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Abstract

This paper presents a novel implementation of statistical and stochastic
methods for estimating and evaluating reliability and availability
indicators in technical systems. Using empirical failure data from a real-
world military transport system, we introduce an innovative 7-state
model that provides a detailed representation of operational phase of the
systems. The research integrates Markov and semi-Markov processes to
accurately model state transitions, particularly addressing scenarios
where traditional Markov models are insufficient due to non-exponential
state distributions. Our findings demonstrate that both statistical and
stochastic methods yield closely aligned reliability and availability
indicators, validating the robustness of the proposed methodologies.
This research not only advances the accuracy of reliability assessments
but also identifies actionable improvements to enhance operational
readiness. They provide a comprehensive framework for analyzing and
improving the operational efficiency of technical systems, with broader
applications across various engineering fields.

Highlights

= Anovel 7-state semi-Markov model of vehicle
operation was developed.

= Reliability models of technical objects were
developed based of failure data.

= Reliability and availability indicators were
computed and validated.

=  Statistical and stochastic methods were

integrated and compared.
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1. Introduction

Ever-growing requirements for the reliability and safety of
technical objects and systems generate the need to continuously
improve theoretical models to describe them. In addition to the
accuracy of the theoretical model's representation of reality, the
economic aspect related to the high research costs in operational
conditions should also be considered. Due to the above,
modeling reliability is an extremely difficult issue, but due to its
importance, it constitutes an area of research in modern

scientific publications [1, 22].

(*) Corresponding author.
E-mail addresses:

Description of the functioning of objects using deterministic
models may entail the possibility of omitting the impact of
random factors affecting their operation. Probabilistic models
are free from this drawback and consider all phenomena
affecting objects' functioning. Probability distributions
constitute a basis for building probabilistic models. Knowing
the form of the distribution describing the failure rate of
a technical object, it is possible to predict its operating time with

a certain probability. Knowing the course of the probability of
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a failure over time, one can take preventive actions before the
risk of failure reaches its limit value, thus avoiding financial
losses and ensuring an appropriate level of safety [47].

The basis for proper and effective management in technical
object operation systems is the correct analysis and assessment
of the processes taking place there. Statistical methods are
among the basic methods for examining the reliability and
availability of objects and systems. They enable the
characterization of the operation process without the use of
complicated mathematical methods and expensive computer
programs.

Using stochastic processes, the exploitation process model
can be presented by describing subsequent changes in the states
of objects over a period of time. After identifying all possible
states of objects (systems), they are aggregated using the
method of successive approximations in accordance with the
adopted modeling objective [26]. In this paper, as a result of the
identification of the actual transport system and the multi-state
facility operation process implemented in it, significant
operational states were determined. Then, possible transitions
between the distinguished operational states were determined,
creating a graph of interstate transitions.

The reliability and technical availability of vehicles are one
of the main determinants of the effectiveness of modern,
advanced transport systems. The specificity of vehicles
operating in military transport systems implies the need to
restore technical suitability after random failures. The
occurrence of failure to the means of transport during transport
processes translates into disruptions to the functioning of the
entire system [10, 32]. In many technical systems, due to the
lack of quick and elastic supplies of necessary materials and
components, the time of unsuitability of means of transport that
suffered a mechanical failure is a significant factor that reduces
the availability indicator values [39]. Reliability models are
useful for forecasting and evaluating the maintenance and repair
needs of vehicles used by, among others, army [49], police [7,
29], health service [24], transport companies [5, 44] or service
patrols [15]. Therefore, availability and reliability indicators
must be carefully analyzed and monitored, especially during
crises and wars.

This study aims to implement and compare the suitability of

two methods for assessing the availability and reliability of

technical objects. The proposed approach is an extension and
complements existing statistical methods and stochastic
modeling in terms of their applications to the field of
engineering and technical sciences [4, 7, 16]. An original
algorithm for analyzing the reliability of technical objects was
constructed. The model includes a reliability testing
methodology based on failure analysis, which reduces the costs
related to conducting expensive experimental tests or time-
consuming simulations. The results of the analyses allow for the
assessment of the reliability and availability of vehicles, which
consuming simulations. The results of the analyses allow for the
assessment of the reliability and availability of vehicles, which
reflects the technical aspect of the effectiveness of the means of
transport. The proposed method makes it possible to identify
possible components that can improve the availability
indicators. The research was carried out using MATLAB and
STATISTICA software.

The main contributions of the paper are as follows:

- To create a novel algorithm for applying statistical and
stochastic methods;

- Developing of a new 7-state model will capture the
complex operational phases of military transport systems,
enhancing the accuracy of reliability and availability
indicators.

- Identification of critical factors that influence reliability
and availability measures. Proposing actionable
improvements to it.

- Establishment of a comprehensive methodology for
assessing and improving the operational efficiency of
technical systems.

- Applying the methodology to real-world data from
a military transport system demonstrates its utility and
robustness.

- The presented methodology can be extended to other
technical systems in various engineering fields for
reliability assessment and process optimization.

The paper has been divided into five sections. Section 2
presents the current state of knowledge regarding the use of
statistical and stochastic methods in reliability and availability
modeling. Then, based on the adopted assumptions,
a description of statistical and stochastic methods was made

along with the methodology of their application (Section 3).
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Based on operational data empirically obtained from a real
military transport system, Section 4 presents the practical
application of the proposed approach to analyzing the
operational process and reliability of trucks. Based on empirical
data and statistical methods, the values of reliability indicators
and availability measures of the transport system were
calculated. Next, the possibility of using Markov and semi-
Markov processes for a given transport system was investigated.
A model of the operation process was developed using a semi-
Markov process. Then, the research results obtained using
statistical and stochastic methods were compared. Section 5
summarizes The entire publication, including the conclusions

and future works.

Notifications
LDA Life Data Analysis
MSCF Mean Security Capacity to Failure
MTBF Mean Time Between Failures
MTTD Mean Time To Diagnose
MTFF Mean Time to Failure
MTTS Mean Time To Supply
MTTR Mean Time To Repair
RAM Reliability, Availability, Maintainability
SMP Semi-Markov Process
MSE Mean Squared Error
AIC Akaike Information Criterion
PCC Pearson Correlation Coefficient
R() Reliability function
F() Cumulative distribution function
Availability coefficient for statistical
kgt
method
k Internal (technical) availability coefficient
e for statistical method
i Temporary indicator of technical
" Unavailability for statistical method
Qi) Matrix of the renewal kernel
A Transition intensity matrix
Aij The intensity of the state changes
N Matrix of the number of interstate
transitions
. Probability of transition from state 7 to state
i j
P Stochastic matrix
T Ergodic probability vector
_ Ergodic probability of being in state j
P element of the vector .
availability coefficient for stochastical
K
method
K Internal (technical) availability coefficient
e for stochastical method

2. Literature review

This section contains reviews of the literature devoted to
modeling the reliability and availability of technical objects

using statistical and stochastic methods. The main research

goals of the authors were the following analyses: reliability [8,
28, 36, 58], availability [20, 28, 57, 66], determination of
optimal repair intervals [37, 41, 45, 59] and reduction of
operating costs of the tested systems [18, 19, 31, 46].

