7189) is significantly higher than that of Target Only (0.3184) 

and Fine-tuning (0.2992). This demonstrates that the correct 

diagnoses made by PCTL are backed by stronger physical 

evidence, rendering its decision-making process more reliable. 

In contrast, while traditional transfer methods can improve 

accuracy to some extent, their limited improvement in PCS 

suggests a greater reliance on statistical fitting rather than 

genuine physical insight. 

4.Analysis of the DANN "Failure" Phenomenon: An 

intriguing phenomenon occurred in task T2 (PU→CWRU), 

where the accuracy of the classic DANN method was merely 

33.7%, even lower than the non-transfer Source Only baseline 

(41.2%), exhibiting clear "negative transfer." We surmise this is 

because the signal characteristics of the PU dataset are more 

complex and varied than those of CWRU. When DANN 

forcibly aligns the overall distributions of the two domains, it 

may erroneously transfer unique but fault-irrelevant complex 

patterns from PU to the target domain, thereby interfering with 

the diagnosis of simpler faults in CWRU. This very observation 

highlights the advantage of PCTL: instead of blindly aligning 

all features, PCTL selectively learns and transfers features with 

universal physical meaning through physics-guided 

mechanisms, thus effectively mitigating the risk of negative 

transfer. 

4.2. Ablation Study 

To dissect the PCTL framework and verify the indispensability 

of its key internal components, we conducted a series of 

rigorous ablation studies. On the most challenging cross-

component transfer task, T3 (PHM→CWRU), we compared the 

full PCTL framework against three of its variants: 1) w/o Phy: 

removing the physics-guided loss 𝐿𝑝ℎ𝑦 during pre-training; 2) 

w/o Dom: removing the domain-adversarial loss 𝐿𝑑𝑜𝑚  during 

pre-training; and 3) w/o Cons: removing the physical 

consistency constraint 𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦   during fine-tuning. The 

results are presented in Figure 7, which also includes two 

baseline methods (Fine-tuning, DANN) for reference.

 

Figure 7: Ablation study results on task T3 (PHM→CWRU). (a) Comparison of diagnostic accuracy among different models. (b) 

Comparison of the Physics Consistency Score (PCS) among different models. The red bars represent the complete PCTL model, 

orange bars represent its ablated variants, and gray bars represent the baseline methods. 
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An in-depth analysis of Figure 7 leads to the following 

conclusions: 

1.Physics Guidance is the Cornerstone of Knowledge 

Transfer. 

 Observing the w/o Phy variant, the removal of the physics-

guided loss causes the model's accuracy to plummet from 99.2% 

to 75.5%, while the PCS also drops sharply from 0.740 to 0.452. 

This clearly demonstrates that compelling the model to predict 

the envelope spectrum during pre-training is the fundamental 

reason for its ability to capture transferable physical patterns. 

Without this explicit physical guidance, the model tends to learn 

superficial, equipment-specific features from the source domain, 

leading to a significant degradation in the effectiveness of 

knowledge transfer when confronted with a vast domain gap. 

2.Domain Adaptation is Key to Ensuring Generalization. 

 For the w/o Dom variant, removing the domain-adversarial 

module results in a catastrophic performance collapse, with its 

accuracy (45.8%) and PCS (0.283) falling far below those of the 

simple Fine-tuning method (63.0%, 0.433). This aligns with our 

expectations, as domain adaptation is the core mechanism for 

bridging the distribution gap between the source and target 

domains and ensuring the model's generalization capability. 

This result powerfully demonstrates that physics guidance and 

domain adaptation are complementary and indispensable within 

the PCTL framework: the former ensures the model learns the 

"right knowledge" (physical laws), while the latter ensures this 

knowledge can be "correctly applied" (generalized across 

domains) to new equipment. 

3.Consistency Constraint is the "Final Mile" to Model 

Trustworthiness. 

