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▪ The high RPN components reflect the action 
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▪ Monte Carlo simulation is used to estimate 

MTTF. 

▪ The MCS predicts the probability of failure. 

▪ MCS optimizes the time of maintenance. 

 

 Industrial boilers are crucial for steam generation in various production 

processes. This study aims to improve the reliability of boiler 

components by combining Failure Modes and Effects Analysis (FMEA) 

with Monte Carlo Simulations (MCS). A novel approach integrates 

predictive maintenance using real-time operational data, alongside 

Multi-Criteria Decision-Making (MCDM) techniques such as AHP for 

prioritizing maintenance tasks. The results show that critical 

components, such as boiler tubes and superheaters, exhibit high Risk 

Priority Numbers (RPN), indicating urgent need for targeted preventive 

maintenance. The proposed framework optimizes maintenance 

scheduling, reduces unplanned downtimes, and enhances overall system 

reliability and safety. 
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1. Introduction 

The GNL1K complex, located east of Skikda, Algeria, plays  

a strategic role in the natural gas liquefaction process. Among 

its key facilities, Unit 50 is responsible for supplying other 

industrial facilities with the steam needed to start up. This unit 

comprises three identical boilers, essential for ensuring  

a continuous supply of steam and other components. These 

boilers, which are essential to the steam production system, burn 

fuel to heat water and generate high-pressure steam. 

Boilers are a key component in ensuring the optimal 

operation of plants, requiring consistent and high performance 

[1]. While this study relies on well-established methodologies 

such as FMEA and Monte Carlo Simulation (MCS), it 

introduces a novel integration of Multi-Criteria Decision-

Making (MCDM) techniques, particularly AHP. This 

integration enhances the predictive accuracy of maintenance 

strategies by considering additional factors such as cost, safety, 

and environmental impact, beyond the traditional RPN, thus 

offering a more comprehensive decision-making framework. 

Given their pivotal role, boiler reliability and efficiency are of 

paramount importance. However, these units often experience 

outages due to malfunctions in their core components, resulting 

in prolonged downtime and significant productivity losses [2]. 

Hatala et al. [3] confirm that industrial boilers are susceptible to 

major failures, which directly impact their performance and 
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availability. Furthermore, Stamenkovic et al. point out that: [4] 

Prolonged outages often result from burst pipes under high 

pressure. 

The continuous operating cycles of boilers, designed to meet 

production requirements, accelerate the wear of their 

components. Under extreme thermal and pressure conditions, 

components such as superheaters and pipes endure significant 

mechanical and thermal stress [5]. Stamenkovic et al. [4] 

highlight the negative effects of thermal and pressure stress on 

these vital components, which often result in frequent outages, 

performance degradation, maintenance shutdowns, unexpected 

breakdowns, or structural damage. 

To minimize downtime and improve system reliability, it is 

essential to identify the root causes of failures and assess their 

impacts [2, 6]. Cristea and Constantinescu [5] emphasize the 

critical role of thorough root cause analysis in designing 

sustainable solutions. While understanding root causes is 

foundational, it is not sufficient on its own. A comprehensive 

reliability analysis is necessary to enhance equipment 

availability, mitigate operational risks, and extend the life of 

critical components. Strengthening maintenance strategies for 

critical components directly enhances overall system reliability 

[7]. 

In recent years, several studies have sought to identify 

critical components, their risks, and their reliability. 

Rahmania et al. (2020) applied FMEA to the boiler feed 

pump turbine of a thermal power plant. Their work proposed 

targeted maintenance types (predictive or preventive) based on 

the specific risk profiles of each component, thus demonstrating 

the practical value of RPN-based prioritization. [8], furthermore, 

Hatala et al. (2023) conducted a comprehensive FMEA (Failure 

Modes, Effects, and Criticality Analysis) on a boiler system in 

an Indonesian power plant. Their study demonstrated that 

combining risk assessment with reliability indicators such as 

Mean Time to Failure (MTTF) provided a more practical 

framework for preventive maintenance [3]. 

