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Highlights  Abstract  

▪ A novel 7-state semi-Markov model of vehicle 

operation was developed. 

▪ Reliability models of technical objects were 

developed based of failure data.  

▪ Reliability and availability indicators were 

computed and validated. 

▪ Statistical and stochastic methods were 

integrated and compared. 

 This paper presents a novel implementation of statistical and stochastic 

methods for estimating and evaluating reliability and availability 

indicators in technical systems. Using empirical failure data from a real-

world military transport system, we introduce an innovative 7-state 

model that provides a detailed representation of operational phase of the 

systems. The research integrates Markov and semi-Markov processes to 

accurately model state transitions, particularly addressing scenarios 

where traditional Markov models are insufficient due to non-exponential 

state distributions. Our findings demonstrate that both statistical and 

stochastic methods yield closely aligned reliability and availability 

indicators, validating the robustness of the proposed methodologies. 

This research not only advances the accuracy of reliability assessments 

but also identifies actionable improvements to enhance operational 

readiness. They provide a comprehensive framework for analyzing and 

improving the operational efficiency of technical systems, with broader 

applications across various engineering fields. 
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1. Introduction 

Ever-growing requirements for the reliability and safety of 

technical objects and systems generate the need to continuously 

improve theoretical models to describe them. In addition to the 

accuracy of the theoretical model's representation of reality, the 

economic aspect related to the high research costs in operational 

conditions should also be considered. Due to the above, 

modeling reliability is an extremely difficult issue, but due to its 

importance, it constitutes an area of research in modern 

scientific publications [1, 22]. 

Description of the functioning of objects using deterministic 

models may entail the possibility of omitting the impact of 

random factors affecting their operation. Probabilistic models 

are free from this drawback and consider all phenomena 

affecting objects' functioning. Probability distributions 

constitute a basis for building probabilistic models. Knowing 

the form of the distribution describing the failure rate of  

a technical object, it is possible to predict its operating time with 

a certain probability. Knowing the course of the probability of  
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a failure over time, one can take preventive actions before the 

risk of failure reaches its limit value, thus avoiding financial 

losses and ensuring an appropriate level of safety [47]. 

The basis for proper and effective management in technical 

object operation systems is the correct analysis and assessment 

of the processes taking place there. Statistical methods are 

among the basic methods for examining the reliability and 

availability of objects and systems. They enable the 

characterization of the operation process without the use of 

complicated mathematical methods and expensive computer 

programs. 

Using stochastic processes, the exploitation process model 

can be presented by describing subsequent changes in the states 

of objects over a period of time. After identifying all possible 

states of objects (systems), they are aggregated using the 

method of successive approximations in accordance with the 

adopted modeling objective [26]. In this paper, as a result of the 

identification of the actual transport system and the multi-state 

facility operation process implemented in it, significant 

operational states were determined. Then, possible transitions 

between the distinguished operational states were determined, 

creating a graph of interstate transitions. 

The reliability and technical availability of vehicles are one 

of the main determinants of the effectiveness of modern, 

advanced transport systems. The specificity of vehicles 

operating in military transport systems implies the need to 

restore technical suitability after random failures. The 

occurrence of failure to the means of transport during transport 

processes translates into disruptions to the functioning of the 

entire system [10, 32]. In many technical systems, due to the 

lack of quick and elastic supplies of necessary materials and 

components, the time of unsuitability of means of transport that 

suffered a mechanical failure is a significant factor that reduces 

the availability indicator values [39]. Reliability models are 

useful for forecasting and evaluating the maintenance and repair 

needs of vehicles used by, among others, army [49], police [7, 

29], health service [24], transport companies [5, 44] or service 

patrols [15]. Therefore, availability and reliability indicators 

must be carefully analyzed and monitored, especially during 

crises and wars. 

This study aims to implement and compare the suitability of 

two methods for assessing the availability and reliability of 

technical objects. The proposed approach is an extension and 

complements existing statistical methods and stochastic 

modeling in terms of their applications to the field of 

engineering and technical sciences [4, 7, 16]. An original 

algorithm for analyzing the reliability of technical objects was 

constructed. The model includes a reliability testing 

methodology based on failure analysis, which reduces the costs 

related to conducting expensive experimental tests or time-

consuming simulations. The results of the analyses allow for the 

assessment of the reliability and availability of vehicles, which 

consuming simulations. The results of the analyses allow for the 

assessment of the reliability and availability of vehicles, which 

reflects the technical aspect of the effectiveness of the means of 

transport. The proposed method makes it possible to identify 

possible components that can improve the availability 

indicators. The research was carried out using MATLAB and 

STATISTICA software. 

The main contributions of the paper are as follows: 

- To create a novel algorithm for applying statistical and 

stochastic methods; 

- Developing of a new 7-state model will capture the 

complex operational phases of military transport systems, 

enhancing the accuracy of reliability and availability 

indicators. 

- Identification of critical factors that influence reliability 

and availability measures. Proposing actionable 

improvements to it. 

- Establishment of a comprehensive methodology for 

assessing and improving the operational efficiency of 

technical systems. 

- Applying the methodology to real-world data from  

a military transport system demonstrates its utility and 

robustness. 

- The presented methodology can be extended to other 

technical systems in various engineering fields for 

reliability assessment and process optimization. 

The paper has been divided into five sections. Section 2 

presents the current state of knowledge regarding the use of 

statistical and stochastic methods in reliability and availability 

modeling. Then, based on the adopted assumptions,  

a description of statistical and stochastic methods was made 

along with the methodology of their application (Section 3). 
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Based on operational data empirically obtained from a real 

military transport system, Section 4 presents the practical 

application of the proposed approach to analyzing the 

operational process and reliability of trucks. Based on empirical 

data and statistical methods, the values of reliability indicators 

and availability measures of the transport system were 

calculated. Next, the possibility of using Markov and semi-

Markov processes for a given transport system was investigated. 

A model of the operation process was developed using a semi-

Markov process. Then, the research results obtained using 

statistical and stochastic methods were compared. Section 5 

summarizes The entire publication, including the conclusions 

and future works. 

2. Literature review 

This section contains reviews of the literature devoted to 

modeling the reliability and availability of technical objects 

using statistical and stochastic methods. The main research 

goals of the authors were the following analyses: reliability [8, 

28, 36, 58], availability [20, 28, 57, 66], determination of 

optimal repair intervals [37, 41, 45, 59] and reduction of 

operating costs of the tested systems [18, 19, 31, 46]. 

Statistical methods are one of the basic ways of creating 

reliability models. Based on the operational data of transport 

companies in [5], the technical availability indicators of 

selected vehicles were determined and compared. It was proved 

that the availability indicator does not depend directly on the 

object’s age and mileage. Czarnowska and Migawa [34] 

determined the availability indicators of transport means and, 

based on them, created the basis for building a mathematical 

model of the operation process of the objects under study. In 

[38], using a linear econometric model, the author presented an 

attempt to forecast the reliability of machines, taking into 

account their seasonality. He demonstrated that the range of data 

and its randomness limit the use of econometric modeling. 

Using the Kaplan-Meier estimator, Selech and Andrzejczak [47], 

examined the reliability of the driver cabin lock in a rail vehicle. 

The method of examining the temperature profile in aircraft 

commutators presented by Wawrzyński et al. [55] allowed for 

the estimation of changes in the values of their diagnostic 

parameters and their operating time. Based on the availability 

and reliability metrics, Kokieva et al. [27] discussed the 

methodology for calculating, analyzing and increasing the 

reliability of objects and systems. When characterizing 

statistical methods in reliability testing, it should be emphasized 

that understanding various types of failures by the users and 

statistical analysis of data on MTBF and MTTF are the basis for 

applying an appropriate policy to optimize availability and 

reliability. Żyluk et al. [66] proved that the logistic needs of 

operational support of a military aircraft can be defined based 

on the MTTF indicator. The presented method takes into 

account accidental failure to components that could not be 

predicted at the spare parts scheduling stage, identifies failure 

patterns and allows for logistic planning of the supply process 

of failure-prone parts, thus increasing the system's operational 

safety. In [52] the MTBF indicator was used to quantitatively 

describe technical objects' reliability level. Bai et al. [3] used 

MTTF and MSCF indicators to calculate availability in the 

platooning system. 