Statistical methods are one of the basic ways of creating
reliability models. Based on the operational data of transport
companies in [5], the technical availability indicators of
selected vehicles were determined and compared. It was proved
that the availability indicator does not depend directly on the
object’s age and mileage. Czarnowska and Migawa [34]
determined the availability indicators of transport means and,
based on them, created the basis for building a mathematical
model of the operation process of the objects under study. In
[38], using a linear econometric model, the author presented an
attempt to forecast the reliability of machines, taking into
account their seasonality. He demonstrated that the range of data
and its randomness limit the use of econometric modeling.
Using the Kaplan-Meier estimator, Selech and Andrzejczak [47],
examined the reliability of the driver cabin lock in a rail vehicle.
The method of examining the temperature profile in aircraft
commutators presented by Wawrzynski et al. [55] allowed for
the estimation of changes in the values of their diagnostic
parameters and their operating time. Based on the availability
and reliability metrics, Kokieva et al. [27] discussed the
methodology for calculating, analyzing and increasing the
reliability of objects and systems. When characterizing
statistical methods in reliability testing, it should be emphasized
that understanding various types of failures by the users and
statistical analysis of data on MTBF and MTTF are the basis for
applying an appropriate policy to optimize availability and
reliability. Zyluk et al. [66] proved that the logistic needs of
operational support of a military aircraft can be defined based
on the MTTF indicator. The presented method takes into
account accidental failure to components that could not be
predicted at the spare parts scheduling stage, identifies failure
patterns and allows for logistic planning of the supply process
of failure-prone parts, thus increasing the system's operational
safety. In [52] the MTBF indicator was used to quantitatively
describe technical objects' reliability level. Bai et al. [3] used
MTTF and MSCEF indicators to calculate availability in the
platooning system.

Test results obtained using statistical methods constitute the
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basis for further reliability research. Koohsari et al. [28] and
Nurcahyo et al. [37], based on MTBF and MTTR, conducted
a RAM analysis and proved that appropriate maintenance
planning significantly influences machines' readiness. Similar
research was carried out in [45], where Saini et al., additionally
using a genetic algorithm and particle swarm optimization,
indicated possible directions for improving the load haul dump
machines’ functional parameters. Using statistical methods,
extended by using the Laplace transform and the R
programming language, enabled Szkutnik-Rogoz et al. [51] to
create a universal method of operation process modeling.

After analyzing the current studies, it should be stated that
Markov or semi-Markov models of the exploitation process are
widely used in science and technology and are an area of interest
for many authors. Depending on the modelling goal, Markov
and semi-Markov models may have a different number of states
in the phase space. In [53], based on a 2-state Markov model,
the author created a control rule to simulate and optimize energy
saving in the manufacturing system line. In [19], Markov
processes were used to determine fueling patterns for hydrogen-
powered vehicles and drivers’ behaviors in the South African
transport sector. Raven in [30] used a 4-state Markov model to

present a model of the operation process with the expectation of

Table 1. The comparative summary of the literature review.

use. He proved that the estimated indicators and measures
essential for the vehicle operation, i.e. repair defectiveness,
repair intensity, usage intensity and failure intensity, may be
useful in the operation management process. In [20], Itkin
analyzed farm availability indicators based on the 5-state
Markov model. According to his estimations, the power of the
tested wind farm is covers only 54% of the electricity demand
and its expansion is necessary. In [48], a 6-state Markov model
was used for modelling the repair policy. Estimating parameters
for semi-Markov models is more difficult, which makes them
less popular. However, due to less restrictive requirements
regarding the form of distribution of the studied variables (any
variables), they constitute a universal tool for modelling
operational processes. Grabski [16] presented a general model
of technical objects and proved the theory regarding the Markov
recovery equations for the conditional reliability function with
a semi-Markov failure rate process. Borucka et al., [7] using
semi-Markov processes, characterized the process of operating
police cars. It developed a model based on three states (usage,
parking and repair). By examining the intensity of use and the
time of failure-free operation of the vehicles, she estimated the
level of readiness and showed that the analyzed transport system

had a satisfactory stationary availability factor.

Methods and

Indicators Model Case study Purpose of research Result and conclusions Papers
approaches
Vehicles in .. . L The basis for constructing
o Determining readiness indicators for .
Availability - transport . mathematical models to evaluate  [34]
transport vehicles. g
company availability.
Reliability - Agricultural ~ Analyze reliability and readiness  Identified operational parameters [27]
stical Y machines indicators. to enhance equipment utilization.
Statistica Normal, Lognormal,
Exponentlal, . Rail vehicles  Select criteria for fitting time-to- Developed methods fOT r(_)bust [47]
Weibull, Logistic, . e data-model fit for predictive
D components  failure distributions. .
Loglogistic maintenance.
MTFF  Gumbel
Statistical and Normal, Lognormal. Predict spare part needs using Highlighted logistical
probabilistic Exponential, Helicopters e improvements based on MTTF [66]
. reliability indexes. S
methods Weibull predictions.
Statis.tical and MTBF, Normal, Exponential Load haul Optimize failure and repair Enabled planning for advanced [45]
genetic MTTR  Weibull, Lognormal dump machinesparameters. maintenance strategies.
algorithm
) Exponential Manufacturing Increase efficiency and energy Develop control rule to simulate (53]
2-state model line system savings and optimize energy saving
Exponential Hydrogen fuel Understanding stochastic refueling Deve.l()p refueling trer}d
- . . algorithms and behavioral [19]
3-state model vehicles behavior
patterns.
Markov process General
) Exponential technical Exploring component sequencing in Provided formulas for reliability [18]
4 -state model objects redundancy strategies in mixed redundancy strategies.
Availability Exponential Wind farm Estimating availability indicators of Quantified electricity demand met [20]

5-state model

real case study

by wind power.
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Methods and

Indicators Model Case study Purpose of research Result and conclusions Papers
approaches
Introduced a structured
. Develop a universal method for framework that optimizes
Weibull . . . . . .
- City buses comparing maintenance scheduling maintenance schedules, reducing  [35]
5-state model L . . . .
policies across technical systems.  downtime and improving system
readiness.
T Model supports maintenance
Reliability 7-state model MMC Short-te?rm rehablhty. a.ssessment planning and enhances operational [60]
and maintenance decision support .
reliability.
Weibull
- Gamma Police cars Diagnostics and readiness evaluationlmroduCed a predlctlve readiness [29]
Lognormal model for maintenance systems.
8-state model
MTTF, . The use of stochastic processes
MTBF, Normal, Exponential . . . .
L. MTTR.  Weibull makes it possible to identify
Statl.stlcal and MTTD’ Lo norr’nal Military trucks Implementation and comparison of operating conditions that affect This
semi-Markov MTTS’ Gaignma y statistical and stochastic methods  the improvement of the values of  paper
process g availability and reliability
availability, 7-state model S
R indicators.
reliability

