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Highlights Abstract
=  Critical components are identified using the Industrial boilers are crucial for steam generation in various production
EMEA processes. This study aims to improve the reliability of boiler

components by combining Failure Modes and Effects Analysis (FMEA)
with Monte Carlo Simulations (MCS). A novel approach integrates
predictive maintenance using real-time operational data, alongside
Multi-Criteria Decision-Making (MCDM) techniques such as AHP for
prioritizing maintenance tasks. The results show that critical
components, such as boiler tubes and superheaters, exhibit high Risk
Priority Numbers (RPN), indicating urgent need for targeted preventive
maintenance. The proposed framework optimizes maintenance
scheduling, reduces unplanned downtimes, and enhances overall system
reliability and safety.

= The high RPN components reflect the action
priority.

= Monte Carlo simulation is used to estimate
MTTF.

= The MCS predicts the probability of failure.

= MCS optimizes the time of maintenance.
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1. Introduction

The GNLI1K complex, located east of Skikda, Algeria, plays
a strategic role in the natural gas liquefaction process. Among
its key facilities, Unit 50 is responsible for supplying other
industrial facilities with the steam needed to start up. This unit
comprises three identical boilers, essential for ensuring
a continuous supply of steam and other components. These
boilers, which are essential to the steam production system, burn
fuel to heat water and generate high-pressure steam.

Boilers are a key component in ensuring the optimal
operation of plants, requiring consistent and high performance
[1]. While this study relies on well-established methodologies
such as FMEA and Monte Carlo Simulation (MCS), it
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introduces a novel integration of Multi-Criteria Decision-
Making (MCDM) techniques, particularly AHP. This
integration enhances the predictive accuracy of maintenance
strategies by considering additional factors such as cost, safety,
and environmental impact, beyond the traditional RPN, thus
offering a more comprehensive decision-making framework.

Given their pivotal role, boiler reliability and efficiency are of
paramount importance. However, these units often experience
outages due to malfunctions in their core components, resulting
in prolonged downtime and significant productivity losses [2].
Hatala et al. [3] confirm that industrial boilers are susceptible to

major failures, which directly impact their performance and
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availability. Furthermore, Stamenkovic et al. point out that: [4]
Prolonged outages often result from burst pipes under high
pressure.

The continuous operating cycles of boilers, designed to meet
production requirements, accelerate the wear of their
components. Under extreme thermal and pressure conditions,
components such as superheaters and pipes endure significant
mechanical and thermal stress [5]. Stamenkovic et al. [4]
highlight the negative effects of thermal and pressure stress on
these vital components, which often result in frequent outages,
performance degradation, maintenance shutdowns, unexpected
breakdowns, or structural damage.

To minimize downtime and improve system reliability, it is
essential to identify the root causes of failures and assess their
impacts [2, 6]. Cristea and Constantinescu [5] emphasize the
critical role of thorough root cause analysis in designing
sustainable solutions. While understanding root causes is
foundational, it is not sufficient on its own. A comprehensive
reliability analysis is necessary to enhance equipment
availability, mitigate operational risks, and extend the life of
critical components. Strengthening maintenance strategies for
critical components directly enhances overall system reliability
[71.

In recent years, several studies have sought to identify
critical components, their risks, and their reliability.

Rahmania et al. (2020) applied FMEA to the boiler feed
pump turbine of a thermal power plant. Their work proposed
targeted maintenance types (predictive or preventive) based on
the specific risk profiles of each component, thus demonstrating
the practical value of RPN-based prioritization. [8], furthermore,
Hatala et al. (2023) conducted a comprehensive FMEA (Failure
Modes, Effects, and Criticality Analysis) on a boiler system in
an Indonesian power plant. Their study demonstrated that
combining risk assessment with reliability indicators such as
Mean Time to Failure (MTTF) provided a more practical
framework for preventive maintenance [3].

Failure Mode and Effects Analysis (FMEA) is a widely
adopted method for identifying, evaluating, and prioritizing
potential failure modes based on the severity, occurrence, and
detectability of each. Unlike previous studies, which primarily
employed FMEA and MCS separately, this study integrates

these methodologies with Multi-Criteria Decision-Making

(MCDM) techniques, specifically AHP. This hybrid approach
allows for a more nuanced prioritization of maintenance tasks
by incorporating additional operational factors like cost,
downtime, and safety risks, which were previously overlooked
in traditional analyses. Yet, traditional FMEA has limitations in
managing uncertainties and dynamic operational conditions. To
address this, recent research has increasingly favored hybrid
approaches that couple FMEA with probabilistic simulations or
intelligent methods. For example, Al Kautsar et al. (2022)
integrated gray FMEA with root cause analysis (RCA) to study
startup failures in coal-fired boilers. Their hybrid method
allowed them to quantify and rank failure risks even in the
presence of incomplete or uncertain data, thus providing
a robust alternative to traditional scoring methods [9].

Furthermore, T. Sun et al. (2025) [10] applied a fuzzy logic-
based FMEA to assess the reliability of solar-assisted air source
heat pumps, demonstrating the value of intelligent inference
systems in managing complex thermal system uncertainties and
refining component prioritization.

However, as observed by Hatala et al., most research tends
to address these aspects independently, limiting the
effectiveness of proposed solutions [3]. In addition to the widely
used FMEA and Monte Carlo simulation methods, alternative
methodologies such as TOPSIS (Technique for Order
Preference by Similarity to Ideal Solution) and COPRAS-G
(Complex Proportional Assessment of Alternatives with Grey
Relations) have been introduced to improve maintenance
planning [11, 12]. These methods provide a more
comprehensive framework for selecting the most effective
maintenance strategies, considering multiple criteria such as
cost, reliability, and performance [13].

Failure Modes and Effects Analysis (FMEA ) is a widely
recognized systematic method for improving the reliability of
industrial systems [14]. By incorporating Criticality Analysis,
this study goes beyond traditional FMEA to identify the most
critical components whose failure could lead to severe
operational consequences, enabling more targeted maintenance
strategies [15, 16]. This approach allows the identification of
critical failure modes, assessment of their impacts, and
proposition of solutions to mitigate their effects [17]. By
evaluating each component in terms of the probability of

occurrence, failure effects, and criticality, FMEA provides

Eksploatacja i Niezawodno$¢ — Maintenance and Reliability Vol. 28, No. 2, 2026




comprehensive documentation of the mechanisms involved [7].

As Muhammad Hudzaly Hatala notes, prioritizing risks,

identifying critical failures, and planning preventive

interventions are instrumental in reducing unplanned shutdowns

[3].

Monte Carlo simulations offer a powerful tool for analyzing
the reliability of critical components and predicting potential
failures. Pamungkas and Dirhamsyah demonstrated that this
method effectively models various failure scenarios by
transforming random numbers into non-uniform distributions
[18]. The ability of this method to simulate realistic conditions
is further validated through real-world data, as confirmed by
Hartini et al. [19]. These simulations not only optimize
maintenance cycles and mitigate risks but also facilitate
strategic decision-making in equipment management [20].

In light of this study, which combines FMEA analysis and
Monte Carlo simulations, several recommendations can be
made to improve the reliability of boilers and their critical
components:

1). Strengthening preventive maintenance :

v" Conduct regular inspections and targeted tests on critical
components, such as superheaters, tubes, and water supply
systems.

v" Adjust maintenance cycles based on insights gained from
Monte Carlo simulation results.