Test results obtained using statistical methods constitute the 

Notifications  

LDA Life Data Analysis 

MSCF Mean Security Capacity to Failure 

MTBF Mean Time Between Failures 

MTTD Mean Time To Diagnose 

MTFF Mean Time to Failure 

MTTS Mean Time To Supply 

MTTR Mean Time To Repair 

RAM Reliability, Availability, Maintainability 

SMP Semi-Markov Process 

MSE Mean Squared Error 

AIC Akaike Information Criterion 

PCC Pearson Correlation Coefficient 

R() Reliability function 

F() Cumulative distribution function 

kgt 
Availability coefficient for statistical 

method 

kgw 
Internal (technical) availability coefficient 

for statistical method 

km 
Temporary indicator of technical 

Unavailability for statistical method 

Qij(t) Matrix of the renewal kernel 

Λ Transition intensity matrix 

λij The intensity of the state changes 

N 
Matrix of the number of interstate 

transitions 

pij 
Probability of transition from state i to state 

j 

P Stochastic matrix 

π Ergodic probability vector 

pj 
Ergodic probability of being in state j 

element of the vector π. 

Kgt 
availability coefficient for stochastical 

method 

Kgw 
Internal (technical) availability coefficient 

for stochastical method 
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basis for further reliability research. Koohsari et al. [28] and 

Nurcahyo et al. [37], based on MTBF and MTTR, conducted  

a RAM analysis and proved that appropriate maintenance 

planning significantly influences machines' readiness. Similar 

research was carried out in [45], where Saini et al., additionally 

using a genetic algorithm and particle swarm optimization, 

indicated possible directions for improving the load haul dump 

machines’ functional parameters. Using statistical methods, 

extended by using the Laplace transform and the R 

programming language, enabled Szkutnik-Rogoż et al. [51] to 

create a universal method of operation process modeling. 

After analyzing the current studies, it should be stated that 

Markov or semi-Markov models of the exploitation process are 

widely used in science and technology and are an area of interest 

for many authors. Depending on the modelling goal, Markov 

and semi-Markov models may have a different number of states 

in the phase space. In [53], based on a 2-state Markov model, 

the author created a control rule to simulate and optimize energy 

saving in the manufacturing system line. In [19], Markov 

processes were used to determine fueling patterns for hydrogen-

powered vehicles and drivers’ behaviors in the South African 

transport sector. Raven in [30] used a 4-state Markov model to 

present a model of the operation process with the expectation of 

use. He proved that the estimated indicators and measures 

essential for the vehicle operation, i.e. repair defectiveness, 

repair intensity, usage intensity and failure intensity, may be 

useful in the operation management process. In [20], Itkin 

analyzed farm availability indicators based on the 5-state 

Markov model. According to his estimations, the power of the 

tested wind farm is covers only 54% of the electricity demand 

and its expansion is necessary. In [48], a 6-state Markov model 

was used for modelling the repair policy. Estimating parameters 

for semi-Markov models is more difficult, which makes them 

less popular. However, due to less restrictive requirements 

regarding the form of distribution of the studied variables (any 

variables), they constitute a universal tool for modelling 

operational processes. Grabski [16] presented a general model 

of technical objects and proved the theory regarding the Markov 

recovery equations for the conditional reliability function with 

a semi-Markov failure rate process. Borucka et al., [7] using 

semi-Markov processes, characterized the process of operating 

police cars. It developed a model based on three states (usage, 

parking and repair). By examining the intensity of use and the 

time of failure-free operation of the vehicles, she estimated the 

level of readiness and showed that the analyzed transport system 

had a satisfactory stationary availability factor. 

Table 1. The comparative summary of the literature review. 

Methods and 

approaches 
Indicators Model Case study Purpose of research Result and conclusions Papers 

Statistical 

Availability - 

Vehicles in 

transport 

company 

Determining readiness indicators for 

transport vehicles. 

The basis for constructing 

mathematical models to evaluate 

availability. 

[34] 

Reliability - 
Agricultural 

machines 

Analyze reliability and readiness 

indicators. 

Identified operational parameters 

to enhance equipment utilization. 
[27] 

MTFF 

Normal, Lognormal, 

Exponential, 

Weibull, Logistic, 

Loglogistic 

Gumbel 

Rail vehicles 

components 

Select criteria for fitting time-to-

failure distributions. 

Developed methods for robust 

data-model fit for predictive 

maintenance. 

[47] 

 

Statistical and 

probabilistic 

methods 

Normal, Lognormal. 

Exponential, 

Weibull 

Helicopters  
Predict spare part needs using 

reliability indexes. 

Highlighted logistical 

improvements based on MTTF 

predictions. 

[66] 

Statistical and 

genetic 

algorithm 

MTBF, 

MTTR 

Normal, Exponential 

Weibull, Lognormal 

Load haul 

dump machines 

Optimize failure and repair 

parameters. 

Enabled planning for advanced 

maintenance strategies. 
[45] 

Markov process 

- 
Exponential 

2-state model 

Manufacturing 

line system 

Increase efficiency and energy 

savings 

Develop control rule to simulate 

and optimize energy saving 
[53] 

- 
Exponential 

3-state model 

Hydrogen fuel 

vehicles 

Understanding stochastic refueling 

behavior 

Develop refueling trend 

algorithms and behavioral 

patterns. 

[19] 

- 
Exponential 

4 -state model 

General 

technical 

objects 

Exploring component sequencing in 

redundancy strategies 

Provided formulas for reliability 

in mixed redundancy strategies. 
[18] 

Availability 
Exponential 

5-state model 
Wind farm 

Estimating availability indicators of 

real case study 

Quantified electricity demand met 

by wind power. 
[20] 
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Methods and 

approaches 
Indicators Model Case study Purpose of research Result and conclusions Papers 

- 
Weibull 

5-state model 
City buses 

Develop a universal method for 

comparing maintenance scheduling 

policies across technical systems. 

Introduced a structured 

framework that optimizes 

maintenance schedules, reducing 

downtime and improving system 

readiness. 

[35] 

Reliability 7-state model MMC 
Short-term reliability assessment 

and maintenance decision support 

Model supports maintenance 

planning and enhances operational 

reliability. 

[60] 

- 

Weibull 

Gamma 

Lognormal 

8-state model 

Police cars Diagnostics and readiness evaluation 
Introduced a predictive readiness 

model for maintenance systems. 
[29] 

Statistical and 

semi-Markov 

process 

MTTF, 

MTBF, 

MTTR, 

MTTD, 

MTTS, 

availability, 

reliability 

Normal, Exponential 

Weibull,  

Lognormal 

Gamma 

7-state model 

Military trucks 
Implementation and comparison of 

statistical and stochastic methods 

The use of stochastic processes 

makes it possible to identify 

operating conditions that affect 

the improvement of the values of 

availability and reliability 

indicators. 

This 

paper 

Based on empirical data in [40], a 3-state semi-Markov model 

was developed for vehicles used in a military transport system, 

which is less accurate than the original 9-state model. However, 

it is still a reliable representation of the operation process under 

study, and at the same time, it significantly simplifies 

calculations related to the analysis of reliability. The model of 

operational reliability of road machinery developed in [14] 

enables estimation of its operational reliability. Sanchez-

Herguedas et al. [46] based on empirical data on o-rings 

belonging to the refrigerated exhaust system of a marine diesel 

engine, developed a 3-state semi-Markov model to optimize the 

preventive maintenance interval. In [35] authors considered a 5-

state model of preventive repairs and component replacements 

depending on the age of city buses. The authors proved that 

taking into account the criterion of profit in time and the 

readiness factor, optimal times for preventive replacements of 

components can be determined. Zhang et al. [60] developed  

a 7-state semi-Markov model for reliability evaluation of 

modular multilevel converter (MMC) systems in flexible DC 

power transmission networks. In their approach, the state space 

was divided into three main operational states (locked, full 

voltage, zero voltage), three corresponding alarm states, and  

a complete failure state. This structure allows for detailed 

modeling of both normal operation and degraded or alarm 

conditions of the converter, utilizing real-time operational data 

and non-exponential sojourn time distributions. The focus is on 

enabling condition-based maintenance and supporting decision-

making in power engineering. Kozłowski et al. [29], examining 

an 8-state semi-Markov model, presented a method for 

detecting hidden factors and their impact on the system 

reliability. In the field of IT, Ivanchenko et al. [21] and Mengistu 

et al. [33] develop multi-state semi-Markov models for 

availability assessment, accounting for a very large number of 

states (up to 19) and complex scenarios of failures, including 

deliberate malicious impacts. 