Based on empirical data in [40], a 3-state semi-Markov model
was developed for vehicles used in a military transport system,
which is less accurate than the original 9-state model. However,
it is still a reliable representation of the operation process under
study, and at the same time, it significantly simplifies
calculations related to the analysis of reliability. The model of
operational reliability of road machinery developed in [14]
enables estimation of its operational reliability. Sanchez-
Herguedas et al. [46] based on empirical data on o-rings
belonging to the refrigerated exhaust system of a marine diesel
engine, developed a 3-state semi-Markov model to optimize the
preventive maintenance interval. In [35] authors considered a 5-
state model of preventive repairs and component replacements
depending on the age of city buses. The authors proved that
taking into account the criterion of profit in time and the
readiness factor, optimal times for preventive replacements of
components can be determined. Zhang et al. [60] developed
a 7-state semi-Markov model for reliability evaluation of
modular multilevel converter (MMC) systems in flexible DC
power transmission networks. In their approach, the state space
was divided into three main operational states (locked, full
voltage, zero voltage), three corresponding alarm states, and
a complete failure state. This structure allows for detailed
modeling of both normal operation and degraded or alarm
conditions of the converter, utilizing real-time operational data
and non-exponential sojourn time distributions. The focus is on
enabling condition-based maintenance and supporting decision-
making in power engineering. Koztowski et al. [29], examining
an &-state semi-Markov model, presented a method for

detecting hidden factors and their impact on the system

reliability. In the field of IT, Ivanchenko et al. [21] and Mengistu
et al. [33] develop multi-state semi-Markov models for
availability assessment, accounting for a very large number of
states (up to 19) and complex scenarios of failures, including
deliberate malicious impacts.

The literature review showed that the analysis of appropriate
indicators for monitoring the technical condition of objects is
the basic criterion for managing the operational processes of
technical objects. The scientific literature includes many studies
on modeling the availability and reliability of technical object
operation systems. It is worth emphasizing that although the
analyzed models are based on similar mathematical foundations,
despite their shared advancement in the assessment of reliability
and availability, they differ in the level of detail of the
represented states, the application context, and the type of input
dataused. Compared to these studies, the proposed 7-state semi-
Markov model aims to capture the full operational lifecycle of
a military transport system, with states reflecting not only basic
functioning, downtime, and repair, but also logistical phases
such as waiting for parts. This structure balances the need for
sufficient detail with practical tractability for parameter
estimation and result interpretation. It is less complex than the
high-dimensional models used in IT infrastructure studies, but
offers a more nuanced description of operational reality than
traditional 2- or 3-state models commonly used in transport or
manufacturing systems.

Based on the literature review, a methodological gap was
identified in the form of a lack of validation of stochastic
modeling based on the results of statistical methods.

Additionally, it should be noted that the presented analysis fills

Eksploatacja i Niezawodno$¢ — Maintenance and Reliability Vol. 28, No. 2, 2026




the subject gap in the lack of implementation of semi-Markov
models to reflect the truck operation process. Table 1
summarizes data regarding the research methods used to
analyze the survival of technical objects, i.e. statistical and

stochastic.
3. Methodology

Implementing of operational research involves monitoring
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operational incidents (both planned and accidental) generated
by various data sources (operational areas), systematically
archiving them on primary storage media, and subsequently
transferring, verifying, and processing them in a centralized
data repository. The data collection, validation and

mathematical modeling process was conducted in four stages
(Fig. 1).
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Fig. 1. Data collection, validation and mathematical modeling process.

The initial step in developing the mathematical model involved
collecting empirical data from a real-world operational system.
The study sample consisted of military vehicles utilized by the
Polish Armed Forces between 2019 and 2021, as detailed in
Section 4. Data was extracted from traditional paper-based
documentation, including departure orders, technical service
sheets, operation plans, and technical condition reports. The
collected information included start and end times of operations,
distance traveled, fuel consumption, scope and duration of
maintenance and repair activities, and a list of spare parts and
materials used. This phase established a comprehensive dataset
capturing key operational parameters and maintenance records,
forming the foundation for subsequent analysis.

The second step focused on the verification and validation of
the collected data. The initial research sample comprised 70
military vehicles; however, due to incomplete operational
records that impeded the accurate reconstruction of detailed
phase trajectories, 20 vehicles were excluded from the analysis.
To construct the preliminary operational model, the method of

successive approximations was applied:

- Identification of all recorded operational states,
- Systematic aggregation of states aligned with the
modeling objectives,
- Elimination of states that did not influence the reliability
and availability analysis.
Initially, 32 distinct states were identified, each corresponding
to a relevant phase of vehicle operation as defined by applicable
technical regulations and the authors’ expert knowledge. Each
state was subsequently evaluated based on the following criteria:
frequency of occurrence, average dwell time, importance to the
structure of state transitions (including high transition intensity
and probability), and functional similarity to other states.
States that occurred infrequently or for short durations, as well
as those exhibiting similar functional roles or stochastic
behavior, were aggregated to simplify the model without
compromising its accuracy. Additionally, states characterized
by zero or negligible probability of interstate transitions were
excluded from the final model. This systematic refinement
process enabled the development of a robust operational model

that accurately reflects the real-world behavior of the system,
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while eliminating irrelevant or redundant data. We believe this
detailed methodological clarification enhances the model’s
transparency, facilitates reproducibility, and supports its
potential generalizability to other vehicle systems or operational
contexts.

The result of the research is an original 7-state model of the

operation process of Iveco Stralis vehicles, as shown in Fig. 2.

pss,TSG

Pas,T.
e Pis,Tis

Pi2, Ti2

Fig. 2. Process states in the operating system of military

trucks.

The graph is an interpretation of the analyzed exploitation
process, in which the vertices are operational states and the arcs
are possible transitions between states. Each of the technical
objects (means of transport) in operation may at any given time
t be in only one of the highlighted states S; € S, forming a finite
set S of operational states of the technical object.

Operation is understood as the transition of the objects
between identified operating states, i.e.:

- 81 -task execution - carrying out transport of cargo from
central warehouses to local warehouse,

- 82 - refueling - refilling operating fluids,

- 83 - standby/parking in the garage - time after
completion of other tasks. The vehicle is reliable and
parked in a garage,

- 84 - service - includes scheduled (planned) technical
maintenance and inspections. If a technical failure
requiring withdrawal from service is detected during this
state, the vehicle transitions to Ss. Minor issues that do
not require withdrawal remain classified under Ss.”

- 85 - failure - covers any unplanned interruption in
operation that directly affects reliability or safety. This
state includes the period of diagnosis and verification of

the failure, starting from the initial detection (whether

during operation or scheduled service) until the need for
repair is confirmed. Both failures occurring during
operation and those detected during scheduled
maintenance are included. Failure results in a transition
to an unfit state for a period of renewal.

- S6 - awaiting repair - period when the vehicle is out of
service and waiting for resources needed to initiate repair
(e.g. spare parts, tools, or personnel). The vehicle
remains non-operational until the necessary resources
become available and repair can begin.

- 87 - repair - operations aimed at restoring readiness of
the technical objects or their resources by removing any
malfunctions (damage).

At stage 3, using the verified dataset, the phase space of the
analyzed operational process was defined. Preliminary
databases were compiled using MS Excel and then translated
into source databases optimized for further engineering and
computational studies. For each vehicle, the balance of
operating conditions was verified, detailing the duration of each
operating condition over the three-year study period. This
verification provided an accurate record of system condition
transitions and operational schedules.

The final stage involved constructing an operational
database containing detailed records of state transitions. The
operational database was formatted for compatibility with
engineering analysis tools, enabling advanced studies in
reliability engineering and availability modeling.

The compiled database serves as a critical input for
reliability and availability analysis, facilitating the application
of advanced engineering software to model and simulate the
behavior of technical operating systems.