2). Adoption of Advanced Diagnostic Technologies:

v Integrate smart sensors and real-time analysis tools to
detect early signs of failure, such as vibrations and pressure
variations, improving diagnostic accuracy and minimizing
unplanned shutdowns.

v" Employ smart diagnostic tools, including inspection robots,
as described in studies like H. Wang et al. (2019) [21], to:

= Identify critical areas within boilers.

= Reduce risks to human personnel.

=  Enhance the speed and accuracy of inspections.
3). Continuous Training of Technicians:

v Train maintenance teams to recognize early failure signals,
such as abnormal vibrations, temperature, or pressure
fluctuations.

v' Provide training on using diagnostic technologies
effectively.

4). Proactive Management of Critical Components:

v’ Prioritize the replacement of components with the highest
RPN and lowest MTTF, such as boiler tubes and
superheaters.

v Establish a strategic inventory of spare parts to reduce
intervention delays.

By implementing these recommendations, it is possible to
enhance boiler reliability, minimize operational costs associated
with unplanned shutdowns, and improve the safety and overall

performance of industrial facilities.
2. METHODOLOGY

This study aims to revolutionize the conventional reliability
assessment and predictive maintenance strategies applied to
critical systems, specifically focusing on the boilers at the Unit
50 natural gas liquefaction complex in Skikda, Algeria. The
plant, integral to the country’s natural gas liquefaction process,
employs three boilers that are essential for providing steam to
power other production units. These boilers operate under
extreme thermal and mechanical stresses, often leading to
premature component failure. Addressing this, our study
introduces an advanced methodological framework that
integrates real-time sensor data, machine learning algorithms,
fuzzy logic techniques, and multi-criteria decision-making
(MCDM), marking a significant departure from traditional
FMEA and Monte Carlo Simulation (MCS) applications. This
innovative approach aims to provide a more dynamic, adaptive,
and accurate system for failure prediction and maintenance

optimization.
2.1. Overview of the Facility and Data Collection Process

The Unit 50 boilers are exposed to high operational loads,
making their reliability critical to ensuring uninterrupted
production. Given this importance, data collection was done
using real-time operational data, gathered from smart sensors
strategically deployed across the boilers. These sensors monitor
the following key parameters, which are directly related to
component degradation and failure risks:

e Temperatures: Thermal stress is one of the leading
causes of failure in high-temperature systems.
Temperature sensors were deployed in critical
components such as the economizer, combustion
chamber, and superheaters to monitor temperature

fluctuations that may lead to material failure or
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warping.

e Pressures: The pressure in key sections such as the
steam drums, superheaters, and feedwater lines was
measured continuously. Over-pressurization or sudden
pressure drops often result in mechanical failures.
Monitoring these fluctuations ensures that pressure is
maintained within safe operational limits, preventing
potential breakdowns.

e Vibrations: Vibration sensors placed on the burners,
fans, and superheaters detect anomalies such as
misalignments, wear, or loose parts. Abnormal
vibrations are early indicators of potential mechanical
failures and can be used to predict maintenance needs
before a complete failure occurs.

These real-time data were integrated into the central
monitoring system of the facility, where they were analyzed
continuously using machine learning models. The integration of
predictive maintenance models that use real-time operational
data marks a significant innovation in maintenance practices,

making the process more adaptive and efficient.

2.2. Reliability Assessment Using FMEA, MCS, and
Advanced Methodologies

The core of this research lies in combining traditional FMEA
and MCS with fuzzy logic and machine learning to enhance the
reliability prediction accuracy. This novel integration not only
addresses the limitations of traditional methodologies but also
introduces new dimensions in reliability assessment that

account for uncertainty and real-time operational variability.

2.2.1. Enhanced Failure Modes and Effects Analysis
(FMEA)

Traditional FMEA relies on expert judgment to assign values
for severity (S), occurrence (O), and detection (D). However,
this study introduces fuzzy FMEA, which accounts for the
inherent uncertainty in these ratings, offering a more flexible
and realistic representation of failure risks. In fuzzy FMEA,
each of the parameters is represented by fuzzy numbers, which
allows for a range of values to better capture the uncertainty in
real-world data.

a. Defuzzification Process to Obtain Crisp RPN:

In this study, the values for Severity, Occurrence, and

Detection were represented as fuzzy triangular numbers, where

each value was represented by a range, including the lower,
middle, and upper bounds. These fuzzy values were processed
using fuzzy arithmetic operations to obtain a crisp value for
each of the parameters (Severity, Occurrence, and Detection).

b. Defuzzification Process:

1. Fuzzy Values Representation: The fuzzy values for
Severity, Occurrence, and Detection were represented
as triangular fuzzy numbers, as shown in the figure
below.

2. Fuzzy Arithmetic: These fuzzy values were then
aggregated using fuzzy arithmetic to produce a single
fuzzy value for RPN.

3. Centroid Method for Defuzzification: The fuzzy
RPN values were defuzzified into crisp values using
the centroid method, where the centroid of the fuzzy
set was calculated to obtain a crisp RPN value.

This process adds robustness and reliability to the risk
assessment by incorporating the uncertainty inherent in
operational data.

The Risk Priority Number (RPN) is then calculated using the
following fuzzy-weighted formula:

RPN = Y (S; X 0; x D;) (Fuzzy-Weighted RPN) (D

By using fuzzy logic, this methodology ensures that the RPN
values reflect not only the severity, occurrence, and detection
but also the uncertainty associated with each of these factors,

which is often ignored in conventional FMEA.

Table 1. Example of Fuzzy FMEA Calculation.

Severity Occurrence Detection RPN

Component g ©) D) (Fuzzy)
Boiler Tube 9, 10) (6, 8) (7,9) 504
Superheater 8,9 5,7 (6, 8) 336
Fan 6, 7) (4, 6) ,7) 210

Table 1 provides an overview of the FMEA analysis for the
critical components, highlighting their Risk Priority Numbers
(RPN) and the associated failure modes.

This fuzzy approach adds robustness and reliability to the
risk assessment process by modeling the inherent uncertainty in
component behavior under different operational conditions.

In this study, fuzzy FMEA was applied to handle the
inherent uncertainty in expert judgment when assigning values
to severity, occurrence, and detection. Instead of using discrete

values, each of these parameters was represented as a fuzzy
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number to capture the range of possible values, reflecting the
expert's uncertainty.

For each parameter:

1. Severity (S): Defined as a fuzzy number with
a triangular membership function. The fuzzy number
for severity could range from a minimum value S,,,;,
to a maximum value S,,,,, With a peak at the most
likely severity value. For example, severity might be
represented as a fuzzy number (Speakqyx,,.. -

2. Occurrence (0): Similarly, occurrence was modeled
using a triangular fuzzy number (OpeaKpay,,;,
representing the range of likelihoods of failure for each
component.

3. Detection (D): Detection was also represented as
a fuzzy number with the same triangular shape, defined
as (DpeaKmax,im-

These fuzzy numbers allowed us to represent the uncertainty
in the expert's judgment, with each parameter expressed in
terms of a range rather than a single crisp value.

The fuzzy numbers for Severity, Occurrence, and

Detection were represented using triangular membership

simplicity and efficiency. These triangular membership
functions were defined for each parameter as follows:
e  Severity: The membership function for severity pg(x)

was defined as:

X=Smi
—R— for Spin<x< Speak

Speak_smin
X) = Smax—X 2
ps (x) —BE— for Speak < X < Siax ()
Smax Speak
0 otherwise

e Occurrence: The membership function for occurrence
Uo(x) was similarly defined, capturing the uncertainty
in the frequency of failure:

e Detection: The membership function for detection
Up(x) was defined similarly to the others.