The literature review showed that the analysis of appropriate 

indicators for monitoring the technical condition of objects is 

the basic criterion for managing the operational processes of 

technical objects. The scientific literature includes many studies 

on modeling the availability and reliability of technical object 

operation systems. It is worth emphasizing that although the 

analyzed models are based on similar mathematical foundations, 

despite their shared advancement in the assessment of reliability 

and availability, they differ in the level of detail of the 

represented states, the application context, and the type of input 

data used. Compared to these studies, the proposed 7-state semi-

Markov model aims to capture the full operational lifecycle of 

a military transport system, with states reflecting not only basic 

functioning, downtime, and repair, but also logistical phases 

such as waiting for parts. This structure balances the need for 

sufficient detail with practical tractability for parameter 

estimation and result interpretation. It is less complex than the 

high-dimensional models used in IT infrastructure studies, but 

offers a more nuanced description of operational reality than 

traditional 2- or 3-state models commonly used in transport or 

manufacturing systems. 

Based on the literature review, a methodological gap was 

identified in the form of a lack of validation of stochastic 

modeling based on the results of statistical methods. 

Additionally, it should be noted that the presented analysis fills 
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the subject gap in the lack of implementation of semi-Markov 

models to reflect the truck operation process. Table 1 

summarizes data regarding the research methods used to 

analyze the survival of technical objects, i.e. statistical and 

stochastic. 

3. Methodology 

Implementing of operational research involves monitoring 

operational incidents (both planned and accidental) generated 

by various data sources (operational areas), systematically 

archiving them on primary storage media, and subsequently 

transferring, verifying, and processing them in a centralized 

data repository. The data collection, validation and 

mathematical modeling process was conducted in four stages 

(Fig. 1).

 

Fig. 1. Data collection, validation and mathematical modeling process. 

The initial step in developing the mathematical model involved 

collecting empirical data from a real-world operational system. 

The study sample consisted of military vehicles utilized by the 

Polish Armed Forces between 2019 and 2021, as detailed in 

Section 4. Data was extracted from traditional paper-based 

documentation, including departure orders, technical service 

sheets, operation plans, and technical condition reports. The 

collected information included start and end times of operations, 

distance traveled, fuel consumption, scope and duration of 

maintenance and repair activities, and a list of spare parts and 

materials used. This phase established a comprehensive dataset 

capturing key operational parameters and maintenance records, 

forming the foundation for subsequent analysis. 

The second step focused on the verification and validation of 

the collected data. The initial research sample comprised 70 

military vehicles; however, due to incomplete operational 

records that impeded the accurate reconstruction of detailed 

phase trajectories, 20 vehicles were excluded from the analysis.  

To construct the preliminary operational model, the method of 

successive approximations was applied: 

- Identification of all recorded operational states, 

- Systematic aggregation of states aligned with the 

modeling objectives, 

- Elimination of states that did not influence the reliability 

and availability analysis. 

Initially, 32 distinct states were identified, each corresponding 

to a relevant phase of vehicle operation as defined by applicable 

technical regulations and the authors’ expert knowledge. Each 

state was subsequently evaluated based on the following criteria: 

frequency of occurrence, average dwell time, importance to the 

structure of state transitions (including high transition intensity 

and probability), and functional similarity to other states. 

States that occurred infrequently or for short durations, as well 

as those exhibiting similar functional roles or stochastic 

behavior, were aggregated to simplify the model without 

compromising its accuracy. Additionally, states characterized 

by zero or negligible probability of interstate transitions were 

excluded from the final model. This systematic refinement 

process enabled the development of a robust operational model 

that accurately reflects the real-world behavior of the system, 
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while eliminating irrelevant or redundant data. We believe this 

detailed methodological clarification enhances the model’s 

transparency, facilitates reproducibility, and supports its 

potential generalizability to other vehicle systems or operational 

contexts. 

The result of the research is an original 7-state model of the 

operation process of Iveco Stralis vehicles, as shown in Fig. 2.  

 

Fig. 2. Process states in the operating system of military 

trucks. 

The graph is an interpretation of the analyzed exploitation 

process, in which the vertices are operational states and the arcs 

are possible transitions between states. Each of the technical 

objects (means of transport) in operation may at any given time 

t be in only one of the highlighted states Si ∈ S, forming a finite 

set S of operational states of the technical object. 

Operation is understood as the transition of the objects 

between identified operating states, i.e.: 

- S1 - task execution - carrying out transport of cargo from 

central warehouses to local warehouse, 

- S2 - refueling - refilling operating fluids, 

- S3 - standby/parking in the garage - time after 

completion of other tasks. The vehicle is reliable and 

parked in a garage, 

- S4 - service - includes scheduled (planned) technical 

maintenance and inspections. If a technical failure 

requiring withdrawal from service is detected during this 

state, the vehicle transitions to S5. Minor issues that do 

not require withdrawal remain classified under S4.” 

- S5 - failure - covers any unplanned interruption in 

operation that directly affects reliability or safety. This 

state includes the period of diagnosis and verification of 

the failure, starting from the initial detection (whether 

during operation or scheduled service) until the need for 

repair is confirmed. Both failures occurring during 

operation and those detected during scheduled 

maintenance are included. Failure results in a transition 

to an unfit state for a period of renewal. 

- S6 - awaiting repair - period when the vehicle is out of 

service and waiting for resources needed to initiate repair 

(e.g. spare parts, tools, or personnel). The vehicle 

remains non-operational until the necessary resources 

become available and repair can begin. 

-  S7 - repair - operations aimed at restoring readiness of 

the technical objects or their resources by removing any 

malfunctions (damage). 

At stage 3, using the verified dataset, the phase space of the 

analyzed operational process was defined. Preliminary 

databases were compiled using MS Excel and then translated 

into source databases optimized for further engineering and 

computational studies. For each vehicle, the balance of 

operating conditions was verified, detailing the duration of each 

operating condition over the three-year study period. This 

verification provided an accurate record of system condition 

transitions and operational schedules. 

The final stage involved constructing an operational 

database containing detailed records of state transitions. The 

operational database was formatted for compatibility with 

engineering analysis tools, enabling advanced studies in 

reliability engineering and availability modeling. 

The compiled database serves as a critical input for 

reliability and availability analysis, facilitating the application 

of advanced engineering software to model and simulate the 

behavior of technical operating systems. 

The structured data collection, verification, and processing 

approach yielded a comprehensive operational dataset, 

capturing the dynamics of military vehicle operations over an 

extended period. The resulting database provides a reliable 

foundation for conducting advanced studies on the reliability 

and availability of technical systems, supporting further 

development of mathematical models, predictive maintenance 

strategies, and operational optimization tools. This process 

ensures the validity and applicability of the dataset for future 

engineering research. 
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Fig. 3. Flowchart of the reliability and availability modeling. 

As mentioned in the introduction and shown in Fig. 3, based 

on empirical data on the operation process of technical objects, 

two methods used to analyze the reliability and availability of 

technical objects will be compared. 

Reliability is the most important property of objects or 

systems and characterizes their ability to perform their functions 

during normal operation. In a probabilistic approach, the 

reliability function is defined as the probability that no failure 

will occur during the execution of the task (use), i.e. in the 

service life range (0, t), according to the relation [23, 63, 64]: 

𝑅(𝑡) = 𝑃(𝑇 ≥ 𝑡) for t ≥ 0,         (1) 

the statistical expression of the reliability function has the 

following form: 

𝑅(𝑡) =
𝑁(0)−𝑛(𝑡)

𝑁(0)
 .          (2) 

In the context of vehicles and transport systems, reliability 

refers to the ability of vehicles, infrastructure and supporting 

systems to operate without failure and as expected, while 

ensuring safety and operational efficiency. The indicators will 

be discussed later in the article. 