The structured data collection, verification, and processing
approach yielded a comprehensive operational dataset,
capturing the dynamics of military vehicle operations over an
extended period. The resulting database provides a reliable
foundation for conducting advanced studies on the reliability
and availability of technical systems, supporting further
development of mathematical models, predictive maintenance
strategies, and operational optimization tools. This process
ensures the validity and applicability of the dataset for future

engineering research.
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Fig. 3. Flowchart of the reliability and availability modeling.

As mentioned in the introduction and shown in Fig. 3, based
on empirical data on the operation process of technical objects,
two methods used to analyze the reliability and availability of
technical objects will be compared.

Reliability is the most important property of objects or
systems and characterizes their ability to perform their functions
during normal operation. In a probabilistic approach, the
reliability function is defined as the probability that no failure
will occur during the execution of the task (use), i.e. in the
service life range (0, ), according to the relation [23, 63, 64]:

R(t)=P(T =t)fort>0, (D

the statistical expression of the reliability function has the
following form:

N(0)-n(t)

R(t) = N D)

(2)

In the context of vehicles and transport systems, reliability
refers to the ability of vehicles, infrastructure and supporting
systems to operate without failure and as expected, while
ensuring safety and operational efficiency. The indicators will
be discussed later in the article.

The study of reliability characteristics using statistical
methods begins with estimating the reliability function. Then,

using analytical models, an approximation of this function is

performed. The next step is calculating availability indicators.
Reliability analysis using stochastic methods begins with
checking the applicability of the Markov or semi-Markov model,
i.e. verifying the exponential distribution of time characteristics.
For this purpose, the Kolmogorov-Smirnov test (for a sample of
less than 80) or the y2 test is performed. In the case of
exponential distribution, the Markov model is used, and the
intensity values of interstate transitions are calculated based on
it. Using the semi-Markov model, the value of the conditional
transition probabilities for the inserted Markov chain and the
expected value of the time between subsequent transitions are
determined. The values of the ergodic probabilities of the
inserted Markov chain are then calculated. The result of the
research is an identified subset of technical availability states
and the determination of the availability value of a technical
object. Validation of both methods is carried out by comparing
the obtained results of reliability and availability indicators.
After positive validation, it is assumed that the obtained results

will be analyzed.
3.1. Statistical methods

Multiple research methods are used to analyze the reliability and

availability of technical objects and systems, the use of which
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most often involves in-depth mathematical knowledge and
dedicated specialized software [2, 52]. Statistical methods
enable a relatively easy description of phenomena. Data on
failures is the basis for developing reliability models, which is
the basis for determining reliability measures and statistics.

A. Reliability estimation

As shown in Fig. 3, the estimation of the reliability function
value will be based on empirical data on technical object
failures. Operational data in the analyzed, real transport system
are censored. Therefore, the Kaplan-Meier estimator was used
to estimate the survival function and determine the empirical

distribution function [25, 67], according to the formulas:

RG) = Mimsen(1 =5, 3)

FG) =1~ Timean(1 =), @

where d; is the number of objects that failed when the x; value
was reached, while #; is the number of all technical objects that
worked correctly until the value x; was reached.

B. Lifetime distribution (Reliability distributions)

The results of many years of research on reliability show that
distinctive distributions of reliability characteristics can be
assigned to specific technical objects and typical types of failure,
which are defined models of their reliability [23, 42, 67].
Knowledge about the distribution types is necessary for
managing and forecasting the operation of machines and
devices. Knowing the form of the distribution describing the
failure rate of a technical object, it is possible to forecast its
operating time with a certain probability. Knowing the course
of the probability of failure over time, one can take preventive
actions before the risk of failure reaches its limit value, thus
avoiding financial losses and ensuring an appropriate level of
safety.

In the literature on technical objects, various families of
probability distributions are used as time-to-failure models. The
most commonly used distributions in Life Data Analysis (LDA)
are the exponential, Weibull, gamma, normal and lognormal
distributions [23, 67].

A number of measures and indicators are used in the
literature to determine the accuracy of model fit to empirical or
estimated values. The authors of this paper used the following

indicators to assess the fit of the developed models to the

estimated values: correlation coefficient R, Mean Squared Error
(MSE), Pearson Correlation Coefficient (PCC), and Akaike
Information Criterion (AIC).

C. Availability indicators

The described objects are most often characterized by binary
random variables, i.e. variables taking two values - zero and one,
and working and failure in operation systems [51]. The tools
used to properly assess the operation process of technical
objects are reliability and availability indicators. When using
them, it is possible to quantitatively assess and compare the
reliability of objects. The technical objects can be characterized
as a function of time [h, mth] or, as in the case of vehicles,
mileage [km] [66].

The basic measure describing the reliability of repairable
objects is the Mean Time Between Failures (MTBF). It is
expressed as the quotient of the total operation time of all

objects to their total number of failures according to the formula:
N .
MTBF =2=01 (5)

where N — the number of objects, 7; — the time of correct
operation of the i-th object, n — the total number of failures.
For irreparable objects, Mean Time To Failure (MTTF)

indicators are used, defined according to the following formula:
N
MTTF =2=lv, (6)

where Tw— the operation time of the i-th object.

Mean Time To Repair (MTTR) expresses the average time
to repair a system or object after a failure. The lower the MTTR
indicator, the faster the repair process and the higher the
system's availability to perform tasks. It is expressed with the

following formula:
N
MTTR = Z=1"% 7)
n

where Tk — i-th overhaul time.
Mean Time To Diagnose (MTTD) represents the average

time to diagnose a system or object after a failure:
N
MTTD = 22112 (8)

where Tp— i-th diagnosis time.
Mean Time To Supply (MTTS) that represents the average

waiting time for spare parts:

N
MTTS = Zi=1"s )
n
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where Ts— the spare parts waiting time.
The relations between the characteristics mentioned above

are given in Fig. 4.

MTBF

MTTF MTTD

A MITS |, MITR MITF
" v v

Correct working Diagnose Supply Repair

First failure Begin repair End repair Secend failure

Correct working
Time

Fig. 4. A schematic diagram of MTTF, MTTD, MTTS, MTTR,
and MTBF.

The characteristics that represent the ability of an object or
system to work correctly or take action at a random moment ¢
are measures of availability.

The availability factor determines the probability that, at
time ¢, the object is in a state of availability. It is determined as
the quotient of the total time spent in states of availability to the
total time spent in states of availability and unavailability to

perform tasks by the relation:

N Te(®)
= 1
kgt N Te®)+IN, TN (10)

where: ¥V | T;(t)— the sum of times spent in the availability
state, ¥, Ty (t)— the sum of times in the unavailability state.
Due to the fact that the time spent in an unavailability state
is generally not the time of effective repair, but, as shown in Fig.
4, it includes the time for diagnosis and the logistic delay
resulting from the inability to carry out the repair for
organizational or technical reasons or the lack of spare parts, the

following technical (internal) unavailability factor is used:

N Te®)
k., = i=1 : 11
gw N TeM+EN, TR an

where: YV, Tr(t) — the sum of times effective repair.