These triangular membership functions provided a flexible
way to handle the uncertainty in assigning crisp values for each
parameter, ensuring a more realistic representation of the failure
risks.

As shown in Figure 1, the fuzzy values for Severity,
Occurrence, and Detection are represented using triangular
fuzzy numbers. These fuzzy values are then aggregated using

fuzzy arithmetic, and the centroid method is applied to obtain a

. . . . . crisp RPN value.
functions, which are commonly used in fuzzy logic for their P
1.0 f =— Severity (9,10)
= Qccurrence (6,8)
= Detection (7,9)

0.8
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Figure. 1. Fuzzy Membership Functions for Severity, Occurrence, and Detection.

2.2.2. Monte Carlo Simulation (MCS) and Reliability
Analysis

While FMEA provides valuable insights into failure modes, it
cannot often predict failure times accurately. To address this,

Monte Carlo Simulations (MCS) were applied to simulate the

probabilistic nature of component failure under varying
operational conditions. MCS allows us to account for the
uncertainty in operational parameters, such as pressure
fluctuations and temperature extremes, and predict failure times
over a large number of iterations.

In this study, we employed the Weibull distribution, a widely
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used model for reliability analysis, to simulate failure times for
each component. The Weibull distribution is expressed as:
Where:
e t: Time to failure
e v :Threshold (minimum time before failure)

e  0: Scale parameter

Table 2. Reliability Example for Superheater.

e [ Shape parameter
By running simulations over 1000 iterations, we were able
to generate failure time distributions for each component. The
Mean Time to Failure (MTTF) was calculated as the average of
these failure times, and the Reliability Function (R(t)) was

derived for each component at various time intervals.

Component MTTF (days) Reliability (1 year) Reliability (3 years) Reliability (5 years)
Superheater 1608 50.98% 28.56% 20.01%
Boiler Tube 306 31.81% 1.35% 0.03%

Fan 2130 45.04% 27.15% 20.21%

Table 2 illustrates the reliability assessment results for the
superheater and boiler tubes, including Mean Time to Failure
(MTTF) and reliability at different time intervals.

This Monte Carlo Simulation approach, coupled with
confidence intervals and uncertainty bounds, allows for a more
accurate, robust, and realistic prediction of component lifespans,

improving overall system reliability.
2.3. Multi-Criteria Decision-Making (MCDM) Using AHP

To ensure that maintenance tasks are prioritized not only based
on RPN and MTTF but also on critical factors such as cost,

safety, and environmental impact, Multi-Criteria Decision-

Table 3. Example of Pairwise Comparison for Criteria.

Making (MCDM) methods were employed. In particular,
Analytic Hierarchy Process (AHP) was used to assign weights
to each factor and generate a priority ranking for maintenance
tasks. This approach ensures that multiple dimensions of risk
and impact are considered when making maintenance decisions.

Pairwise Comparison Matrix:

A pairwise comparison matrix was created, where the
relative importance of factors such as cost, safety, and
environmental impact was evaluated. The matrix employs
a scale of comparison, where 1 indicates equal importance, 3

moderate importance, and 9 extreme importance.

Criteria Cost Safety Environmental Impact
Cost 1 3 5
Safety 1/3 1 3
Environmental Impact 1/5 1/3 1

Table 3 presents the pairwise comparison matrix used for
AHP, where the relative importance of criteria like cost, safety,
and environmental impact was evaluated.

In the AHP method, once the pairwise comparison matrix is
constructed, it is crucial to test the consistency of the weight
assignments. This ensures that the judgments made by the
decision-makers are reliable and coherent. The consistency of
the matrix is assessed by calculating the Consistency Ratio (CR),
which helps determine the degree of consistency in the
comparisons.

To test consistency, the largest eigenvalue (Amax) of the

pairwise comparison matrix is calculated. The consistency

index (CI) is then computed using the following formula:

I =tmex (4)

n-1
where A_max is the largest eigenvalue and n is the number of
criteria. The Random Consistency Index (RI) is a pre-defined
value that depends on the number of criteria (n). The
Consistency Ratio (CR) is calculated as:

_a

CR="1 (5)

A CR value less than 0.1 indicates that the pairwise
comparisons are sufficiently consistent and that the judgments
made are reliable. If the CR value exceeds 0.1, this suggests

inconsistency in the comparisons, and the matrix should be
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revised.

In this study, the consistency of the pairwise comparison
matrix was verified, yielding a CR value of 0.08, confirming
that the judgments were consistent and reliable for the

prioritization of criteria.

Table 4. Example of Weighted Priorities for Maintenance.

Weighted Prioritization:

After calculating the normalized weights for each criterion,
the maintenance tasks were prioritized based on these weights.
This approach guarantees that decisions are made with full

consideration of factors beyond just risk.

Component Cost (0.5) Safety (0.3) Environmental Impact (0.2) Total Score
Boiler Tube 0.4 0.3 0.2 0.7
Superheater 0.5 0.4 0.3 0.8

Table 4 shows the weighted prioritization of maintenance
tasks based on AHP, incorporating criteria such as cost, safety,
and environmental impact.

This AHP-based prioritization ensures that maintenance
resources are allocated where they are most needed, focusing on
the components that pose the highest risk to both operational

efficiency and safety.
2.4. Uncertainty Modeling and Sensitivity Analysis

To address the inherent uncertainty in failure predictions,
sensitivity analysis was employed to assess how variations in
the occurrence, severity, and detection ratings affect the RPN
and the overall prioritization of maintenance tasks. This ensures
that the model is robust, adaptable, and reflective of changes in
operational conditions.

The Monte Carlo simulations provided confidence intervals
and uncertainty bounds for each failure prediction, offering
a more robust and reliable assessment of the system’s

vulnerability.

Table 5. Example Sensitivity Analysis for Boiler Tube.

1
Parameter Change New RPN n-lpact on
Maintenance
Increase in Occurrence by Higher priority for
550 .
10% maintenance
Decrease in Detection by Immediate action
600 .
15% required

2.5. Extension to Other Industrial Systems

Although the study focuses on three boilers at a single facility,
the methodology is designed to be easily transferable to other
industrial systems with critical equipment such as turbines,
compressors, or pumps. The flexibility of this methodology,

which integrates real-time data, fuzzy FMEA, machine learning,

and Monte Carlo simulations, makes it suitable for a wide
variety of industrial applications, including oil and gas,

chemical manufacturing, and power plants [1, 22, 23].

Preliminary studies
field study
collect information

Record the fraquency of
failures and their impacts.

Collect data .—] ‘
socondary data
Data l

Move to the risk analysis
stage

FMEA Analysis

Monte Carlo
‘simulation

Calculate the MTTE (ean Time
To Failures) and the Reliability Results Analysis
Tor each component

Boes Reliability R{1) 15
below 5047

o ves.

i

Figure. 2. Research flowchart.

Figure 2 below provides a visual representation of the
methodology employed in this study. It outlines the sequence of
steps from data collection, through FMEA, Monte Carlo
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Simulation, AHP-based decision-making, and uncertainty

modeling.
3. CASE STUDY
3.1. Description of the System Studied

The GNLK complex houses three high-pressure boilers in Unit
50, operating in parallel to generate steam at 67 bars and 480 °C.
This steam is distributed to various units, including liquefaction
units P5 and P6, to support critical operational processes.