The study of reliability characteristics using statistical 

methods begins with estimating the reliability function. Then, 

using analytical models, an approximation of this function is 

performed. The next step is calculating availability indicators. 

Reliability analysis using stochastic methods begins with 

checking the applicability of the Markov or semi-Markov model, 

i.e. verifying the exponential distribution of time characteristics. 

For this purpose, the Kolmogorov-Smirnov test (for a sample of 

less than 80) or the χ2 test is performed. In the case of 

exponential distribution, the Markov model is used, and the 

intensity values of interstate transitions are calculated based on 

it. Using the semi-Markov model, the value of the conditional 

transition probabilities for the inserted Markov chain and the 

expected value of the time between subsequent transitions are 

determined. The values of the ergodic probabilities of the 

inserted Markov chain are then calculated. The result of the 

research is an identified subset of technical availability states 

and the determination of the availability value of a technical 

object. Validation of both methods is carried out by comparing 

the obtained results of reliability and availability indicators. 

After positive validation, it is assumed that the obtained results 

will be analyzed. 

3.1. Statistical methods 

Multiple research methods are used to analyze the reliability and 

availability of technical objects and systems, the use of which 
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most often involves in-depth mathematical knowledge and 

dedicated specialized software [2, 52]. Statistical methods 

enable a relatively easy description of phenomena. Data on 

failures is the basis for developing reliability models, which is 

the basis for determining reliability measures and statistics. 

A. Reliability estimation  

As shown in Fig. 3, the estimation of the reliability function 

value will be based on empirical data on technical object 

failures. Operational data in the analyzed, real transport system 

are censored. Therefore, the Kaplan-Meier estimator was used 

to estimate the survival function and determine the empirical 

distribution function [25, 67], according to the formulas: 

𝑅̂(𝑥) = ∏ (1 −
𝑑𝑖

𝑛𝑖
𝑖:𝑥𝑙≤≤𝑥

),         (3) 

𝐹̂(𝑥) = 1 − ∏ (1 −
𝑑𝑖

𝑛𝑖
𝑖:𝑥𝑙≤≤𝑥

),         (4) 

where di is the number of objects that failed when the xi value 

was reached, while ni is the number of all technical objects that 

worked correctly until the value xi was reached. 

B. Lifetime distribution (Reliability distributions) 

The results of many years of research on reliability show that 

distinctive distributions of reliability characteristics can be 

assigned to specific technical objects and typical types of failure, 

which are defined models of their reliability [23, 42, 67]. 

Knowledge about the distribution types is necessary for 

managing and forecasting the operation of machines and 

devices. Knowing the form of the distribution describing the 

failure rate of a technical object, it is possible to forecast its 

operating time with a certain probability. Knowing the course 

of the probability of failure over time, one can take preventive 

actions before the risk of failure reaches its limit value, thus 

avoiding financial losses and ensuring an appropriate level of 

safety. 

In the literature on technical objects, various families of 

probability distributions are used as time-to-failure models. The 

most commonly used distributions in Life Data Analysis (LDA) 

are the exponential, Weibull, gamma, normal and lognormal 

distributions [23, 67]. 

A number of measures and indicators are used in the 

literature to determine the accuracy of model fit to empirical or 

estimated values. The authors of this paper used the following 

indicators to assess the fit of the developed models to the 

estimated values: correlation coefficient R, Mean Squared Error 

(MSE), Pearson Correlation Coefficient (PCC), and Akaike 

Information Criterion (AIC). 

C. Availability indicators 

The described objects are most often characterized by binary 

random variables, i.e. variables taking two values - zero and one, 

and working and failure in operation systems [51]. The tools 

used to properly assess the operation process of technical 

objects are reliability and availability indicators. When using 

them, it is possible to quantitatively assess and compare the 

reliability of objects. The technical objects can be characterized 

as a function of time [h, mth] or, as in the case of vehicles, 

mileage [km] [66]. 

The basic measure describing the reliability of repairable 

objects is the Mean Time Between Failures (MTBF). It is 

expressed as the quotient of the total operation time of all 

objects to their total number of failures according to the formula: 

𝑀𝑇𝐵𝐹 =
∑ 𝑇𝑖
𝑁
𝑖=1

𝑛
,           (5) 

where N – the number of objects, Ti – the time of correct 

operation of the i-th object, n – the total number of failures. 

For irreparable objects, Mean Time To Failure (MTTF) 

indicators are used, defined according to the following formula: 

𝑀𝑇𝑇𝐹 =
∑ 𝑇𝑊
𝑁
𝑖=1

𝑛
,           (6) 

where TW – the operation time of the i-th object. 

Mean Time To Repair (MTTR) expresses the average time 

to repair a system or object after a failure. The lower the MTTR 

indicator, the faster the repair process and the higher the 

system's availability to perform tasks. It is expressed with the 

following formula: 

𝑀𝑇𝑇𝑅 =
∑ 𝑇𝑅
𝑁
𝑖=1

𝑛
,            (7) 

where TR – i-th overhaul time. 

Mean Time To Diagnose (MTTD) represents the average 

time to diagnose a system or object after a failure: 

𝑀𝑇𝑇𝐷 =
∑ 𝑇𝐷
𝑁
𝑖=1

𝑛
,            (8) 

where TD – i-th diagnosis time. 

Mean Time To Supply (MTTS) that represents the average 

waiting time for spare parts: 

𝑀𝑇𝑇𝑆 =
∑ 𝑇𝑆
𝑁
𝑖=1

𝑛
,          (9) 
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where TS – the spare parts waiting time. 

The relations between the characteristics mentioned above 

are given in Fig. 4. 

 

Fig. 4. A schematic diagram of MTTF, MTTD, MTTS, MTTR, 

and MTBF. 

The characteristics that represent the ability of an object or 

system to work correctly or take action at a random moment t 

are measures of availability. 

The availability factor determines the probability that, at 

time t, the object is in a state of availability. It is determined as 

the quotient of the total time spent in states of availability to the 

total time spent in states of availability and unavailability to 

perform tasks by the relation: 

𝑘𝑔𝑡 =
∑ 𝑇𝐺(𝑡)
𝑁
𝑖=1

∑ 𝑇𝐺(𝑡)
𝑁
𝑖=1 +∑ 𝑇𝑁(𝑡)

𝑁
𝑖=1

,       (10) 

where: ∑ 𝑇𝐺(𝑡)
𝑁
𝑖=1  – the sum of times spent in the availability 

state, ∑ 𝑇𝑁(𝑡)
𝑁
𝑖=1 – the sum of times in the unavailability state. 

Due to the fact that the time spent in an unavailability state 

is generally not the time of effective repair, but, as shown in Fig. 

4, it includes the time for diagnosis and the logistic delay 

resulting from the inability to carry out the repair for 

organizational or technical reasons or the lack of spare parts, the 

following technical (internal) unavailability factor is used: 

𝑘𝑔𝑤 =
∑ 𝑇𝐺(𝑡)
𝑁
𝑖=1

∑ 𝑇𝐺(𝑡)
𝑁
𝑖=1 +∑ 𝑇𝑅(𝑡)

𝑁
𝑖=1

,        (11) 

where: ∑ 𝑇𝑅(𝑡)
𝑁
𝑖=1  – the sum of times effective repair. 

A coefficient that practically characterizes the system's 

unavailability to undertake the task at the moment t is  

a temporary indicator of technical unavailability km. It does not 

characterize the technical condition of the fleet of cars in the 

system, nor their suitability to complete the task within the time 

interval (t, t+Δt). The coefficient is a basic measure of 

unavailability in real operation systems (e.g. car fleet) 

calculated according to the formula: 

𝑘𝑚 =
𝑁𝑒−𝑛𝑡

𝑁𝑒
=

𝑁(𝑡)

𝑁𝑒
,       (12) 

where: Ne – is evidential (regular) state of the car fleet, N(t) – is 

number of cars technically suitable for operation at the moment 

t, nt – is a number of cars technically unsuitable for operation 

(located in {S5, S6, S7} at the moment t). 