A coefficient that practically characterizes the system's
unavailability to undertake the task at the moment 7 is
a temporary indicator of technical unavailability k.. It does not
characterize the technical condition of the fleet of cars in the
system, nor their suitability to complete the task within the time
interval (¢, t+A4t). The coefficient is a basic measure of
unavailability in real operation systems (e.g. car fleet)
calculated according to the formula:

_ Ne-ng _ N(t)

e =72 = 12, (12)

where: N, — is evidential (regular) state of the car fleet, N(t) — is

number of cars technically suitable for operation at the moment
t, n, — is a number of cars technically unsuitable for operation

(located in {Ss, Se, S7} at the moment 7).
3.2. Stochastic methods

Stochastic processes are a set of mathematical models that
characterize random events observed over time. The stochastic
approach recognizes the irregularity and randomness of events,
probabilities, and average values. Stochastic processes are
widely used in various fields of science, including statistics [9],
economics [61], engineering [6], medicine [54], construction
[11], mechanics [29], communications and IT [43] or social
sciences [13]. Stochastic methods are constantly improved and
developed but, at the same time, poorly standardized. One of the
most frequently used methods in describing the operation
processes of technical objects are Markov and semi-Markov
processes. They constitute a group of analytical methods based
on the analysis of random processes focused on determining the
probability of conditional interstate transition.

As indicated in [12, 39], it is considered a methodological
error to assume that the studied process is a Markov process
without verifying its properties first. It has been proven in the
source literature that this may result in incorrect analysis results
and final conclusions. In [50] it was shown that the differences
in the values of the calculated limiting probabilities for the
Markov process differ significantly from the values of the semi-
Markov process (even beyond 530%). Moreover, a difference in
the calculated value of the technical availability coefficient
(almost half the size) was observed in the case of the discussed
processes. Similar conclusions were obtained in [39], where the
semi-Markov model compared to the Markov model reached
a mean absolute percentage error (MAPE) of 351.92%. In
accordance with the adopted research methodology presented in
Fig. 3, the applicability of Markov and semi-Markov models
can be determined using Kolmogorov-Smirnov tests.

D. Continuous-time Markov process

A quantitative characteristic of the Markov process is the
transition intensity matrix A, according to formula (13):
M e-1) A1k
/12(k,—1) Aok

(13)

A1) Age-1)2 Ak-k-1) A1)k

A A2 Akk-1) Akk
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Matrix A components on the main diagonal of this matrix
are negative or equal to zero, while the remaining components
are non-negative. Moreover, the sum of the components of each
row is zero, and their values are calculated as the intensity of
the state changes according to the formula (14):

1

=7 (14)

ij

A

where Tj; — average time spent in state S; before state S;.

The transition intensity matrix A cannot be a direct basis for
assessing the availability of a technical object[65]. For this
reason, the ergodic probabilities of the Markov process for the
entire set of operating states are calculated by solving the matrix

equation (15) [40]:

[l -a=0, (15)

along with the condition of the system normalization (16):

Yham = 1. (16)

E. Semi-Markov process

Semi-Markov processes are a generalization of Markov
processes for which the times of presence in individual states
can have any distribution of time characteristics. This feature
means semi-Markov processes have a wider range of
applications than Markov processes.

The semi-Markov process is constructed using a two-
dimensional Markov chain, the so-called Markov renewal
process. It is defined by the matrix of the renewal kernel Q(7)

according to the equation [7, 17, 34]:

0 Q12(0) Q- Qu(®)
Q21(8) 0 Qzk-1)(®) Q2 (1)
Q) = : : : : .(17)
Que-»n(®) Qr-p2t) - 0 Q-1 (®)
Qr1 (1) Qrz(1) Qrr-1(®) 0

Qii(f) matrix elements are the conditional transition
probabilities from state S; to state S; and depend on the state
duration distribution function S; before moving transition to
state S, according to the equation:

Qi (t) = pyFy; (D), (18)
where p; denotes the probability of transition from state S; to
state S, and F(¢) is the cumulative distribution function of the
time of presence in state S; before transition to state S;.

The first stage of the study is the creation of a Markov chain.
Based on the obtained empirical data on interstate transitions,
a matrix of the number of interstate transitions was created

according to the formula:

0 LEV) N1 (k-1) Nk
Nyq 0 Nak-1) Mok
N=| : : (19)
Ng—1) Ngk-1)2 0 Nk—1)k
Ny Ny My (k—1) 0

It constitutes the basis for estimating the probability of
transitions p;; of stochastic matrix P[29, 62]. The values of these
estimators are the state transition probabilities from state S; to
state S;. They are calculated based on empirical data according

to the relation:

pij = L (20)

)
i1 Mij

where: n;; - number of transitions from state S; to state .S;.
Matrix of conditional probabilities of interstate transitions P

has the following form:

0 P12 Pik-1)  Pik
P21 0 Pak-1) Pk
P=| : P | 21)
Pk-1) Pk-12 0 Pk—1)k
Pi1 P2 Pr(k-1) 0

assuming the fulfillment of the stochastic matrix condition
[29, 35]:

Z?:ﬂ’ij =1 (22)

The next step is to calculate the ergodic probability of the
embedded Markov chain by solving the equation [40]:

(PT—-D-M =0,
(23)

along with the condition of normalization:

Thom; =1 (24)

Then, if the inserted Markov chain exhibits ergodicity and
there are expected values E(7;) of times of presence in states,
ergodic values of probabilities p; are determined for the semi-

Markov process according to the relation [12]:

Tl.'jE(Tj)
s = —m—m_—_—_— 2
P = S mEy (23)
E(T) = ¥, piE(Ty)), (26)

where 7; is the ergodic probability of the inserted Markov chain
for state S, and E(7}) is the expected value of the direct state

transition time from state S; to state S;.
4. Results and discussions

This section presents a computational example based on the

transport system established in the Polish Armed Forces. The
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failure data was collected using a test sample of 50 Iveco Stralis
tractor units operated for three years from 01/01/2019 to
31/12/2021). They have been operated by the Polish Armed
Forces since 2003. The vehicle’s empty weight is 10,500 kg, and
the payload is 13,500 kg. The tractor unit is designed to
transport bulk, palletized or containerized loads over long
distances and is adapted to work with semi-trailers with a total
weight of up to 19,000 kg. The sample can be considered
relatively homogeneous with varying scales of operation
intensity since only one vehicle model was tested.

All selected vehicles are of the same model and were
operated within the same organizational structure, which
minimizes  technical variability and enhances the
representativeness of the sample. The vehicles performed
comparable transport tasks (mainly long-distance transportation
of bulk, palletized, or containerized cargo) under similar
operational conditions. The vehicles were not limited to
a specific geographic location but operated within a national
military transport network in Poland. No special roles or
missions were assigned to the vehicles in the sample beyond

standard military logistics. There were no known operational

restrictions or preferential allocation that would systematically

1.0F B S———

0 200 400 600 800 1000 1200
Time [day s]

—— Exponential — Gamma Weibull — Lognormal
——Normal

(2)

bias the reliability or availability results. All vehicles were
operated according to a standard military logistics schedule. The
operating system did not employ a strict 8-, 12-, or 24-hour shift
pattern. Instead, vehicle utilization was determined by mission
requirements and the operational plan, with vehicles being
dispatched as needed. The analysis is therefore based on actual
recorded operation and downtime periods (start and end times
of tasks, maintenance, refueling, etc.), not on theoretical
maximum utilization or imposed shift cycles. This approach
reflects real-world operating conditions and is consistent with
military logistics practice, where operation is demand-driven

rather than fixed-shift-based.
4.1. Results of the statistical approach

Based on operational data, a statistical analysis of vehicles used
in the Polish Armed Forces was performed.