An expansion station (VS/VM) reduces the steam pressure

to 8 bars and 280 °C, enabling its use in two key processes:

e Secondary Expansion: feeding a secondary
expansion station (VM/VU) to supply steam at
4 bars and 180 °C for utility operations.

e Desalination: Supplying a desalter to distill
seawater, producing distilled water for equipment
cooling.

The distilled water undergoes further treatment in
a demineralizer to ensure high purity before being reinjected
into the boiler system, maintaining a consistent and high-quality

water supply for steam generation. (See Figure. 2).

Desalter

P5,P6 liquefaction
units
—-
cooling of Distilled
equipment water

Demineralizer

Boiler feeding

Figure 3. Steam production process.

The flow chart illustrates the operation of the boiler used in
Unit 50 (Figure 3). This boiler was selected for the study due to
its high frequency of failures compared to other components.

The process begins with water entering the economizer,
where it is preheated using the residual heat from the boiler
exhaust gases. The preheated water then flows into the lower
drum located within the combustion chamber. At this stage, the
burner generates the necessary heat to transform the water into
steam, with air supplied by the fan to optimize combustion.

The generated steam rises to the upper drum, where water

and steam are partially separated in the separation drum. The

steam then flows to the superheater, where it is heated further to
reach the required temperature for superheated steam.
Depending on industrial requirements, the superheated steam
may pass through the desuperheater to adjust its temperature.
The final output is high-pressure, high-temperature steam (VS)
that is ready for use in various industrial processes.

The exhaust flue gases are evacuated through the chimney
after their residual heat has been utilized across the boiler's
various sections. This cycle optimizes heat recovery and ensures

high-efficiency steam production.
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Boiler System Flowchart

Chimney

»| Superheater

(Separator Drum)

} 4

|

(Upper Drum\ -

Forced Draft

Fan &’:
|

Lower Drum

Desuperheater

:lEconomizer

Combustion Chamber

—=| Steam VS

Water,
Inlet

Figure 4. Flow chart of the boiler system in Unit 50, highlighting its main components and operational flow.

3.2. Identification of critical components

The FMEA (failure mode and effects analysis) method is
designed to identify, mitigate, and reduce failures in various
industrial sectors, including steam boilers. This method
evaluates risks using three key criteria:
e  Severity (S): The potential impact of a failure, rated
on a scale from 1 to 10.
e Occurrence (0O): The probability of the failure
occurring, also rated on a scale from 1 to 10.
o Detection (D): The ability to detect the failure
before it occurs, rated on a scale from 1 to 10.

These factors are combined to calculate a risk priority
number (RPN), which helps prioritize components for
intervention [3, 5, 17, 24-26].

The Severity (S), Occurrence (O), and Detection (D) scores
used in the FMEA analysis were assigned based on actual
operational data, notably drawn from maintenance records,
incident reports, and field observations. This estimation relies
on the in-depth knowledge of the equipment and processes by

engineers, technicians, and operators familiar with the analyzed

system.

While this approach enables a realistic qualitative
assessment, it introduces a degree of subjectivity. Therefore,
a sensitivity analysis was conducted to evaluate the influence of
uncertainties related to the S, O, and D scores on the RPN results.
This analysis was performed using extreme scenarios
(pessimistic, realistic, optimistic), thus providing a better
assessment of the robustness of the prioritizations proposed by
the FMEA.

In this study, ten boiler components frequently subject to
failure were analyzed in terms of their failure modes, root
causes, and potential effects. The analysis was applied to three
boilers, and the results, including the RPN values, are presented
in Table 6. These table provide a detailed breakdown of the
failure mode and effect analysis (FMEA) for the critical
components, enabling targeted maintenance and mitigation

strategies.
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Table 2. FMEA analysis of critical components in Boilers, highlighting risk priority numbers (RPN).

:‘-ﬁ Boiler 01 Boiler 02 Boiler 03
=
= Failure mode Causes of Failure Effects of failures - - -
= = ~ ~
g ODGZODGZODGZ
QO
£
-g ;ﬂﬁflleczlzst ?;ail;risfls. Corrosion Thermal Loss of thermal efficiency
5 ghthie . Unplanned system shutdowns 7 5 8 280 7 5 9315 7 5 8 280
~ purge lines and valves. fatigue Overpressure . .
) Prolonged downtime for repair
/& Steam leaks on drums
g Wear caused by
s . . .
2 Bursting of components repeated cycles of high Prolongéd boiler shutdown 659270 55 8 200 6 5 9 270
g or steam leakage temperature and Safety risks for personnel
Z pressure
>
= Wear on feed pumps Temporary systerp shutdown to
) Valve leaks and check valves, poor P revent overheating.
b . . P Decrease in water supply 55 71175 5 5 7175 5 5 6 180
5 Pumping issues valve sealing.
= pressure.
S Wear on seals or valves. . .
=3 Excessive fuel consumption.
Mechanical wear of
D lockage. i . .
= Prcemvevibraionor Misaignmentof | Redueed combusion
s . E efficiency. 55 6 150 5 4 7 140 5 5 7 175
abnormal noise. mechanical
. S Unexpected system shutdown.
Coupling deterioration. components.
Bearing wear.
S pressure meguimtes, malfuntionor iproper ISk O nffcent combustion
g P stratities, - md une PTOPET 1 1d unexpected boiler 54 7140 3 5 6 90 6 4 7 168
and flame detection calibration of gas
o shutdown.
problems. valves.
= .
E ) Failure of safety or Is)f:jlze(frtgvzociitrflciltr?irSa?iron Risks of undetected
° = Y ’ overpressure or underpressure 4 4 6 96 2 6 7 84 3 7 6 126
=2 control systems. errors, and component
s 2 Unexpected system shutdown
) wear.
Thermal fatigue and
g degradation of
Z E Cracks or deterioration refractory materials Thermal losses and reduced
2 E g . combustion efficiency 36 7 8 3 4 6 72 2 6 7 84
g & of the walls thermal expansion .
5 = . Increased fuel consumption
S mismatch between
refractory materials.
£
2
Pt
2 . .
= Leaks on flanges and S@l wear or mechanical Steam overheating, premature 37 6.8 25 7 .70 2 4 6 48
S desuperheater valve failure. wear of components
3
=
g Reduced combustion
g Leakage in tubes and ~ Corrosion cause'd by efﬁcwgcy. . S 770 17 6 4 16 7 4
H valves poor water quality Excessive fuel consumption
= Shutdowns for repairs
z Corrosion
£ . Mechanical fati P i
€  Torn flue casing cchanical fatigue oor gas evacuation 167 42 167 4 157 35
= Overpressure in the Decreased efficiency
o chamber
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4. Results and discussion
4.1. Results and Analysis (FMEA)

In this analysis, the boiler system consists of ten components
frequently subject to interference or damage. Among these, at
least five components record the most critical RPN values and

are classified as critical components. The superheater in boiler

Table 7. Comparison of RPNs by Component.

02 recorded the highest RPN value of 315. Other critical
components based on high RPN values include boiler tubes,
water supply systems, burners, and fans. A comparative analysis
of the FMEA results for the three boilers is presented in Table 7,
focusing on critical components, failure modes, and RPN values.
This comparison highlights

significant trends, enabling

informed conclusions and targeted maintenance strategies.