3.2. Stochastic methods 

Stochastic processes are a set of mathematical models that 

characterize random events observed over time. The stochastic 

approach recognizes the irregularity and randomness of events, 

probabilities, and average values. Stochastic processes are 

widely used in various fields of science, including statistics [9], 

economics [61], engineering [6], medicine [54], construction 

[11], mechanics [29], communications and IT [43] or social 

sciences [13]. Stochastic methods are constantly improved and 

developed but, at the same time, poorly standardized. One of the 

most frequently used methods in describing the operation 

processes of technical objects are Markov and semi-Markov 

processes. They constitute a group of analytical methods based 

on the analysis of random processes focused on determining the 

probability of conditional interstate transition. 

As indicated in [12, 39], it is considered a methodological 

error to assume that the studied process is a Markov process 

without verifying its properties first. It has been proven in the 

source literature that this may result in incorrect analysis results 

and final conclusions. In [50] it was shown that the differences 

in the values of the calculated limiting probabilities for the 

Markov process differ significantly from the values of the semi-

Markov process (even beyond 530%). Moreover, a difference in 

the calculated value of the technical availability coefficient 

(almost half the size) was observed in the case of the discussed 

processes. Similar conclusions were obtained in [39], where the 

semi-Markov model compared to the Markov model reached  

a mean absolute percentage error (MAPE) of 351.92%. In 

accordance with the adopted research methodology presented in 

Fig. 3, the applicability of Markov and semi-Markov models 

can be determined using Kolmogorov-Smirnov tests. 

D. Continuous-time Markov process 

A quantitative characteristic of the Markov process is the 

transition intensity matrix Λ, according to formula (13): 

𝚲 =

[
 
 
 
 
 
𝜆11 𝜆12 ⋯ 𝜆1(𝑘−1) 𝜆1𝑘
𝜆21 𝜆22 ⋯ 𝜆2(𝑘−1) 𝜆2𝑘
⋮ ⋮ ⋱ ⋮ ⋮

𝜆(𝑘−1) 𝜆(𝑘−1)2 ⋯ 𝜆(𝑘−1)(𝑘−1) 𝜆(𝑘−1)𝑘
𝜆𝑘1 𝜆𝑘2 ⋯ 𝜆𝑘(𝑘−1) 𝜆𝑘𝑘 ]

 
 
 
 
 

.      (13) 
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Matrix Λ components on the main diagonal of this matrix 

are negative or equal to zero, while the remaining components 

are non-negative. Moreover, the sum of the components of each 

row is zero, and their values are calculated as the intensity of 

the state changes according to the formula (14): 

𝜆𝑖𝑗 =
1

𝑇𝑖𝑗
,        (14) 

where Tij – average time spent in state Si before state Sj. 

The transition intensity matrix Λ cannot be a direct basis for 

assessing the availability of a technical object[65]. For this 

reason, the ergodic probabilities of the Markov process for the 

entire set of operating states are calculated by solving the matrix 

equation (15) [40]:  

[𝐩𝐣]
𝑇
⋅ 𝚲 = 𝟎,         (15) 

along with the condition of the system normalization (16): 

∑ 𝜋𝑗 = 1
𝑛
𝑗=1 .        (16) 

E. Semi-Markov process 

Semi-Markov processes are a generalization of Markov 

processes for which the times of presence in individual states 

can have any distribution of time characteristics. This feature 

means semi-Markov processes have a wider range of 

applications than Markov processes.  

The semi-Markov process is constructed using a two-

dimensional Markov chain, the so-called Markov renewal 

process. It is defined by the matrix of the renewal kernel Q(t) 

according to the equation [7, 17, 34]: 

𝐐(𝐭) =

[
 
 
 
 
 

0 𝑄12(𝑡) ⋯ 𝑄1(𝑘−1)(𝑡) 𝑄1𝑘(𝑡)

𝑄21(𝑡) 0 ⋯ 𝑄2(𝑘−1)(𝑡) 𝑄2𝑘(𝑡)

⋮ ⋮ ⋱ ⋮ ⋮
𝑄(𝑘−1)(𝑡) 𝑄(𝑘−1)2(𝑡) ⋯ 0 𝑄(𝑘−1)𝑘(𝑡)

𝑄𝑘1(𝑡) 𝑄𝑘2(𝑡) ⋯ 𝑄𝑘(𝑘−1)(𝑡) 0 ]
 
 
 
 
 

.(17) 

Qij(t) matrix elements are the conditional transition 

probabilities from state Si to state Sj and depend on the state 

duration distribution function Si before moving transition to 

state Sj, according to the equation: 

𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝐹𝑖𝑗(𝑡),        (18) 

where pij denotes the probability of transition from state Si to 

state Sj, and Fij(t) is the cumulative distribution function of the 

time of presence in state Si before transition to state Sj. 

The first stage of the study is the creation of a Markov chain. 

Based on the obtained empirical data on interstate transitions,  

a matrix of the number of interstate transitions was created 

according to the formula: 

𝐍 =

[
 
 
 
 
 
0 𝑛12 ⋯ 𝑛1(𝑘−1) 𝑛1𝑘
𝑛21 0 ⋯ 𝑛2(𝑘−1) 𝑛2𝑘
⋮ ⋮ ⋱ ⋮ ⋮

𝑛(𝑘−1) 𝑛(𝑘−1)2 ⋯ 0 𝑛(𝑘−1)𝑘
𝑛𝑘1 𝑛𝑘2 ⋯ 𝑛𝑘(𝑘−1) 0 ]

 
 
 
 
 

.     (19) 

It constitutes the basis for estimating the probability of 

transitions pij of stochastic matrix P [29, 62]. The values of these 

estimators are the state transition probabilities from state Si to 

state Sj. They are calculated based on empirical data according 

to the relation: 

𝑝𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑗
𝑘
𝑗=1

,        (20) 

where: nij - number of transitions from state Si to state Sj. 

Matrix of conditional probabilities of interstate transitions P 

has the following form: 

𝐏 =

[
 
 
 
 
 
0 𝑝12 ⋯ 𝑝1(𝑘−1) 𝑝1𝑘
𝑝21 0 ⋯ 𝑝2(𝑘−1) 𝑝2𝑘
⋮ ⋮ ⋱ ⋮ ⋮

𝑝(𝑘−1) 𝑝(𝑘−1)2 ⋯ 0 𝑝(𝑘−1)𝑘
𝑝𝑘1 𝑝𝑘2 ⋯ 𝑝𝑘(𝑘−1) 0 ]

 
 
 
 
 

,     (21) 

assuming the fulfillment of the stochastic matrix condition 

[29, 35]: 

∑ 𝑝𝑖𝑗 = 1
𝑘
𝑗=1 .         (22) 

The next step is to calculate the ergodic probability of the 

embedded Markov chain by solving the equation [40]: 

(𝐏𝐓 − 𝚰) ⋅ 𝚷 = 𝟎,         

(23) 

along with the condition of normalization: 

∑ 𝜋𝑖𝑗 = 1𝑘
𝑗=1 .        (24) 

Then, if the inserted Markov chain exhibits ergodicity and 

there are expected values E(Ti) of times of presence in states, 

ergodic values of probabilities pj are determined for the semi-

Markov process according to the relation [12]: 

𝑝𝑗 =
𝜋𝑗𝐸(𝑇𝑗)

∑ 𝜋𝑗𝐸(𝑇𝑗)
𝑘
𝑖=1

,        (25) 

𝐸(𝑇𝑗) = ∑ 𝑝𝑖𝑗𝐸(𝑇𝑖𝑗)
𝑘
𝑖=1 ,        (26) 

where πi is the ergodic probability of the inserted Markov chain 

for state Si, and E(Tij) is the expected value of the direct state 

transition time from state Si to state Sj. 