The Kaplan-Meier estimator was used to estimate the values
of the unreliability and reliability functions. Based on empirical
data on the times between failures of military vehicles according
to relations (3) and (4), the reliability and failure functions were
estimated. The result’s graphical interpretation is presented in

Fig. 5.

0 200 400 600 800 1000 1200

Time [days]
— Exponential — Gamma Weibull — Lognormal —— Normal
(b)

10+
0.9
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Rt}

H Kaplan-Meier estimate

Confidence interval

0.0 —— T T
] 200 400

T T T
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Fig. 5. Estimation and approximation of functions: (a) - Cumulative distribution function approximation, (b) - Reliability function

approximation, (c) - Kaplan-Meier estimation.
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Assessment of the accuracy of matching the developed
models to empirical values is an essential element of reliability
analyses. AIC index is the primary and decisive criterion for
selecting the best-fitting distribution. MSE is reported as
a secondary criterion, providing a direct measure of the overall
deviation between the empirical Kaplan-Meier curve and the
fitted distribution. PCC and R are presented as auxiliary
measures. They indicate the strength of the linear relationship
between the empirical and fitted values. While a high value of
R or PCC confirms the quality of fit, these coefficients are not
used as the decisive criteria for selecting the best model.

In this study, the reliability function models developed in
this paper showed a high degree of fit to the estimated values.
Table 2 lists the values of correlation coefficient R, MSE, PCC,
and AIC for each distribution. For gamma, Weibull and
lognormal models, the R coefficient reached a value of above
0.99. The Pearson Correlation Coefficient for the normal model
is an outlier from the others. Of the 5 proposed distributions, we
consider the one with the lowest AIC index value to be the best
suited. Unless the MSE values for the fitted models are too close
to each other, the smallest AIC will be at the smallest MSE.

Before fitting theoretical distributions, the empirical

distributions of sojourn times for key transitions were examined.

Representative histograms are provided in Appendix A to
illustrate the underlying variability in the data and justify the
selection of candidate distributions.

Reliability indicators are the measures that provide
information about the quality and functioning of the operation
process. These factors characterize the intensity of use, identify
the time of failure detection, determine the time required for
repairs, assess the availability of components or parts that must
be repair or replacement, and define the organization and
equipment of the service base. Based on the relations (5)-(9) and
the total duration of individual states .S; the values of reliability
indicators for Iveco Stralis vehicles were calculated, the
summary of the values is presented in Table 3.

MTBEF value was 268.11 [days], which proves the high level

Table 2. Accuracy of fitting models to data.

of vehicle reliability. Moreover, it can be assumed that the
strategies used and the operation system implemented allow for
the efficient removal of malfunctions. The high level of training
of the fault diagnosis personnel and their efficiency is
characterized by MTTD at the level of only 29 [minutes], which
is 0.02 [days]. Moreover, the MTTR value of 18.80 [days] may
indicate a small number of repair personnel, poor training and
improper equipment at the repair stations. However, the system
could be improved by reducing the waiting time for spare parts,
which is likely due to logistical delays caused by complex

purchasing procedures.

Table 3. The value of reliability indicators.

Reliability indicator ~ Time [min] Time [days]
MTBF 366081 268.11
MTTD 29 0.02
MTTS 16996 11.80
MTTR 27071 18.80

Other measures used to assess the ability to work properly
are availability factors. One is the momentary technical
availability factor, which determines how many vehicles are
ready to perform a task at a random moment t. According to the
data given in Fig. 6, the system’s temporary technical
availability remains above 82% throughout the tested operation
process. Moreover, the analyzed transport system has a high
level of redundancy, which increases the safety, durability and
reliability of the transport objects and systems.

Moreover, in accordance with the relation (10)-(11), the
values of availability coefficient k,, = 0.934 and internal
(technical) availability coefficient kg, = 0.989 were calculated.
Taking into account the level of availability and reliability
indicators accepted by the Polish Armed Forces, the value 0.95
kg 1s slightly below the requirements. The value of coefficient
kg is lower than kg, since the internal availability factor kg,
does not include, among others, downtimes caused mainly by
waiting for spare parts. Therefore, maintenance downtimes can
be limited to increase its value to acceptable levels. Fig. 7 shows

the impact of shortening MTTS on the value of indicator k.

Model a b AIC R MSE PCC
Exponential 0.0037 - -145.5865 0.9877 0.0025 0.9941
Gamma 0.6800 0.0021 -361.9451 0.9964 0.0006 0.9957
Weibull 298.8060 0.7619 -420.4997 0.9973 0.0004 0.9971
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Model a b AlIC R MSE

Lognormal 5.1448 1.5461 -527.1318 0.9980 0.0002
Normal 212.8367 215.0102 13.3573 0.9535 0.0073

100%
90%
80%

70%

)IH i

60%

40%

30% A

20% -

10% A

0% T T T T T T
01.01.2019 30.06.2019 27.12.2019 24.06.2020 21.12.2020 19.06.2021 16.12.2021

DATE
—— AVAILIABILITY TASKEXECUTION  —— REDUNDANCY
Fig. 6. Momentary values of the technical availability indicator.

It should be noted that reducing the waiting time for spare 4.2. Results of the stochastic approach

parts significantly affects the availability index, which increases

Stochastic modeling of the operation process allows for

and approaches the value of internal (technical) availability. It

capturing the inherent randomness of state transitions and the

can be observed that reducing the maintenance downtime by 40%

variability of sojourn times in different operational phases of the

results in its improvement by 0.017 and reaching the value of hicl
vehicles.
0.951, which meets the requirements for the Polish Armed

To enhance understanding of the processes occurring in the

Forces transport systems.

analyzed operating system and enable a more accurate

0.989 interpretation of the distribution characteristics, Appendix A

presents raw empirical data in the form of residence time

N 9630 967 histograms for selected transitions between states in a 7-state
0. 9550 959 operating model. Each histogram shows the observed
0 9470 pil distribution of transition times 7ij between specific operational
0.93 40 939 states of military vehicles. Analysis of these histograms clearly
indicates that the empirical distributions of sojourn times
frequently deviate from the classical exponential distribution.
With regard to these observations, the next step in the
analysis was to formally verify whether the Markov model

Kgt 10% 20% 30% 40% 50% 60% 70% 80% 90% Kgw
TTS reduction

semi-Markov model was necessary.
Fig. 7. Availability indicators values obtained after TTS

could be applied to the analyzed data or whether a more flexible

As mentioned in Section 3, testing the reliability using

reduction.