Components RPN Boiler 1 RPN Boiler 2 RPN Boiler 3 RPN Average
Boiler tubes 270 315 270 285
Superheater 280 200 280 253
Water supply 175 175 175 175
Fan 168 140 140 149
Burner 180 90 150 140
Chimney
Economizer
Boiler Tubes
Desuperheater
20.1%

Superheater

Water Supply

Combustion Chamber

Control Systems

Burner

Figure 5. Proportion of Critical Components Based on RPN.

% Observations

Boiler tubes: Critical components in all boilers, with
frequent failures due to high thermal and pressure conditions.

Superheater: A component also at high risk,
particularly in boilers 1 and 3. Requires an enhanced
maintenance program.

Water supply: Moderate risk, but regular monitoring
is necessary to prevent unexpected failures.

Fan: Slightly higher risk in boiler 1, requiring

improved management of ignition systems.

Burner: Variable risk, with particular attention
required for boilers 1 and 3, where the risk is higher.
« Comparative analysis
The analysis of the RPNs of the three boilers highlights the
superheater and boiler tubes as the most critical components,
with high average RPNs of 285 and 253, respectively. These
values indicate significant risks associated with high thermal
and pressure conditions, particularly in boilers 1 and 3.
Feedwater systems show stable, moderate risk (average
RPN of 175) across

all boilers, necessitating regular
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maintenance to prevent failures. The burner shows slightly
higher risk levels in Boiler 1 (RPN of 168), likely due to ignition
or flame detection issues, whereas Boilers 2 and 3 demonstrate
greater stability in this regard.

The fan displays significant variability in its risk indicators,
with Boiler 1 presenting a higher RPN of 180, indicative of
frequent vibration or friction issues, compared to Boiler 2,
which has a significantly lower RPN of 90.

In summary, priority actions should focus on superheaters
and boiler tubes, while burners and fans, particularly in boilers
1 and 3, would benefit from enhanced calibration and more
frequent inspections.

Based on the conducted analysis, the superheater and boiler
tubes are identified as the most critical components across all
boilers. Enhanced preventive measures should be implemented
to reduce their RPN and mitigate associated risks. For
components such as the burner and fan, although the risk is
moderate, significant differences between boilers highlight the
need for tailored condition-based maintenance strategies that
address the specific risk profiles of each boiler. These findings
underline the importance of adaptive maintenance plans to
improve overall reliability and operational efficiency.

Figure 5 represents the proportion of critical components
based on their Risk Priority Numbers (RPN). It highlights the
components with the highest failure risks that require targeted

maintenance.
4.2. Critical component reliability assessment

The critical components of the boiler were identified through
the previously conducted FMEA analysis. Of the ten
components evaluated, five were identified as critical, primarily
due to their significantly elevated Risk Priority Numbers
(RPNs). These components will undergo a detailed reliability
assessment using Monte Carlo simulation techniques.

The selected probability distributions for analysis include
normal, lognormal, Weibull, and exponential distributions [4,
18, 27]. Prior to selecting a distribution, Dixon or Grubb tests
are applied to identify and exclude potential outliers,
particularly extreme values that may skew the analysis.
Removing these values reduces dataset variability, justifying the
use of Monte Carlo simulation for reliability modeling [20].

Several statistical tests are referenced in the literature to

assess the suitability of the distribution, such as the Anderson-
Darling (AD) test, Kolmogorov-Smirnov (K-S) test, Chi-square
test, Pearson correlation coefficient, and Shapiro-Wilk test. The
distribution will be applied to real-time-to-failure (TTF) data,
with the most appropriate method determined by the sample
characteristics [4, 18, 20]. Parameters for the reliability model
are then calculated based on the selected distribution [18].
e Example for Boiler 03 (Boiler Tubes):
The following results were obtained using R code for the

boiler tubes component of boiler 01 (Figures 6 and 7):

'_1: " Fitting the lognormal distribution :

Lognormal distribution parameters:
meanlog sd1
4.775856 1.088089
;1: " Fitting the z-pweibull distribution:
2P-weibull distribution parameters :
shape scale
0. 9448552 205.41923369

[1] " Fitting the 3-pweibull distribution

:'3F'—'|\\e1' bull distribution parameters (data
TTF):

[1] 0.7443159 211.5290535  11. 9930000

Distribution AIC BIC
1 Lognormal 330.5193 333.0355
2 2P-weibull 334. 2707 336.7869
3 IP-wWeibull 329. 2105 332.9848
Best distribution according to AIC: 3P-
weibull

Figure 6. Flow chart of the boiler system in Unit 50,

highlighting its main components and operational flow.

[1] " Dixon test results:™
Dixon test for outliers

data: data
Q = 0.64989, p-value < 2.Ze-16
alternative hypothesis: highest value 1862 1is an out
Tier
[1] " Grubbs test results
Grubbs test for one outlier

data: data

G = 32.91151, U = 0.388%1, p-valus = 1.992e-05&
?]ternat'l've hypothesis: highest value 1862 1is an out
ier

outliers detected: 1862 _
[1] "Test d'anderson-Darling :"
Anderson-Dar1ing normality test

data: ttf_data clean
A = 2.5137, p-value = 1.525e-06

[1] "Test de normalité de Shapiro-wilk :™

shapiro-wilk normality test

data: ttf_data clean

W = 0.71412, p-value = B.325e-0&

[1] "Test de Kolmogorov-Smirnov pour la distribution
lognormale :"

Exact one-sample Kolmogorowv-Smirnoy Test
data: ttf_data_clean
D = 0.09748%, p—value = 0. 3455
alternative hypothesis: two-sided

[1] "Test de Kolmogorowv-Smirnov pour la distribution
de weibull "

Exact one-sample Kolmogorow-5mirnov test
data: ttf_data_clean

D = 0.15913, p-value = 0.4771
alternative hvpothesis: two-sided

Figure 7. Tests results.

Eksploatacja i Niezawodno$§¢ — Maintenance and Reliability Vol. 28, No. 2, 2026




¢ Interpretation of the results obtained

v' Dixon's Test for Outlier Values: Dixon's test
identifies 1862 as a significant outlier in the data
sample, with an extremely low critical p-value (< 2.2
x 1071).

v' Grubbs's Test for Outlier Value: Grubbs's test
corroborates the results of Dixon's test, also identifying
1862 as a statistically significant outlier, with a very
low p-value (1.992 x 107%).

v" Anderson-Darling Normality Test: The Anderson-
Darling test indicates a rejection of the normality
hypothesis with a critical p-value of 1.525 x 107¢. This
confirms that the data do not follow a normal
distribution.

v Shapiro-Wilk Normality Test: The Shapiro-Wilk test
also rejects the normality hypothesis, with a very low

p-value (8.325 x 107°). This reinforces the conclusion

1200F
1000
E 800 |
o
= 600}
(]
L
o
]
Q
£ 400}
=
200}
0,

that the TTF data are not normally distributed.

+  Summary of Test Results

The TTF data reveal a statistically significant outlier (1862)
and do not conform to a normal distribution. Lognormal and
Weibull distributions are suitable candidates for modeling these
data. Based on the AIC (Akaike Information Criterion) and BIC
(Bayesian Information Criterion) criteria, the 3P-Weibull
distribution provides the best fit. This distribution incorporates
an initial threshold of 12 days before failure, accurately
reflecting the observed data trends.