Failure Mode and Effects Analysis (FMEA) is a widely 

adopted method for identifying, evaluating, and prioritizing 

potential failure modes based on the severity, occurrence, and 

detectability of each. Unlike previous studies, which primarily 

employed FMEA and MCS separately, this study integrates 

these methodologies with Multi-Criteria Decision-Making 

(MCDM) techniques, specifically AHP. This hybrid approach 

allows for a more nuanced prioritization of maintenance tasks 

by incorporating additional operational factors like cost, 

downtime, and safety risks, which were previously overlooked 

in traditional analyses. Yet, traditional FMEA has limitations in 

managing uncertainties and dynamic operational conditions. To 

address this, recent research has increasingly favored hybrid 

approaches that couple FMEA with probabilistic simulations or 

intelligent methods. For example, Al Kautsar et al. (2022) 

integrated gray FMEA with root cause analysis (RCA) to study 

startup failures in coal-fired boilers. Their hybrid method 

allowed them to quantify and rank failure risks even in the 

presence of incomplete or uncertain data, thus providing  

a robust alternative to traditional scoring methods [9]. 

Furthermore, T. Sun et al. (2025) [10] applied a fuzzy logic-

based FMEA to assess the reliability of solar-assisted air source 

heat pumps, demonstrating the value of intelligent inference 

systems in managing complex thermal system uncertainties and 

refining component prioritization. 

 However, as observed by Hatala et al., most research tends 

to address these aspects independently, limiting the 

effectiveness of proposed solutions [3]. In addition to the widely 

used FMEA and Monte Carlo simulation methods, alternative 

methodologies such as TOPSIS (Technique for Order 

Preference by Similarity to Ideal Solution) and COPRAS-G 

(Complex Proportional Assessment of Alternatives with Grey 

Relations) have been introduced to improve maintenance 

planning [11, 12]. These methods provide a more 

comprehensive framework for selecting the most effective 

maintenance strategies, considering multiple criteria such as 

cost, reliability, and performance [13]. 

Failure Modes and Effects Analysis (FMEA ) is a widely 

recognized systematic method for improving the reliability of 

industrial systems [14]. By incorporating Criticality Analysis, 

this study goes beyond traditional FMEA to identify the most 

critical components whose failure could lead to severe 

operational consequences, enabling more targeted maintenance 

strategies [15, 16].  This approach allows the identification of 

critical failure modes, assessment of their impacts, and 

proposition of solutions to mitigate their effects [17]. By 

evaluating each component in terms of the probability of 

occurrence, failure effects, and criticality, FMEA  provides 
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comprehensive documentation of the mechanisms involved [7]. 

As Muhammad Hudzaly Hatala notes, prioritizing risks, 

identifying critical failures, and planning preventive 

interventions are instrumental in reducing unplanned shutdowns 

[3]. 

Monte Carlo simulations offer a powerful tool for analyzing 

the reliability of critical components and predicting potential 

failures. Pamungkas and Dirhamsyah demonstrated that this 

method effectively models various failure scenarios by 

transforming random numbers into non-uniform distributions 

[18]. The ability of this method to simulate realistic conditions 

is further validated through real-world data, as confirmed by 

Hartini et al. [19]. These simulations not only optimize 

maintenance cycles and mitigate risks but also facilitate 

strategic decision-making in equipment management [20]. 

In light of this study, which combines FMEA analysis and 

Monte Carlo simulations, several recommendations can be 

made to improve the reliability of boilers and their critical 

components: 

1). Strengthening preventive maintenance : 

✓ Conduct regular inspections and targeted tests on critical 

components, such as superheaters, tubes, and water supply 

systems. 

✓ Adjust maintenance cycles based on insights gained from 

Monte Carlo simulation results. 

2). Adoption of Advanced Diagnostic Technologies: 

✓ Integrate smart sensors and real-time analysis tools to 

detect early signs of failure, such as vibrations and pressure 

variations, improving diagnostic accuracy and minimizing 

unplanned shutdowns. 

✓ Employ smart diagnostic tools, including inspection robots, 

as described in studies like H. Wang et al. (2019) [21], to:  

▪ Identify critical areas within boilers. 

▪ Reduce risks to human personnel. 

▪ Enhance the speed and accuracy of inspections. 

3). Continuous Training of Technicians: 

✓ Train maintenance teams to recognize early failure signals, 

such as abnormal vibrations, temperature, or pressure 

fluctuations. 

✓ Provide training on using diagnostic technologies 

effectively. 

4). Proactive Management of Critical Components: 

✓ Prioritize the replacement of components with the highest 

RPN and lowest MTTF, such as boiler tubes and 

superheaters. 

✓ Establish a strategic inventory of spare parts to reduce 

intervention delays. 

By implementing these recommendations, it is possible to 

enhance boiler reliability, minimize operational costs associated 

with unplanned shutdowns, and improve the safety and overall 

performance of industrial facilities. 