The results from the w/o Cons variant offer the most 

profound insight of this study. When the physical consistency 

constraint𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  is removed, the model's accuracy drops 

significantly from 99.2% to 54.3%. However, the change in its 

PCS is even more revealing: it plummets from 0.740 to 0.316, a 

score even lower than that of Fine-tuning (0.433) and DANN 

(0.484). 

This phenomenon unveils the core value of𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦: it is 

not merely an auxiliary tool for improving accuracy but rather 

a "calibrator" that enforces alignment between the model's 

decisions and physical principles. Without this constraint, the 

model, in its unilateral pursuit of optimizing the classification 

boundary during fine-tuning, may learn physically implausible 

shortcuts, leading to a large number of diagnoses that are 

"coincidentally correct" but "physically wrong." The role 

of𝐿𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 is precisely to sever this path to "high-accuracy 

pseudo-intelligence" through a "diagnose-validate-feedback" 

loop, guiding the model toward a truly "physically trustworthy" 

decision-making paradigm. 

In summary, the ablation study systematically validates the 

rationale and necessity of each designed component within the 

PCTL framework. Physics guidance, domain adaptation, and 

the consistency constraint form an organic whole, working in 

synergy to achieve a simultaneous improvement in the model's 

diagnostic performance and trustworthiness. 

4.3. Analysis of Physical Consistency and Trustworthiness 

This section delves into the performance of the PCTL 

framework in enhancing model trustworthiness, which is a core 

highlight of this paper. We will systematically demonstrate how 

the PCTL framework achieves physically interpretable and 

highly credible decisions through both qualitative case-study 

visualizations and quantitative evaluations of macroscopic 

performance. 

4.3.1. Case Study: Visualizing the Decision-Making 

Process 

To intuitively illustrate how the PCTL model makes physically 

trustworthy decisions, we constructed two typical simulated 

samples based on the physical characteristics of task T3 

(PHM→CWRU) for a case study, as shown in Figure 8. Using 

simulated samples allows us to eliminate extraneous noise from 

real signals, thereby revealing the core logic of the model's 

decision-making more clearly. 

Case (a) - Correct and Confident Diagnosis: In this 

idealized inner-race fault case, the model assigns a high 

confidence score of 0.98. Observing its predicted envelope 

spectrum (the physical evidence), we can clearly see significant 

energy peaks at the theoretical BPFI frequency (162 Hz, which 

is highly consistent with the theoretical value of 162.18 Hz for 

the CWRU dataset under 1797 RPM) and its second and third 

harmonics. This indicates that the model's diagnostic conclusion 

is highly consistent with the physical evidence it provides, and 

its high confidence is built upon a solid physical foundation. 

Case (b) - Incorrect but "Honest" Diagnosis: In this 
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challenging case with ambiguous features, the model 

misclassifies the sample as a "Ball Fault" but provides an 

extremely low confidence score of only 0.35. This is equivalent 

to the model "warning" the user: "I cannot confirm the physical 

plausibility of this diagnosis." Observing its predicted envelope 

spectrum, we find that its energy distribution is chaotic, with no 

discernible features at the theoretical BSF frequency. The PCTL 

framework, through its PCV module, captures this "mismatch 

between evidence and conclusion" and compels the model to 

output low confidence. This ability to "remain modest when 

making a mistake" is a key characteristic of Trustworthy AI, as 

it effectively prevents the propagation of erroneous diagnostic 

results to decision-makers.

 

 

Figure 8. Visualization of the PCTL model's decision-making process. (a) An ideal sample correctly diagnosed as an Inner-race Fault 

(IF) with high model confidence. Its predicted envelope spectrum clearly shows peaks that are highly consistent with the theoretical 

BPFI harmonics. (b) A challenging sample with ambiguous features, misdiagnosed as a Ball Fault (BF) but with very low model 

confidence. Its predicted envelope spectrum is chaotic and shows no clear correlation with the theoretical BSF frequency.  

4.3.2. Quantitative Evaluation of Trustworthiness 

After understanding the model's working mechanism 

through typical case studies, we further conduct a quantitative 

evaluation of its trustworthiness from a macroscopic 

perspective across the entire test set.