The AIC and BIC are two measures of the quality of
a statistical fit that allow for the comparison of multiple
distribution models and the selection of the one that best fits the
data, while penalizing overly complex models. A model can be

justified as the most efficient if it achieves the lowest AIC and

BIC scores.

~&— TTF Data
X Outliers (High)
Outliers (Low)

15 20 25
Index

Figure 8. Dixon and Grubbs Test Results.

Figure 8 above represent the results of Dixon and Grubbs
tests for identifying outliers. The Dixon test curve identifies
potential outliers based on a statistical decay, and the Grubbs

test curve focuses on extreme values in the dataset.

Table 8 provides a detailed summary of the selected

distributions and parameters for each component.
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Table 8. Summary of the best distribution and parameters for real-time failure.

=
D
E Components Distribution

Superheater 3P-Weibull

-
z Boiler tubes 2P-Weibull
E Water supply 3P-Weibull
Burner 3P-Weibull
Fan 3P-Weibull
Superheater 3P-Weibull
% Boiler tubes 3P-Weibull
%’ Water supply 3P-Weibull
a Burner 2P-Weibull
Fan 3P-Weibull
Superheater 3P-Weibull

o
z Boiler tubes 3P-Weibull
E Water supply 3P-Weibull
Burner 3P-Weibull
Fan 3P-Weibull

4.2.1. Generating random numbers and transforming

random number data

This study employs an integrated methodology for assessing the
reliability of critical boiler components. The framework
includes three main methods: Failure Modes and Effects
Analysis (FMEA), Monte Carlo Simulation (MCS), and
Analytic Hierarchy Process (AHP). Each method contributes
uniquely to the analysis, from identifying failure risks to
simulating system behavior and prioritizing components for
improvement. The following sections provide a detailed
description of each method's role in the overall framework.
Monte Carlo simulations require transforming uniformly
distributed random numbers in the range (0,1) into non-uniform
distributions such as Weibull and lognormal. The inversion
transformation method is commonly used for this purpose due
to its efficiency and simplicity [19]. This method relies on
inverting the cumulative distribution function (CDF) of the
desired distribution. If F(t) represents the CDF of a given
distribution, the random variable t can be obtained as follows:
t=F(X) (3)

Parameters
Shape (B) scale (0) Threshold (y)

0.47 899.87 124
1.27 311.36 /

0.60 263.14 18
0.70 337.05 9

0.38 509.98 102
0.51 572.39 53
0.49 431.43 129
0.42 372.24 38
1.50 712.40 /

0.32 934.16 117
0.46 771.22 31
0.74 211.53 12
0.44 432.42 3

0.66 209.60 14
0.53 551.78 151

where X is a uniformly distributed random number in the range
(0,1).

For Weibull and lognormal distributions, the random
variable t is calculated using the following equations [19]:

e  Weibull distribution :

t=y+0(—In(x)) /s 4)

where v is the threshold parameter, 0 is the scale parameter,
and p is the shape parameter.
e Lognormal distribution :

t = eh+oX (5)
where p is the mean of the logarithmic values, and o is the
standard deviation.

In this study, 1000 random numbers are generated and
transformed into the target distributions. Table 4 presents an
example of the transformed random numbers for the boiler tubes
of boiler 03.
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Figure 9. Scatter Plot: Random Numbers vs Transformed Data.
Figure 9 above illustrates the relationship between random visualize the correlation between the original and transformed

numbers and their corresponding transformed data. It helps datasets.

Table 9. Results of Random Number Generation and Transformation (Boiler tubes of Boiler 03).
Selected random number group :
110.6154411698 0.8150036929 0.3430093485 0.3882764990 0.0146181230 0.1578017345 0.5783333324
[810.1069918287 0.9727296822 0.0404412686 0.1766726782 0.1780670269 0.3710839346 0.1676601360

[981] 0.6967233189 0.5801492480 0.2947124066 0.0954643143 0.1648187668 0.8703669664 0.7532430857
[988] 0.8154430322 0.4617513919 0.7397549737 0.7263432376 0.7650615645 0.9757218659 0.3212862888
[995] 0.5557329513 0.6763559836 0.9170438380 0.0272347340 0.1226700931 0.0941418891

Transformed data :
[1] 211.02346 439.21520 77.96473 93.45017 12.73042 31.83287 185.68493 23.32273 1195.28052
[10] 14.92059 35.42654 35.70139 87.33919 33.68101 467.13804 149.05809 935.14417 21.61949

[982] 186.85217 63.45062 21.63279 33.14179 564.37399 344.21842 440.02416 123.14986 327.35504
[991] 311.64112 359.96680 1246.85881 71.19479 171.72482 260.71606 732.34220 13.70104 25.76605
[1000] 21.44481

Goodness-of-Fit Tests for Weibull Distribution Selection: how well the Weibull distribution fits the data. A p-
In this study, Weibull distributions were chosen to model the value greater than the significance level (usually 0.05)
failure times of critical boiler components. However, to justify suggests that the Weibull distribution is a good fit for
the selection of Weibull distributions over other alternatives, the data.

goodness-of-fit statistics were conducted for each component's 2. Anderson-Darling (A-D) Test: Similar to the K-S test,
failure data. The following fit tests were applied to assess how the A-D test assesses the fit by giving more weight to
well the Weibull distribution fits the observed data: the tails of the distribution. A low p-value from the A-
1. Kolmogorov-Smirnov (K-S) Test: This test compares D test would indicate a poor fit, while a high p-value
the empirical distribution function (ECDF) of the data suggests that the Weibull distribution adequately fits

with the cumulative distribution function (CDF) of the the failure data.
fitted distribution. The p-value from this test indicates The following table provides the results of these fit tests for
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each component:

Table 10. Distribution Fit Tests for Boiler Components Using

Kolmogorov-Smirnov and Anderson-Darling Tests.

p-value (Kolmogorov- p-value (Anderson-

Component Smirnov) Darling)
Superheater 0.92 0.86
Boiler Tube 0.85 0.90
Water Supply 0.76 0.80
Burner 0.89 0.87
Fan 0.91 0.88

Table 10 presents the results of the distribution fit tests for
boiler components, where the Kolmogorov-Smirnov and
Anderson-Darling tests were applied to the failure data. The
high p-values (greater than 0.05) for both tests indicate that the
data fits well with the chosen distribution, enhancing the
reliability of the analysis and the selection of the appropriate
distribution for each component.

These p-values demonstrate that the Weibull distribution is
a reasonable fit for the failure data of all components, as the p-
values are all above the typical significance level of 0.05.
Therefore, the Weibull distribution was chosen for further
reliability analysis.

Alternative Distributions:

Although Weibull distributions were selected based on the

goodness-of-fit tests, alternative distributions such as Log-

Normal and Exponential were also considered. However, the
results from the Kolmogorov-Smirnov and Anderson-Darling
tests indicated that these alternative distributions did not fit the
failure data as well as the Weibull distribution, as evidenced by
their lower p-values. For instance, the Log-Normal distribution
yielded p-values below 0.05 for most components, indicating
poor fit, while the Exponential distribution showed significant
deviation from the observed failure times, particularly in the tail
distributions. Therefore, the Weibull distribution was chosen for

its superior fit.
4.2.2. Validity Test

Validation plays a crucial role in the model development process.
It ensures that the model's predictions align closely with real-
world data, thereby enhancing the reliability of the analysis. In
this study, the Mann-Whitney U test is used to compare the
results of the random number transformations with actual data
to assess whether there are significant differences [4, 18, 19].