4. Results and discussions 

This section presents a computational example based on the 

transport system established in the Polish Armed Forces. The 
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failure data was collected using a test sample of 50 Iveco Stralis 

tractor units operated for three years from 01/01/2019  to 

31/12/2021). They have been operated by the Polish Armed 

Forces since 2003. The vehicle’s empty weight is 10,500 kg, and 

the payload is 13,500 kg. The tractor unit is designed to 

transport bulk, palletized or containerized loads over long 

distances and is adapted to work with semi-trailers with a total 

weight of up to 19,000 kg. The sample can be considered 

relatively homogeneous with varying scales of operation 

intensity since only one vehicle model was tested. 

All selected vehicles are of the same model and were 

operated within the same organizational structure, which 

minimizes technical variability and enhances the 

representativeness of the sample. The vehicles performed 

comparable transport tasks (mainly long-distance transportation 

of bulk, palletized, or containerized cargo) under similar 

operational conditions. The vehicles were not limited to  

a specific geographic location but operated within a national 

military transport network in Poland. No special roles or 

missions were assigned to the vehicles in the sample beyond 

standard military logistics. There were no known operational 

restrictions or preferential allocation that would systematically 

bias the reliability or availability results. All vehicles were 

operated according to a standard military logistics schedule. The 

operating system did not employ a strict 8-, 12-, or 24-hour shift 

pattern. Instead, vehicle utilization was determined by mission 

requirements and the operational plan, with vehicles being 

dispatched as needed. The analysis is therefore based on actual 

recorded operation and downtime periods (start and end times 

of tasks, maintenance, refueling, etc.), not on theoretical 

maximum utilization or imposed shift cycles. This approach 

reflects real-world operating conditions and is consistent with 

military logistics practice, where operation is demand-driven 

rather than fixed-shift-based. 

4.1. Results of the statistical approach 

Based on operational data, a statistical analysis of vehicles used 

in the Polish Armed Forces was performed. 

The Kaplan-Meier estimator was used to estimate the values 

of the unreliability and reliability functions. Based on empirical 

data on the times between failures of military vehicles according 

to relations (3) and (4), the reliability and failure functions were 

estimated. The result’s graphical interpretation is presented in 

Fig. 5. 

  
(a) (b) 

 

(c) 

Fig. 5. Estimation and approximation of functions: (a) - Cumulative distribution function approximation, (b) - Reliability function 

approximation, (c) - Kaplan-Meier estimation. 
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Assessment of the accuracy of matching the developed 

models to empirical values is an essential element of reliability 

analyses. AIC index is the primary and decisive criterion for 

selecting the best-fitting distribution. MSE is reported as  

a secondary criterion, providing a direct measure of the overall 

deviation between the empirical Kaplan-Meier curve and the 

fitted distribution. PCC and R are presented as auxiliary 

measures. They indicate the strength of the linear relationship 

between the empirical and fitted values. While a high value of 

R or PCC confirms the quality of fit, these coefficients are not 

used as the decisive criteria for selecting the best model. 

In this study, the reliability function models developed in 

this paper showed a high degree of fit to the estimated values. 

Table 2 lists the values of correlation coefficient R, MSE, PCC, 

and AIC for each distribution. For gamma, Weibull and 

lognormal models, the R coefficient reached a value of above 

0.99. The Pearson Correlation Coefficient for the normal model 

is an outlier from the others. Of the 5 proposed distributions, we 

consider the one with the lowest AIC index value to be the best 

suited. Unless the MSE values for the fitted models are too close 

to each other, the smallest AIC will be at the smallest MSE.  

Before fitting theoretical distributions, the empirical 

distributions of sojourn times for key transitions were examined. 

Representative histograms are provided in Appendix A to 

illustrate the underlying variability in the data and justify the 

selection of candidate distributions.  

Reliability indicators are the measures that provide 

information about the quality and functioning of the operation 

process. These factors characterize the intensity of use, identify 

the time of failure detection, determine the time required for 

repairs, assess the availability of components or parts that must 

be repair or replacement, and define the organization and 

equipment of the service base. Based on the relations (5)-(9) and 

the total duration of individual states Si the values of reliability 

indicators for Iveco Stralis vehicles were calculated, the 

summary of the values is presented in Table 3. 

MTBF value was 268.11 [days], which proves the high level 

of vehicle reliability. Moreover, it can be assumed that the 

strategies used and the operation system implemented allow for 

the efficient removal of malfunctions. The high level of training 

of the fault diagnosis personnel and their efficiency is 

characterized by MTTD at the level of only 29 [minutes], which 

is 0.02 [days]. Moreover, the MTTR value of 18.80 [days] may 

indicate a small number of repair personnel, poor training and 

improper equipment at the repair stations. However, the system 

could be improved by reducing the waiting time for spare parts, 

which is likely due to logistical delays caused by complex 

purchasing procedures.  

Table 3. The value of reliability indicators. 

Other measures used to assess the ability to work properly 

are availability factors. One is the momentary technical 

availability factor, which determines how many vehicles are 

ready to perform a task at a random moment t. According to the 

data given in Fig. 6, the system’s temporary technical 

availability remains above 82% throughout the tested operation 

process. Moreover, the analyzed transport system has a high 

level of redundancy, which increases the safety, durability and 

reliability of the transport objects and systems. 

Moreover, in accordance with the relation (10)-(11), the 

values of availability coefficient kgt = 0.934 and internal 

(technical) availability coefficient kgw = 0.989 were calculated. 

Taking into account the level of availability and reliability 

indicators accepted by the Polish Armed Forces, the value 0.95 

kgt is slightly below the requirements. The value of coefficient 

kgt is lower than kgw, since the internal availability factor kgw 

does not include, among others, downtimes caused mainly by 

waiting for spare parts. Therefore, maintenance downtimes can 

be limited to increase its value to acceptable levels. Fig. 7 shows 

the impact of shortening MTTS on the value of indicator kgt.

Table 2. Accuracy of fitting models to data. 

Reliability indicator Time [min] Time [days] 

MTBF 366081 268.11 

MTTD 29 0.02 

MTTS 16996 11.80 

MTTR 27071 18.80 

Model a b AIC R MSE PCC 

Exponential 0.0037 - -145.5865 0.9877 0.0025 0.9941 

Gamma 0.6800 0.0021 -361.9451 0.9964 0.0006 0.9957 

Weibull 298.8060 0.7619 -420.4997 0.9973 0.0004 0.9971 
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Fig. 6. Momentary values of the technical availability indicator.

It should be noted that reducing the waiting time for spare 

parts significantly affects the availability index, which increases 

and approaches the value of internal (technical) availability. It 

can be observed that reducing the maintenance downtime by 40% 

results in its improvement by 0.017 and reaching the value of 

0.951, which meets the requirements for the Polish Armed 

Forces transport systems. 

 

Fig. 7. Availability indicators values obtained after TTS 

reduction. 

4.2. Results of the stochastic approach  

Stochastic modeling of the operation process allows for 

capturing the inherent randomness of state transitions and the 

variability of sojourn times in different operational phases of the 

vehicles. 

To enhance understanding of the processes occurring in the 

analyzed operating system and enable a more accurate 

interpretation of the distribution characteristics, Appendix A 

presents raw empirical data in the form of residence time 

histograms for selected transitions between states in a 7-state 

operating model. Each histogram shows the observed 

distribution of transition times Tij between specific operational 

states of military vehicles. Analysis of these histograms clearly 

indicates that the empirical distributions of sojourn times 

frequently deviate from the classical exponential distribution.  

With regard to these observations, the next step in the 

analysis was to formally verify whether the Markov model 

could be applied to the analyzed data or whether a more flexible 

semi-Markov model was necessary.  