stochastic methods will begin with checking the applicability of

the Markov or semi-Markov model for the test sample. Both
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T; Sample size y Uy statistic Critical range Hypothesis
Tz 5063 0.1356 [0.0190, 1] H,
Tha 7356 0.2706 [0.1420, 1] H,
Tis 95 0.1167 [0.1375, 1] Ho
T 2962 0.4241 [0.0249, 1] H;
T24 3436 0.4115 [0.0231, 1] H,
T4 12044 0.4166 [0.0124, 1] H;
Ty 9569 0.6184 [0.0139, 1] H,
Ty 1591 0.4243 [0.0339, 1] H;
T3 11809 0.4958 [0.0125, 1] H,
Tis 78 0.2803 [0.1515, 1] H,
Ts6 46 0.7994 [0.1963, 1] H;
Ts7 112 0.6126 [0.1268, 1] H,
Te 37 0.2029 [0.2183, 1] Ho
on 148 0.5997 [0.1105, 1] H,

proposed methods for verifying the exponential distribution are
based on the empirical distribution function and belong to the
group of nonparametric tests. y* test is one of the most popular
ones utilized by the authors of [29, 56], however, due to the
limitation of a minimum size of the sample, it cannot always be
used [29]. Due to the conditions of applicability of the proposed
nonparametric tests and the sample size of less than 80 (74s, T,
Tes7), verification of the empirical distribution with the
theoretical distribution will be performed using the
Kolmogorov-Smirnov test. For hypothesis Hy it was assumed
that the distribution of times for individual interstate transitions
has an exponential distribution. Alternative hypothesis H;
contradicts this assumption. The critical values (K) of the
Kolmogorov-Smirnov test for « = 0.05 can be estimated

according to the formula:

0 0.404587 0 0.587822 0.007591
0.462957 0 0 0.537043 0
0 0 0 1 0
P =10.041520 0.069033 0.512388 0
0.028701 0 0 0.235650 0
0 0 0 0
0 0 0 0 1

After substituting the numerical data into equation (23), the

following system of equations was obtained:

—m;+0.404587m,40.587822m,+0.007591m5=0
0.462957m; — m,+0.537043m,=0
—m3 + my=0
0.415195m,+0.069033m,40.512388m; — m,+0.003384m5=0(30)
0.2870091,+0.235650m, — m5+0.138973m,+0.3383697,=0
0.554217m5 — m+0.445783m,=0
s — ;=0

By solving the Chapman-Kolmogorov system of equations

0.003384

0.554217

1.358

0.11*

D(0.05,y) = ————m
\/}+0.12+W

(27)

When U, € K, we reject hypothesis Hy and adopt H;.

The analysis results are presented in Table 4.

Table 4. Results of Kolmogorov-Smirnov test.

Only two time characteristics, 715 and 77, reached the
values of the Kolmogorov-Smirnov test statistics, which are not
included in the critical value. Therefore, only two time
characteristics have an exponential distribution, while the
remaining 12 do not meet this condition. This means that there
is a justified need to use the semi-Markov model to describe the
operation process of goods and passenger vehicles. The
obtained results are the basis for developing semi-Markov
models of the operation process of military vehicles.

Furthermore, the statistical robustness of the analysis is
supported by the size of the dataset. The total number of
interstate transitions for the sample was 54,565, with
a statistical average of 1,059 transitions per vehicle. Therefore,

the presented test sample is statistically reliable.

N =
0 5063 0 7356 95 0 0
2962 0 0 3436 0 O 0
0 0 0 12044 0 O 0 (28)
9569 1591 11809 0 78 0 0 |
0 0 0 0 0 46 112
0 0 0 0 0o o0 37
0 0 0 148 0 O 0

Based on the matrix (28), the values of interstate transition
probabilities of the inserted Markov chain were estimated and

presented using the matrix (29):

0 0
0 0
0 0
0 0o | (29)
0.138973 0.338369
0 0.445783
0 0

(30), the ergodic probabilities for the Markov chain were
estimated - their values are given in Fig. 8 and Table 5. The
highest observation probabilities were recorded for operational
states 4 = 0.4195, 7 = 0.2330, 73 = 0.2149 and =, = 0.1232.
This is a desirable phenomenon and proves the high availability
of the objects. The lowest probability of entries was observed

for undesirable states (unsuitability {Ss, Ss, S7}) 77 = 0.0024, 75
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=0.0061, 7 = 0.0008.

It should be noted that the calculated limit probabilities refer
only to the frequency of observations and do not consider the
duration of individual states. Based on formula (25), the values
of the ergodic probabilities of the semi-Markov model were
calculated.

0.0061 0.0008 0.0024

mrl
n2
0.4195 n3

0.1232 4
LR

6
0.2149 "7

Fig. 8. Ergodic probabilities 7t; for the homogeneous Markov

chain.

The obtained values in individual operating states are given
in Table 5. State S3 reaches the highest values, i.e.
standby/parking in the garage (over 84%), while state S| reaches
7%. The remaining limit values are satisfactorily low, which
confirms the relatively low failure rate of the fleet vehicles.
Table 5. Ergodic probabilities of embedded Markov Chain and
semi-Markov process.

S1 RY) S3 S4 Ss S6 S7

s 0.23300.1232 0.2149 0.4195 0.00610.00080.0024
pj 0.0773 0.0007 0.8298 0.0099 0.02930.04320.0097
pi [%o] 7.73 0.07 8498 0.99 293 432 0.97

E(T) [min] 486.8 374 18.6 9.5 1375.24270.61418.7
E(T) [day] 0.34 0.03 0.01 001 096 297 0.99

Based on the ergodic probability values of the semi-Markov
process, p; availability indicators K, and Ky, were calculated.
For the analyzed exploitation process, states Si, S», S3, and S
were considered states of suitability, and states Ss, Ss, and S7
were considered states of unsuitability. Availability indicator K,
for the analyzed 7-state semi-Markov model was calculated as
the sum of the conditional probabilities of the appropriate

reliability states:

_ _ P(AND) _ p1+P2+P3+ps
Kge = P(A12) = =775 Yr, (€29

where A = {Si, S2, S3, S4} is the set of suitability states, and Q is
the phase space of the model and A € Q.
Based on Eq. (31), the indicator value of Ky = 0.9296 was

obtained. Calculations of the internal availability indicator K,

was made using the relation:

_ _ P(ANB) _ p1+p2+p3+ps
Kow = P(AlB) = P(B)  p1+pa+p3+patps’ (2)

where B is the set of operational states, excluding failure states
Ss and waiting for repair Se.

The indicator value of Kg, = 0.9880 was obtained.
4.3. Limitations

Despite the valuable insights provided by the proposed
methodology and results, several limitations should be
considered when interpreting the findings of this study:

- Data selection: The analysis was limited to 50 military
vehicles of the same model, used under similar
conditions, which reduces technical variability but limits
generalizability to other vehicle types or operational
contexts.

- Data sources: Operational data were based on paper
records, increasing the risk of incompleteness and errors;
20 vehicles were excluded due to missing data.

- Model selection: The suitability of Markov or semi-
Markov models was statistically verified. Only 2 of 14
transitions met the exponential distribution assumption,
necessitating the use of the semi-Markov model.

- Deterministic assumptions: The process was treated as
stochastic, but some deterministic factors (e.g., periodic
maintenance) exist. A higher share of such elements
could limit the applicability of these models.

These limitations should be considered when interpreting
and generalizing the findings. While the methodology is
universal and can be applied to other technical systems, the
numerical results obtained in this study may not be directly
generalizable to different vehicle types or operational
conditions. Further research using broader datasets and

alternative data sources is recommended.
5. Comparison of the results

The comparison of the test results obtained using statistical and
stochastic methods is given in Table 6 and Fig. 9.