As an illustration, the validation process is applied to the
boiler tubes of boiler 03 to evaluate the accuracy of the
transformation results.

For illustration, the verification process is applied to the
three boiler elements to evaluate the accuracy of the

transformation results in Table 11.

Table 11. Results of Random Number Generation and Transformation.

Boiler Components w p-value Greater than the standard alpha threshold of 0.05?
Superheater 3523 0.98 Yes
Boiler tubes 10603 0.94 Yes
Boiler 01 Water supply 775 0.26 Yes
Burner 8911 0.73 Yes
Fan 2530 0.96 Yes
Superheater 4842 0.86 Yes
. Boiler tubes 4222 0.75 Yes
Boiler 02 Water supply 438 0.66 Yes
Burner 3887 0.89 Yes
Fan 285 0.84 Yes
Superheater 4251 0.77 Yes
Boiler tubes 13116 0.94 Yes
Boiler 03 Water supply 6896 0.71 Yes
Burner 15104 0.48 Yes
Fan 3523 0.96 Yes

Table 11 illustrates the value p-value is greater than the

conventional significance threshold of 0.05, indicating that the

Mann-Whitney U test fails to reject the null hypothesis. This
result suggests that the real TTF data and the transformed data
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are statistically similar in terms of distribution.

4.2.3. Calculation of parameters for random number

transformation

To accurately model the failure behavior of critical components,

it is essential to determine the most appropriate statistical

distribution and its parameters. These parameters are derived

from a distribution test applied to the real-time-to-failure (TTF)
data. The calculated parameters are then used for random
number transformations in Monte Carlo simulations.

The results obtained from the distribution test and parameter
calculation serve as inputs for the simulation process. Table
12 provides a summary of the best-fitting distributions and their

optimal parameters for transforming random numbers.

Table 12. Best distribution and parameters for the random number transformations.

8 Parameters
2 Components Distribution Shape (B) seale (0) Threshold ()
= Superheater 3P-Weibull 0.44 585.10 124
= Boiler tubes 3P-Weibull 1.20 324.28 1.95
= Water supply 3P-Weibull 0.59 145.82 18
o Burner 3P-Weibull 0.65 290.28 9
Fan 3P-Weibull 0.37 484.81 102
o Superheater 3P-Weibull 0.53 536.60 53
) Boiler tubes 3P-Weibull 0.49 364.77 129
E Water supply 3P-Weibull 0.41 160.91 38
Burner 2P-Weibull 1.48 756.42 /
Fan 3P-Weibull 0.33 509.91 117
o Superheater 3P-Weibull 0.46 684.64 31
= Boiler tubes 3P-Weibull 0.69 183.82 12
= Water supply 3P-Weibull 0.56 221.48 18
A Burner 3P-Weibull 0.62 179.26 14
Fan 3P-Weibull 0.50 454,51 151

4.2.4. MTTF calculation and reliability results from

Monte Carlo simulation

The Mean Time to Failure (MTTF) and the reliability level were

0.006 |

0.005

o
o
=)
=S

0.003

Probability Density

0.002

0.001

calculated using Egs. (6), (7), and (8) [28]. The MTTF formula

was chosen based on the Weibull distribution parameters.

—— Lognormal Distribution
Weibull Distribution
Observed Data

0.000

250 500 750

1000 1250 1500 1750 20l00

Time to Failure (TTF)

Figure 10. Failure Time Distribution for Critical Boiler Components (Weibull Distribution).
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For a 2P-Weibull distribution: t-p\B
R(t) = e (7)) (8)

MTTF =6 +T(1 +2) (6) . ‘
B With numerical values:

For a 3P-Weibull distribution: R(t) = e~(277:07 - 12/183.82)%%

MITF =y +6+T(L4 Y - R(t) = 0.2755 = 27.55%

A Figure 10 illustrates the Weibull distribution for the failure
Using the boiler tube component of boiler 03 as an example: times of critical components. It helps to understand the failure
MTTF = 12+ 183.82x I" (1 + 1/0.69) behavior of the system and indicates the likelihood of
MTTF = 12+ 183.82x I' (2.44) component failures over time.
MTTF = 277.069~ 277 days. The results of these calculations are summarized in Table 13,
Reliability Calculation, R(t): which provides the MTTF and reliability values based on Monte

Carlo simulations for the boiler tube component.

Table 13. MTTF and reliability results based on Monte Carlo simulation.

St
D
E Components MTTF (days) R (MTTF) % R (365) % R (1095) % R (1825) %
= Superheater 1608 22.01 50.98 28.56 20.01
5 Boiler tubes 306 39.62 31.81 01.35 00.03
= Water supply 242 27.57 18.84 03.84 01.19
A Burner 404 29.45 31.91 09.41 03.67
Fan 2130 18.30 45.04 27.15 20.21
o Superheater 1027 25.40 47.19 24.17 15.26
= Boiler tubes 896 23.78 44.53 20.05 12.08
= Water supply 524 20.57 26.14 11.28 06.63
o Burner 684 42.29 72.26 17.68 02.47
Fan 3143 16.29 45.56 28.84 22.36
o Superheater 1027 25.40 48.67 29.41 21.13
= Boiler tubes 277 27.55 20.74 03.25 00.74
= Water supply 524 20.57 27.60 08.77 03.55
o Burner 624 42.26 21.91 04.71 01.48
Fan 1064 24.26 50.31 23.69 14.71
4.3. Results and analysis (MCS) components require  frequent maintenance  or

replacement to prevent system disruptions.

Monte Carlo simulations applied to the five critical components Moderate  Reliability:  Superheaters and  feedwater

of the boilers reveal the following insights: components show moderate MTTF values with gradual

(1) High Reliability: Among all components, fans display the (3) declines in reliability. While more reliable than burners

longest mean time to failureamong all components. They and tubes, they remain less stable compared to fans.
demonstrate stable reliability over time, requiring less
frequent maintenance.

(2) Low Reliability: Burners and hot tubes display shorter
MTTF values and rapid declines in reliability,

highlighting their higher susceptibility to failure. These

Eksploatacja i Niezawodno$§¢ — Maintenance and Reliability Vol. 28, No. 2, 2026




1.6
1.4¢
1.2+
>
=
a
.©
E1o0t
0.8 .
= Boiler 01
— Boiler 02
= Boiler 03
0.6 = Superheater
— Tubes
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

Time (Years)

Figure 11. Reliability Analysis of Critical Components (Smooth Curves).

Figure 11 shows how the reliability of different components
(Superheater, Boiler Tubes, Water Supply, Burner, and Fan)
varies over time periods of 1 year, 3 years, and 5 years. As time
progresses, the reliability of certain components decreases,
indicating the need for timely maintenance.

Simulation results reveal an average system reliability under
50%, indicating elevated risk of shutdowns and degraded
efficiency. This value was derived using Monte Carlo
simulation techniques, which modeled the failure scenarios of
components under varying operational conditions. The

reliability estimates were based on the failure data and statistical

distributions applied to each element. The result indicates a high
likelihood of failure for these components within a short period,
emphasizing the need for timely preventive maintenance. In
industrial contexts, a reliability value below 50% suggests that
these components are at risk of causing unplanned downtimes
and significant disruptions in production. This finding
underscores the importance of implementing frequent
maintenance schedules and early detection techniques to

improve overall system performance and reduce operational

losses.