As mentioned in Section 3, testing the reliability using 

stochastic methods will begin with checking the applicability of 

the Markov or semi-Markov model for the test sample. Both 

Kgt 10% 20% 30% 40% 50% 60% 70% 80% 90% Kgw

0.934
0.939

0.943
0.947

0.951
0.955

0.959
0.963

0.967
0.972

0.989

TTS reduction

Model a b AIC R MSE PCC 

Lognormal 5.1448 1.5461 -527.1318 0.9980 0.0002 0.9987 

Normal 212.8367 215.0102 13.3573 0.9535 0.0073 0.9538 
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proposed methods for verifying the exponential distribution are 

based on the empirical distribution function and belong to the 

group of nonparametric tests. χ2 test is one of the most popular 

ones utilized by the authors of [29, 56], however, due to the 

limitation of a minimum size of the sample, it cannot always be 

used [29]. Due to the conditions of applicability of the proposed 

nonparametric tests and the sample size of less than 80 (T45, T56, 

T67), verification of the empirical distribution with the 

theoretical distribution will be performed using the 

Kolmogorov-Smirnov test. For hypothesis H0 it was assumed 

that the distribution of times for individual interstate transitions 

has an exponential distribution. Alternative hypothesis H1 

contradicts this assumption. The critical values (K) of the 

Kolmogorov-Smirnov test for α = 0.05 can be estimated 

according to the formula: 

𝐷(0.05; 𝑦) =
1.358

√𝑦+0.12+
0.11

√𝑦

.       (27) 

When Un ∈ K, we reject hypothesis H0 and adopt H1.  

The analysis results are presented in Table 4.  

Table 4. Results of Kolmogorov-Smirnov test. 

Only two time characteristics, T15 and T67, reached the 

values of the Kolmogorov-Smirnov test statistics, which are not 

included in the critical value. Therefore, only two time 

characteristics have an exponential distribution, while the 

remaining 12 do not meet this condition. This means that there 

is a justified need to use the semi-Markov model to describe the 

operation process of goods and passenger vehicles. The 

obtained results are the basis for developing semi-Markov 

models of the operation process of military vehicles. 

Furthermore, the statistical robustness of the analysis is 

supported by the size of the dataset. The total number of 

interstate transitions for the sample was 54,565, with  

a statistical average of 1,059 transitions per vehicle. Therefore, 

the presented test sample is statistically reliable. 

𝐍 =

[
 
 
 
 
 
 
0 5063 0 7356 95 0 0

2962 0 0 3436 0 0 0
0 0 0 12044 0 0 0

9569 1591 11809 0 78 0 0
0 0 0 0 0 46 112
0 0 0 0 0 0 37
0 0 0 148 0 0 0 ]

 
 
 
 
 
 

. 
(28) 

Based on the matrix (28), the values of interstate transition 

probabilities of the inserted Markov chain were estimated and 

presented using the matrix (29): 

𝐏 =

[
 
 
 
 
 
 

0 0.404587 0 0.587822 0.007591 0 0
0.462957 0 0 0.537043 0 0 0

0 0 0 1 0 0 0
0.041520 0.069033 0.512388 0 0.003384 0 0
0.028701 0 0 0.235650 0 0.138973 0.338369

0 0 0 0 0.554217 0 0.445783
0 0 0 0 1 0 0 ]

 
 
 
 
 
 

.       (29) 

 

After substituting the numerical data into equation (23), the 

following system of equations was obtained: 

{
  
 

  
 

−𝜋1+0.404587𝜋2+0.587822𝜋4+0.007591𝜋5=0
0.462957𝜋1 − 𝜋2+0.537043𝜋4=0

−𝜋3 + 𝜋4=0
0.415195𝜋1+0.069033𝜋2+0.512388𝜋3 − 𝜋4+0.003384𝜋5=0
0.287009𝜋1+0.235650𝜋4 − 𝜋5+0.138973𝜋6+0.338369𝜋7=0

0.554217𝜋5 − 𝜋6+0.445783𝜋7=0
𝜋5 − 𝜋7=0

(30) 

By solving the Chapman-Kolmogorov system of equations 

(30), the ergodic probabilities for the Markov chain were 

estimated - their values are given in Fig. 8 and Table 5. The 

highest observation probabilities were recorded for operational 

states π4 = 0.4195, π1 = 0.2330, π3 = 0.2149 and π2 = 0.1232. 

This is a desirable phenomenon and proves the high availability 

of the objects. The lowest probability of entries was observed 

for undesirable states (unsuitability {S5, S6, S7}) π7 = 0.0024, π5 

Tij Sample size y Un statistic Critical range Hypothesis 

T12 5063 0.1356 [0.0190, 1] H1 

T14 7356 0.2706 [0.1420, 1] H1 

T15 95 0.1167 [0.1375, 1] H0 

T21 2962 0.4241 [0.0249, 1] H1 

T24 3436 0.4115 [0.0231, 1] H1 

T34 12044 0.4166 [0.0124, 1] H1 

T41 9569 0.6184 [0.0139, 1] H1 

T42 1591 0.4243 [0.0339, 1] H1 

T43 11809 0.4958 [0.0125, 1] H1 

T45 78 0.2803 [0.1515, 1] H1 

T56 46 0.7994 [0.1963, 1] H1 

T57 112 0.6126 [0.1268, 1] H1 

T67 37 0.2029 [0.2183, 1] H0 

T74 148 0.5997 [0.1105, 1] H1 
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= 0.0061, π6 = 0.0008.  

It should be noted that the calculated limit probabilities refer 

only to the frequency of observations and do not consider the 

duration of individual states. Based on formula (25), the values 

of the ergodic probabilities of the semi-Markov model were 

calculated.  

 

Fig. 8. Ergodic probabilities 𝝅𝒋 for the homogeneous Markov 

chain. 

The obtained values in individual operating states are given 

in Table 5. State S3 reaches the highest values, i.e. 

standby/parking in the garage (over 84%), while state S1 reaches 

7%. The remaining limit values are satisfactorily low, which 

confirms the relatively low failure rate of the fleet vehicles. 

Table 5. Ergodic probabilities of embedded Markov Chain and 

semi-Markov process. 

 S1 S2 S3 S4 S5 S6 S7 

πj 0.2330 0.1232 0.2149 0.4195 0.0061 0.0008 0.0024 

pj 0.0773 0.0007 0.8298 0.0099 0.0293 0.0432 0.0097 

pj [%] 7.73 0.07 84.98 0.99 2.93 4.32 0.97 

E(Tj) [min] 486.8 37.4 18.6 9.5 1375.2 4270.6 1418.7 

E(Tj) [day] 0.34 0.03 0.01 0.01 0.96 2.97 0.99 

Based on the ergodic probability values of the semi-Markov 

process, pj availability indicators Kgt and Kgw were calculated. 

For the analyzed exploitation process, states S1, S2, S3, and S4 

were considered states of suitability, and states S5, S6, and S7 

were considered states of unsuitability. Availability indicator Kgt 

for the analyzed 7-state semi-Markov model was calculated as 

the sum of the conditional probabilities of the appropriate 

reliability states: 

𝐾𝑔𝑡 = 𝑃(𝐴|𝛺) =
𝑃(𝐴∩𝛺)

𝑃(𝛺)
=

𝑝1+𝑝2+𝑝3+𝑝4

∑ 𝑝𝑗
7
𝑗=1

,     (31) 

where A = {S1, S2, S3, S4} is the set of suitability states, and Ω is 

the phase space of the model and A ∈ Ω.  

Based on Eq. (31), the indicator value of Kgt = 0.9296 was 

obtained. Calculations of the internal availability indicator Kgw 

was made using the relation: 

𝐾𝑔𝑤 = 𝑃(𝐴|𝐵) =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
=

𝑝1+𝑝2+𝑝3+𝑝4

𝑝1+𝑝2+𝑝3+𝑝4+𝑝7
,      (32) 

where B is the set of operational states, excluding failure states 

S5 and waiting for repair S6. 

The indicator value of Kgw = 0.9880 was obtained. 

4.3. Limitations 

Despite the valuable insights provided by the proposed 

methodology and results, several limitations should be 

considered when interpreting the findings of this study: 

- Data selection: The analysis was limited to 50 military 

vehicles of the same model, used under similar 

conditions, which reduces technical variability but limits 

generalizability to other vehicle types or operational 

contexts. 

- Data sources: Operational data were based on paper 

records, increasing the risk of incompleteness and errors; 

20 vehicles were excluded due to missing data. 

- Model selection: The suitability of Markov or semi-

Markov models was statistically verified. Only 2 of 14 

transitions met the exponential distribution assumption, 

necessitating the use of the semi-Markov model. 

- Deterministic assumptions: The process was treated as 

stochastic, but some deterministic factors (e.g., periodic 

maintenance) exist. A higher share of such elements 

could limit the applicability of these models. 