2. METHODOLOGY 

This study aims to revolutionize the conventional reliability 

assessment and predictive maintenance strategies applied to 

critical systems, specifically focusing on the boilers at the Unit 

50 natural gas liquefaction complex in Skikda, Algeria. The 

plant, integral to the country’s natural gas liquefaction process, 

employs three boilers that are essential for providing steam to 

power other production units. These boilers operate under 

extreme thermal and mechanical stresses, often leading to 

premature component failure. Addressing this, our study 

introduces an advanced methodological framework that 

integrates real-time sensor data, machine learning algorithms, 

fuzzy logic techniques, and multi-criteria decision-making 

(MCDM), marking a significant departure from traditional 

FMEA and Monte Carlo Simulation (MCS) applications. This 

innovative approach aims to provide a more dynamic, adaptive, 

and accurate system for failure prediction and maintenance 

optimization. 

2.1. Overview of the Facility and Data Collection Process 

The Unit 50 boilers are exposed to high operational loads, 

making their reliability critical to ensuring uninterrupted 

production. Given this importance, data collection was done 

using real-time operational data, gathered from smart sensors 

strategically deployed across the boilers. These sensors monitor 

the following key parameters, which are directly related to 

component degradation and failure risks: 

• Temperatures: Thermal stress is one of the leading 

causes of failure in high-temperature systems. 

Temperature sensors were deployed in critical 

components such as the economizer, combustion 

chamber, and superheaters to monitor temperature 

fluctuations that may lead to material failure or 
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warping. 

• Pressures: The pressure in key sections such as the 

steam drums, superheaters, and feedwater lines was 

measured continuously. Over-pressurization or sudden 

pressure drops often result in mechanical failures. 

Monitoring these fluctuations ensures that pressure is 

maintained within safe operational limits, preventing 

potential breakdowns. 

• Vibrations: Vibration sensors placed on the burners, 

fans, and superheaters detect anomalies such as 

misalignments, wear, or loose parts. Abnormal 

vibrations are early indicators of potential mechanical 

failures and can be used to predict maintenance needs 

before a complete failure occurs. 

These real-time data were integrated into the central 

monitoring system of the facility, where they were analyzed 

continuously using machine learning models. The integration of 

predictive maintenance models that use real-time operational 

data marks a significant innovation in maintenance practices, 

making the process more adaptive and efficient. 

2.2. Reliability Assessment Using FMEA, MCS, and 

Advanced Methodologies 

The core of this research lies in combining traditional FMEA 

and MCS with fuzzy logic and machine learning to enhance the 

reliability prediction accuracy. This novel integration not only 

addresses the limitations of traditional methodologies but also 

introduces new dimensions in reliability assessment that 

account for uncertainty and real-time operational variability. 

2.2.1. Enhanced Failure Modes and Effects Analysis 

(FMEA) 

Traditional FMEA relies on expert judgment to assign values 

for severity (S), occurrence (O), and detection (D). However, 

this study introduces fuzzy FMEA, which accounts for the 

inherent uncertainty in these ratings, offering a more flexible 

and realistic representation of failure risks. In fuzzy FMEA, 

each of the parameters is represented by fuzzy numbers, which 

allows for a range of values to better capture the uncertainty in 

real-world data. 

a. Defuzzification Process to Obtain Crisp RPN: 

In this study, the values for Severity, Occurrence, and 

Detection were represented as fuzzy triangular numbers, where 

each value was represented by a range, including the lower, 

middle, and upper bounds. These fuzzy values were processed 

using fuzzy arithmetic operations to obtain a crisp value for 

each of the parameters (Severity, Occurrence, and Detection). 

b. Defuzzification Process: 

1. Fuzzy Values Representation: The fuzzy values for 

Severity, Occurrence, and Detection were represented 

as triangular fuzzy numbers, as shown in the figure 

below. 

2. Fuzzy Arithmetic: These fuzzy values were then 

aggregated using fuzzy arithmetic to produce a single 

fuzzy value for RPN. 

3. Centroid Method for Defuzzification: The fuzzy 

RPN values were defuzzified into crisp values using 

the centroid method, where the centroid of the fuzzy 

set was calculated to obtain a crisp RPN value. 

This process adds robustness and reliability to the risk 

assessment by incorporating the uncertainty inherent in 

operational data. 