Risk Priority Number (RPN)

N RPN _Boiler 1
I RPN_Boiler_2
N RPN _Boiler 3

Components

Figure 12. RPN Analysis for Critical Boiler Components Across Different Boilers.
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Figure 12 above represents the Risk Priority Number (RPN)
for critical boiler components. It shows the risk distribution
across different boilers, highlighting components that require
immediate maintenance attention.

These findings provide a basis for prioritizing maintenance
activities and managing spare part inventories effectively. For
instance, fans require less attention, while burners and tubes
should be the focus of immediate preventive measures. Strategic
recommendations based on these results can enhance boiler
performance and minimize downtime.

In real-world applications, the prioritization of
maintenance tasks should not rely solely on RPN and MTTF
values, as these factors do not fully capture the operational
context. Therefore, we have integrated Multi-Criteria Decision-
Making (MCDM) techniques, such as Analytic Hierarchy
Process (AHP) and TOPSIS, to consider additional criteria that
are crucial for effective maintenance planning.

1. Cost: Maintenance decisions are influenced by the
cost of replacing or repairing components.
Components with high RPN and high maintenance
cost should be prioritized for preventive maintenance.

2. Downtime: The cost of downtime can be substantial
in terms of lost production and operational delays.
Components that, if failed, would lead to significant
downtime are prioritized higher.

3. Part Availability: The availability of replacement
parts is critical. Components with long lead times for
spare parts should be given higher priority to prevent
long outages.

4. Safety: For critical components, the safety risks
associated with failure should be evaluated.
Components that pose a higher risk to personnel safety
in case of failure are given priority.

By using AHP or TOPSIS, a weighting system is applied
to each of these factors, and maintenance priorities are
determined based on their overall impact. These methods
provide a holistic assessment that goes beyond RPN and MTTF,
ensuring that decisions are made not only based on risk but also
on broader operational concerns.

The following recommendations are based on the results of
the combined FMEA and Monte Carlo Simulation (MCS)

analysis, to enhance the reliability, safety, and performance of

industrial boilers:
1. Enhanced Monitoring of Critical Components
*  Prioritize inspections of superheaters and boiler tubes,
identified as the most at-risk components.
* Implement alert thresholds based on Monte Carlo
simulation results (e.g., reliability < 30%).
2. Tailored Predictive Maintenance
* Adjust maintenance intervals using estimated life
distributions (e.g., 3-parameter Weibull).
* Use decision-support software tools to schedule
shutdowns based on risk profiles.
3. Integration of Advanced Diagnostic Tools
* Install smart sensors (for pressure, vibration,
temperature) to detect early signs of failure.
*  Deploy robotic inspection technologies for areas that
are difficult to access.
4. Ongoing Training for Maintenance Personnel
* Organize targeted training sessions focused on
interpreting predictive tool data.
*  Train technicians to identify early warning signs of
component failure.
5. Proactive Spare Parts Management
» Establish an inventory of critical components
characterized by high Risk Priority Numbers and low
mean time to failure, to reduce intervention delays.
 Set up automatic replenishment thresholds for
components with a high likelihood of failure.
Implementing these measures would significantly reduce
costs associated with unplanned downtimes, extend the lifespan
of key components, and improve service continuity in thermal

systems.
5. FUTURE RESEARCH DIRECTIONS

The findings of this study pave the way for several promising
research directions aimed at enhancing the reliability and
predictive maintenance of industrial boilers. These future
avenues focus on integrating advanced technologies, refining
existing models, and exploring innovative methodological
approaches to address current limitations and improve system
performance.

One key area for future research is the integration of

advanced technologies. Digital monitoring and diagnostic
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systems, equipped with smart sensors and real-time analysis
tools, could significantly improve the detection of failures in
thermal power plants. These systems would enable faster
responses to anomalies, reducing unplanned downtime and
enhancing operational efficiency. Additionally, advancements
in materials, such as corrosion-resistant and thermal fatigue-
resistant alloys, along with the adoption of new energy
production technologies like hybrid renewable energy systems,
could enhance the durability and reliability of industrial boilers.
These innovations would not only extend the lifespan of critical
components but also reduce maintenance costs and improve
energy efficiency.

Another important direction is the improvement of risk
assessment models. Future studies could explore the integration
of additional risk factors, such as environmental impacts,
maintenance costs, and production losses, to provide a more
comprehensive analysis of risks. This holistic approach would
enable better prioritization of maintenance actions and more
informed decision-making. Furthermore, enhancing the
generalization of models by testing them across diverse
industrial systems and operational environments would
strengthen their robustness and applicability. The integration of
machine learning, particularly deep learning, as suggested by
Rao et al. (2024) [29], could also offer significant advancements
in predictive maintenance. These techniques could enable more

precise modeling of failure scenarios and more accurate

predictions of failure times, improving overall system reliability.

Additionally, combining multiple models, such as fuzzy
methods, Monte Carlo simulations, and machine learning, could
enhance the accuracy and robustness of predictions. For
instance, the ExJ-PSI model proposed by Patil et al. (2022)
could integrate expert judgments while reducing uncertainties
in risk assessment [23].

The integration of fuzzy and hybrid methods also presents
a valuable research opportunity. Fuzzy methods, when
incorporated into Failure Modes, Effects Analysis (FMEA), can
improve the accuracy of risk identification by accounting for
uncertainties and subjective expert judgments. This approach,
as highlighted by Wang et al. (2021) and Khodadadi-Karimvand
and Shirouyehzad (2021) [30, 31], would allow for more
effective prioritization of maintenance actions. Similarly,

hybrid methods, such as combining Fuzzy TOPSIS with FMEA,

could enhance risk prioritization in complex industrial settings.
As demonstrated by Magalhdes and Lima Junior (2021) [32],
this combination offers a robust framework for managing
uncertainties and multiple criteria, leading to more effective risk
management and maintenance planning.

In conclusion, these future research directions aim to
strengthen the reliability of industrial boilers by leveraging
advanced technologies, refining risk assessment models, and
exploring innovative methodological approaches. By
combining these efforts, researchers and practitioners can
develop more adaptive, efficient, and robust predictive
maintenance systems. This will not only reduce operational
costs but also enhance the safety, performance, and
sustainability of industrial facilities, ensuring their long-term

reliability in demanding operational environments.

6. CONCLUSIONS

This study demonstrates that the integration of Failure Mode
and Effects Analysis (FMEA) with Monte Carlo Simulation
(MCS) provides a comprehensive and robust framework for
improving the reliability of critical boiler components. FMEA
enables a structured identification and prioritization of failure
modes based on their severity, occurrence, and detectability,
while MCS adds a probabilistic dimension by simulating
realistic failure scenarios and estimating the Mean Time to
Failure (MTTF).

The analysis highlighted that components such as
superheaters and boiler tubes show high RPN values and weak
reliability, warranting top maintenance priority.

This combined approach enhances maintenance planning by
refining inspection intervals, improving resource allocation, and
anticipating component failures. It is also adaptable to various
industrial systems beyond steam generation.

Future work could explore the integration of real-time
monitoring systems and Al-driven predictive models to further
enhance failure detection and reduce uncertainties. Expanding
the dataset through continuous data acquisition and including
additional variables such as cost, environmental impact, and
energy efficiency would further refine maintenance planning.

In conclusion, the joint use of FMEA and MCS is a valuable

decision-support tool for improving equipment reliability,
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reducing operational risks, and extending the life of critical components in complex industrial environments.
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