 

Figure 9: Quantitative analysis of the PCTL model's trustworthiness. (a) A scatter plot of the model's predicted confidence versus the 

physical consistency score on the entire test set of task T3, showing a strong positive correlation. (b) The probability density 

distributions of confidence scores for correct and incorrect predictions on the same test set, showing a clear separation.  
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Strong Correlation between Confidence and Physical 

Plausibility: We analyzed the relationship between the model’s 

predicted confidence, 𝑐𝑚𝑜𝑑𝑒𝑙 , and its physical consistency score, 

𝑆𝑝ℎ𝑦𝑠. As shown in Figure 9(a), the two exhibit a strong positive 

correlation (Pearson correlation coefficient 𝜌 ≈ 0.83 ). This 

eloquently demonstrates that the confidence of the PCTL model 

is no longer blind but is deeply tethered to the physical 

plausibility of its decisions. The stronger the physical evidence, 

the more confident the model becomes. 

Reliable Self-Assessment Capability: Furthermore, we 

plotted the probability density functions of the confidence 

scores for both correctly and incorrectly classified samples, as 

shown in Figure 9(b). A significant separation between the two 

distributions is evident: the confidence scores for correct 

predictions are overwhelmingly concentrated above 0.9 (with a 

mean of 0.785), whereas those for incorrect predictions are 

primarily distributed below 0.5 (with a mean of 0.259). This 

distinct separation (Separation ≈0.526≈0.526) and extremely 

low overlap rate (<5%) prove that our model possesses  

a reliable self-assessment capability, enabling it to effectively 

distinguish between trustworthy and untrustworthy diagnostic 

results. 

4.4. Feature Visualization and Analysis 

To gain a deeper understanding of why the PCTL framework 

succeeds in various complex cross-domain scenarios, we 

utilized the t-SNE dimensionality reduction technique to 

visualize the high-dimensional features learned by the model in 

the target domains of our four core transfer tasks. These 

visualizations not only intuitively demonstrate the model's 

classification capability but also reveal the intrinsic structure 

and quality of the learned feature representations. All 

visualization results are consolidated in Figure 10.

 

Figure 10. t-SNE visualization of the target-domain features learned by the PCTL framework in different cross-domain transfer 

tasks. (a) Task T1 (CWRU→PU); (b) Task T2 (PU→CWRU); (c) Task T3 (PHM→CWRU); (d) Task T4 (PHM→PU). The clear 

clustering structures and inter-class distances indicate that the model has learned high-quality, discriminative feature representations, 

especially in the cross-component tasks, validating its ability to learn physical invariance. 

As depicted in Figure 10, the PCTL framework 

demonstrates exceptional feature learning capabilities across all 

cross-domain transfer tasks. 

First, in the typical bearing-to-bearing transfer tasks (T1: 

CWRU→PU and T2: PU→CWRU, corresponding to Figures 

10(a) and 10(b)), despite significant differences in operating 

conditions and fault morphologies between the source and target 

domains, the PCTL framework successfully learns well-
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separated feature clusters for the target-domain data. Samples 

within each class exhibit high intra-class compactness, while 

maintaining significant inter-class distances. This intuitively 

explains its excellent classification performance and proves 

PCTL's robustness and bidirectional adaptability in handling 

transfer problems between heterogeneous bearing systems. 

Furthermore, we analyze the most challenging cross-

component transfer tasks (T3: PHM→CWRU and T4: 

PHM→PU, corresponding to Figures 10(c) and 10(d)). In the 

face of the immense domain gap introduced by differences in 

component type, physical structure, and operating mechanism, 

the PCTL framework still manages to learn high-quality feature 

representations for the target-domain bearing faults, with fault 

samples of different categories forming distinct and identifiable 

clusters. This result provides powerful evidence for our core 

thesis—that the model learns "physical invariance" rather 

than "component-specific features." It indicates that the PCTL 

framework is capable of penetrating the superficial layer of 

signals to disentangle and extract universal degradation 

principles—such as impacts, modulations, and harmonics—that 

are independent of the specific mechanical component (e.g.,  

a complex gearbox), thereby achieving generalization and 

successful transfer across different mechanical systems. 