These limitations should be considered when interpreting 

and generalizing the findings. While the methodology is 

universal and can be applied to other technical systems, the 

numerical results obtained in this study may not be directly 

generalizable to different vehicle types or operational 

conditions. Further research using broader datasets and 

alternative data sources is recommended. 

5. Comparison of the results 

The comparison of the test results obtained using statistical and 

stochastic methods is given in Table 6 and Fig. 9. 

The values of the availability indicators kgt and Kgt, at the 

level of 0.92, do not meet the acceptable level availability 

indicators in the Polish Armed Forces, which have been set at 

the level of ≥ 0.95. The probability value of the ergodic state S6 

has the greatest impact on reducing the availability rate. This 

0.2330

0.1232

0.2149

0.4195

0.0061 0.0008 0.0024

π1

π2

π3

π4

π5

π6

π7
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condition corresponds to a situation where the vehicle has 

broken down, is inoperable and requires repair. Still, due to the 

lack of technical or organizational abilities or the lack of spare 

parts, it is not in a state of repair (S7). The main reasons for this 

situation are logistical delays related to the limited availability 

of spare parts and the lack of qualified technical personnel at  

a given time. As far as the properties of the device are concerned, 

an acceptable level of availability can be achieved by reducing 

the time the object stays in state S6. This can be done by 

maintaining higher levels of spare parts and simplifying 

purchasing procedures. By improving the operation of the 

logistics system, it is possible to achieve availability levels kgt 

and Kgt at a level close to the values of the indicators kgw and Kgw. 

Technical availability indicators (internal) kgw and Kgw strictly 

illustrate the device's properties, and for the examined case they 

reached values above 0.98.  

Comparing the results obtained using two methods, 

differences in the values of indicators of staying in operational 

states were obtained in the range of -10.2% to 117.0%. The 

percentage differences between the models reached very similar 

(almost identical) values for the suitability states S1, S2, S3, and 

S4, where they differed by less than 3%. The greater differences 

in results were obtained for states of unsuitability S6 (5.1%) and 

S7 (10.2%). The relative differences in the probability values of 

remaining in State S5 reached as much as 117.0%. Moreover, 

states S5, S6 , and S7 being a set of unsuitability states, have 

reached positive differences. This high value is primarily due to 

the highly skewed (left-skewed) distribution of the data, with  

a significant predominance of short sojourn times in State S5, 

alongside a few much larger values. In such cases, relative error 

indicators become highly sensitive to small differences between 

the results obtained from the two approaches, especially when 

the absolute values are small. The differences obtained in 

interpretation using statistical and stochastic methods are 

because availability coefficients kgt and kgw reflect the results for 

the test sample. The value of the availability indicators Kgt, i 

Kgw  is theoretical and represents the probability at infinity to 

which the availability factor is predicted to tend.

Table 6. The comparison of the test results obtained by statistical and stochastic methods. 

Statistical Stochastic Differences 

Measure Indication Value Measure Indication Value Value [%] 

Availability 

indicators 

kgt 0.9340 Availability 

indicators 

Kgt 0.9296 -0.0044 -0.5% 

kgw 0.9890 Kgw 0.9880 -0.0006 -0.1% 

Percentage of the 

duration of each 

operating condition 

Si for the test sample 

S1 [%] 7.59 

Ergodic 

probabilities of 

the SMP 

p1 [%] 7.46 -0.1300 -1.7% 

S2 [%] 0.07 p2 [%] 0.07 0.0000 0.0% 

S3 [%] 84.82 p3 [%] 84.44 -0.3800 -0.4% 

S4 [%] 0.97 p4 [%] 0.98 0.0100 1.0% 

S5 [%] 1.35 p5 [%] 1.33 -0.0200 -1.5% 

S6 [%] 4.11 p6 [%] 4.58 0.4700 11.4% 

S7 [%] 1.08 p7 [%] 1.13 0.0500 4.6% 

 

Fig. 9. Percentage differences of state time durations using 

statistical and stochastic methods. 

6. Conclusions and future works 

The reliability and availability of technical objects and systems 

are extremely important and often analyzed in the source 

literature. This study presents a novel approach to evaluating 

and optimizing the reliability and availability of technical 

systems through the implementation and comparison of 

statistical methods and semi-Markov processes. By applying 

these methods to empirical failure data from a military transport 

system, this research provides a significant advancement in 

understanding and addressing the complexities of operational 

processes in technical systems. 
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Based on the statistical analysis of technical object failures, 

reliability and availability indicators were estimated, which 

enable monitoring of the effectiveness of the transport system. 

The tested trucks have high reliability, which can be identified 

by a relatively long time of failure-free operation, i.e. MTBF = 

268.11 [days]. The reduction in system reliability indicators is 

mainly affected by the MTTS indicator at the level of 11.8 

[days]. The remaining 2 indicators, i.e. MTTD and MTTR have 

a significantly smaller impact on vehicle reliability. 

The model creation algorithm using the Markov and semi-

Markov processes proposed in this paper was implemented into 

the truck operation process. Based on the empirical operation 

process analysis, a 7-state phase space was identified. Based on 

the verification of the exponential distributions of time 

characteristics using the Kolmogorov-Smirnov test, the need to 

use the semi-Markov process was confirmed. The value of the 

matrix of conditional probabilities of interstate transitions of the 

inserted Markov chain was estimated based on real data. Then, 

by solving the matrix equation, the values of ergodic 

probabilities were calculated to determine accessibility 

indicators. 

To sum up, statistical methods only allow for assessing 

system availability without indicating possible directions for its 

improvement. However, it has been shown that reducing of state 

time S6 by 40% improves the kgt indicator value by 0.017 to 

reach the value of 0.951. 

In turn, using the semi-Markov processes enables accurate 

mapping of the actual course of state changes in the identified 

phase space. The semi-Markov model is useful in the context of 

process analysis in terms of identifying the causes of reduced 

availability rates. In accordance with the developed and 

implemented 7-state model in the analysis of truck operation 

processes, it has been shown that there is a significant effect on 

the expected time of staying in state S6 (waiting for spare parts), 

which is a key factor in the significant drop in the value of 

indicator Kgt compared to the value of indicator Kgw. 

It should be emphasized that the obtained reliability 

indicators values for both methods indicate a properly planned 

and implemented operation process from the standpoint of 

technical availability of equipment operated in the transport 

system. Convergent results obtained using statistical and 

stochastic methods prove the correctness of the proposed 

methodology and calculations. 

This study contributes to the field of reliability and 

availability modeling by providing a validated, universal 

framework that combines statistical and stochastic methods. 

The proposed semi-Markov model not only estimates 

performance indicators but also identifies key areas for process 

improvement, bridging the gap between theory and application. 

This research lays the groundwork for optimizing system 

performance and readiness in diverse technical domains by 

addressing critical factors such as logistical delays. A major 

contribution of this research is the introduction of a 7-state 

semi-Markov model, which provides a detailed representation 

of operational states, including critical phases such as downtime 

due to logistical delays. This model overcomes the limitations 

of traditional Markov models, which assume exponential state 

distributions, by accommodating non-exponential behaviors. 

The methodology introduced in this study is not limited to the 

military transport system. Its adaptability makes it applicable to 

other high-stakes technical systems, such as healthcare, 

aerospace, and public transportation, where reliability and 

availability are critical. 

The obtained results constitute the basis for further research 

on the reliability characteristics of the operation process. The 

next step may be to apply the proposed approach to RAM 

analysis. Moreover, the authors see the possibility of 

implementing and consolidating the information on failures 

with operational management software. The methodology 

proposed in this paper is a universal tool that can be used to 

analyze and assess any technical object's operation. 

Furthermore, future work will focus on validating the proposed 

methodology using additional datasets from different vehicle 

types or operational contexts, in order to further assess and 

improve the generalizability of the results. The flexibility of the 

proposed methodology makes it suitable for other complex 

systems, including urban infrastructure, energy networks, and 

industrial manufacturing processes. On this basis, it is possible 

to develop an effective repair and maintenance strategy, the 

implementation of which would positively impact reducing 

repair time and increasing the system's efficiency. 
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