The values of the availability indicators kg and Ky, at the
level of 0.92, do not meet the acceptable level availability
indicators in the Polish Armed Forces, which have been set at
the level of > 0.95. The probability value of the ergodic state Se

has the greatest impact on reducing the availability rate. This
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condition corresponds to a situation where the vehicle has
broken down, is inoperable and requires repair. Still, due to the
lack of technical or organizational abilities or the lack of spare
parts, it is not in a state of repair (S7). The main reasons for this
situation are logistical delays related to the limited availability
of spare parts and the lack of qualified technical personnel at
a given time. As far as the properties of the device are concerned,
an acceptable level of availability can be achieved by reducing
the time the object stays in state Ss. This can be done by
maintaining higher levels of spare parts and simplifying
purchasing procedures. By improving the operation of the
logistics system, it is possible to achieve availability levels kg
and K, at a level close to the values of the indicators kg, and Ky,
Technical availability indicators (internal) kg, and Kg, strictly
illustrate the device's properties, and for the examined case they
reached values above 0.98.

Comparing the results obtained using two methods,
differences in the values of indicators of staying in operational

states were obtained in the range of -10.2% to 117.0%. The

percentage differences between the models reached very similar
(almost identical) values for the suitability states Si, S», S3, and
Ss, where they differed by less than 3%. The greater differences
in results were obtained for states of unsuitability Ss (5.1%) and
S7(10.2%). The relative differences in the probability values of
remaining in State Ssreached as much as 117.0%. Moreover,
states S5, Ss , and S7 being a set of unsuitability states, have
reached positive differences. This high value is primarily due to
the highly skewed (left-skewed) distribution of the data, with
a significant predominance of short sojourn times in State Ss,
alongside a few much larger values. In such cases, relative error
indicators become highly sensitive to small differences between
the results obtained from the two approaches, especially when
the absolute values are small. The differences obtained in
interpretation using statistical and stochastic methods are
because availability coefficients ks and kg, reflect the results for
the test sample. The value of the availability indicators Ky, i
K, 1s theoretical and represents the probability at infinity to

which the availability factor is predicted to tend.

Table 6. The comparison of the test results obtained by statistical and stochastic methods.

Statistical Stochastic Differences
Measure Indication Value Measure Indication Value Value [%]
Availability kgt 0.9340 Availability Kg 0.9296 -0.0044 -0.5%
indicators kaw 0.9890 indicators Kew 0.9880 -0.0006 -0.1%
S1[%] 7.59 p1[%] 7.46 -0.1300 -1.7%
S2[%] 0.07 p2[%] 0.07 0.0000 0.0%
Perce.ntage of the S5 [%] 84.82 Ergodic p3[%] 84.44 -0.3800 -0.4%
duration of each S4[%] 0.97  probabilities of  pa[%] 0.98 0.0100 1.0%
operating condition ¢ 1, 135 the SMP % 133 0.0200 1.5%
S; for the test sample s[%] : ps[%] : e T
Se [%] 4.11 e [%] 4.58 0.4700 11.4%
S7[%] 1.08 p1[%] 1.13 0.0500 4.6%
90 140% 6. Conclusions and future works
=80 120%
§7O 100% The reliability and availability of technical objects and systems
_‘ggg 80% 2 are extremely important and often analyzed in the source
§04o jg:ﬁ % literature. This study presents a novel approach to evaluating
£30 20% ?‘QE and optimizing the reliability and availability of technical
520 °
5 10 0% systems through the implementation and comparison of
0 -20%

State

Statistical | Stochastical

Fig. 9. Percentage differences of state time durations using

statistical and stochastic methods.

statistical methods and semi-Markov processes. By applying
these methods to empirical failure data from a military transport
system, this research provides a significant advancement in
understanding and addressing the complexities of operational

processes in technical systems.
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Based on the statistical analysis of technical object failures,
reliability and availability indicators were estimated, which
enable monitoring of the effectiveness of the transport system.
The tested trucks have high reliability, which can be identified
by a relatively long time of failure-free operation, i.e. MTBF =
268.11 [days]. The reduction in system reliability indicators is
mainly affected by the MTTS indicator at the level of 11.8
[days]. The remaining 2 indicators, i.e. MTTD and MTTR have
a significantly smaller impact on vehicle reliability.

The model creation algorithm using the Markov and semi-
Markov processes proposed in this paper was implemented into
the truck operation process. Based on the empirical operation
process analysis, a 7-state phase space was identified. Based on
the verification of the exponential distributions of time
characteristics using the Kolmogorov-Smirnov test, the need to
use the semi-Markov process was confirmed. The value of the
matrix of conditional probabilities of interstate transitions of the
inserted Markov chain was estimated based on real data. Then,
by solving the matrix equation, the values of ergodic
probabilities were calculated to determine accessibility
indicators.

To sum up, statistical methods only allow for assessing
system availability without indicating possible directions for its
improvement. However, it has been shown that reducing of state
time Ss by 40% improves the k, indicator value by 0.017 to
reach the value of 0.951.

In turn, using the semi-Markov processes enables accurate
mapping of the actual course of state changes in the identified
phase space. The semi-Markov model is useful in the context of
process analysis in terms of identifying the causes of reduced
availability rates. In accordance with the developed and
implemented 7-state model in the analysis of truck operation
processes, it has been shown that there is a significant effect on
the expected time of staying in state Ss (waiting for spare parts),
which is a key factor in the significant drop in the value of
indicator K, compared to the value of indicator Kg,.

It should be emphasized that the obtained reliability
indicators values for both methods indicate a properly planned
and implemented operation process from the standpoint of
technical availability of equipment operated in the transport
system. Convergent results obtained using statistical and

stochastic methods prove the correctness of the proposed

methodology and calculations.

This study contributes to the field of reliability and
availability modeling by providing a validated, universal
framework that combines statistical and stochastic methods.
The proposed semi-Markov model not only estimates
performance indicators but also identifies key areas for process
improvement, bridging the gap between theory and application.
This research lays the groundwork for optimizing system
performance and readiness in diverse technical domains by
addressing critical factors such as logistical delays. A major
contribution of this research is the introduction of a 7-state
semi-Markov model, which provides a detailed representation
of operational states, including critical phases such as downtime
due to logistical delays. This model overcomes the limitations
of traditional Markov models, which assume exponential state
distributions, by accommodating non-exponential behaviors.
The methodology introduced in this study is not limited to the
military transport system. Its adaptability makes it applicable to
other high-stakes technical systems, such as healthcare,
aerospace, and public transportation, where reliability and
availability are critical.

The obtained results constitute the basis for further research
on the reliability characteristics of the operation process. The
next step may be to apply the proposed approach to RAM
analysis. Moreover, the authors see the possibility of
implementing and consolidating the information on failures
with operational management software. The methodology
proposed in this paper is a universal tool that can be used to
analyze and assess any technical object's operation.
Furthermore, future work will focus on validating the proposed
methodology using additional datasets from different vehicle
types or operational contexts, in order to further assess and
improve the generalizability of the results. The flexibility of the
proposed methodology makes it suitable for other complex
systems, including urban infrastructure, energy networks, and
industrial manufacturing processes. On this basis, it is possible
to develop an effective repair and maintenance strategy, the
implementation of which would positively impact reducing

repair time and increasing the system's efficiency.
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