In conclusion, the t-SNE visualization results provide 

compelling evidence for the core advantage of the PCTL 

framework: the features it learns are universal and rich in 

physical information, enabling it to effectively tackle complex 

domain shifts and cross-component challenges, thus achieving 

both superior diagnostic performance and trustworthiness. 

5. Conclusion 

This paper addresses the "trust deficit" prevalent in existing 

deep learning methods for fault diagnosis on heterogeneous 

equipment, a problem characterized by weak generalization and 

opaque decision-making processes. We posit that the root of this 

issue lies in the tendency of conventional models to learn 

equipment-specific, superficial statistical features, while 

neglecting the intrinsic, invariant patterns dictated by the 

underlying physical fault mechanisms. Based on this core 

insight, we have designed and implemented a novel transfer 

learning framework guided by physical consistency verification, 

named PCTL. 

The core innovation of the PCTL framework is that it no 

longer passively expects the model to spontaneously grasp 

physical principles. Instead, it explicitly and quantifiably 

integrates physical prior knowledge into a closed-loop training 

and validation process via two stages. In the pre-training 

stage[29], through physics guidance and domain-adversarial 

learning, the model is incentivized to encode a universal, 

domain-invariant feature representation rich in physical 

information. In the fine-tuning stage, an innovative "diagnose-

validate-feedback" mechanism is introduced: an external, rule-

based Physics Consistency Verification (PCV) module assesses 

the physical plausibility of the model's diagnosis, and its 

quantified score is used to supervise the learning of the model's 

confidence. This design deeply binds the model's confidence to 

the physical reasonableness of its decisions, fundamentally 

enhancing its trustworthiness. 

We conducted a comprehensive validation of the PCTL 

framework on multiple challenging cross-domain transfer 

tasks[30], spanning different operating conditions, fault types, 

and even different mechanical components (bearings and 

gearboxes). The experimental results powerfully demonstrate 

the superiority of our method: 

1.Superior Diagnostic Performance: PCTL achieved 

state-of-the-art diagnostic accuracy across all cross-domain 

tasks, exhibiting potent knowledge transfer and generalization 

capabilities, especially in the most challenging cross-

component transfer scenarios. 

2.Quantifiable Trustworthiness: More importantly, by 

introducing the Physics Consistency Score (PCS) and 

correlation analysis, we have, for the first time, quantitatively 

evaluated the decision credibility of a transfer learning model. 

Experiments show that PCTL's predicted confidence is highly 

correlated with its physical consistency, and the model 

possesses a reliable self-assessment capability, enabling it to 

proactively issue low-confidence warnings when making 

physically implausible diagnoses. 

In conclusion, this research provides an effective and 

physically interpretable new paradigm for tackling the problem 

of transfer diagnosis across heterogeneous equipment. It not 

only improves diagnostic accuracy but also significantly 

enhances the transparency and reliability of the decision-

making process by endowing the model with physical-level 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026 

 

"insight" and "introspection." 

Although the PCTL framework has achieved encouraging 

results, there are still avenues for further exploration[31]. 

Currently, the PCV module relies on known physical parameters 

of the equipment (e.g., bearing geometry, rotational speed). 

Future work could integrate the online, adaptive estimation of 

these parameters into the learning framework, thereby 

achieving stronger "plug-and-play" capabilities for unknown 

equipment. Furthermore, extending the framework to more 

complex compound fault diagnosis scenarios and exploring its 

applicability to other types of machinery (e.g., pumps, engines) 

would be research directions of great value. We believe this 

study has taken a solid step forward in promoting the deep 

application of Trustworthy AI in safety-critical industrial 

domains.
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