The Risk Priority Number (RPN) is then calculated using the 

following fuzzy-weighted formula: 

RPN = ∑ (𝑆𝑖 × 𝑂𝑖 × 𝐷𝑖)
𝑛
𝑖=1 (Fuzzy-Weighted RPN(        1 ) ) 

By using fuzzy logic, this methodology ensures that the RPN 

values reflect not only the severity, occurrence, and detection 

but also the uncertainty associated with each of these factors, 

which is often ignored in conventional FMEA. 

Table 1. Example of Fuzzy FMEA Calculation. 

Component 
Severity 

(S) 

Occurrence 

(O) 

Detection 

(D) 

RPN 

(Fuzzy) 

Boiler Tube (9, 10) (6, 8) (7, 9) 504 

Superheater (8, 9) (5, 7) (6, 8) 336 

Fan (6, 7) (4, 6) (5, 7) 210 

Table 1 provides an overview of the FMEA analysis for the 

critical components, highlighting their Risk Priority Numbers 

(RPN) and the associated failure modes. 

This fuzzy approach adds robustness and reliability to the 

risk assessment process by modeling the inherent uncertainty in 

component behavior under different operational conditions. 

In this study, fuzzy FMEA was applied to handle the 

inherent uncertainty in expert judgment when assigning values 

to severity, occurrence, and detection. Instead of using discrete 

values, each of these parameters was represented as a fuzzy 
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number to capture the range of possible values, reflecting the 

expert's uncertainty. 

For each parameter: 

1. Severity (S): Defined as a fuzzy number with  

a triangular membership function. The fuzzy number 

for severity could range from a minimum value 𝑆𝑚𝑖𝑛 

to a maximum value 𝑆𝑚𝑎𝑥 , with a peak at the most 

likely severity value. For example, severity might be 

represented as a fuzzy number (𝑆peak𝑚𝑎𝑥𝑚𝑖𝑛. 

2. Occurrence (O): Similarly, occurrence was modeled 

using a triangular fuzzy number (𝑂peak𝑚𝑎𝑥𝑚𝑖𝑛 , 

representing the range of likelihoods of failure for each 

component. 

3. Detection (D): Detection was also represented as  

a fuzzy number with the same triangular shape, defined 

as (𝐷peak𝑚𝑎𝑥𝑚𝑖𝑛 . 

These fuzzy numbers allowed us to represent the uncertainty 

in the expert's judgment, with each parameter expressed in 

terms of a range rather than a single crisp value. 

The fuzzy numbers for Severity, Occurrence, and 

Detection were represented using triangular membership 

functions, which are commonly used in fuzzy logic for their 

simplicity and efficiency. These triangular membership 

functions were defined for each parameter as follows: 

• Severity: The membership function for severity 𝜇𝑆(𝑥) 

was defined as: 

𝜇𝑠(𝑥) =

{
 

 
𝑥−𝑆𝑚𝑖𝑛

𝑆𝑝𝑒𝑎𝑘−𝑆𝑚𝑖𝑛
   𝑓𝑜𝑟   𝑆𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑆𝑝𝑒𝑎𝑘

𝑆𝑚𝑎𝑥−𝑥

𝑆𝑚𝑎𝑥−𝑆𝑝𝑒𝑎𝑘
   𝑓𝑜𝑟   𝑆𝑝𝑒𝑎𝑘 ≤ 𝑥 ≤ 𝑆𝑚𝑎𝑥

0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

 (2 )  

• Occurrence: The membership function for occurrence 

𝜇𝑂(𝑥) was similarly defined, capturing the uncertainty 

in the frequency of failure: 

• Detection: The membership function for detection 

𝜇𝐷(𝑥) was defined similarly to the others. 

These triangular membership functions provided a flexible 

way to handle the uncertainty in assigning crisp values for each 

parameter, ensuring a more realistic representation of the failure 

risks. 

As shown in Figure 1, the fuzzy values for Severity, 

Occurrence, and Detection are represented using triangular 

fuzzy numbers. These fuzzy values are then aggregated using 

fuzzy arithmetic, and the centroid method is applied to obtain a 

crisp RPN value.

 

Figure. 1. Fuzzy Membership Functions for Severity, Occurrence, and Detection. 

2.2.2. Monte Carlo Simulation (MCS) and Reliability 

Analysis 

While FMEA provides valuable insights into failure modes, it 

cannot often predict failure times accurately. To address this, 

Monte Carlo Simulations (MCS) were applied to simulate the 

probabilistic nature of component failure under varying 

operational conditions. MCS allows us to account for the 

uncertainty in operational parameters, such as pressure 

fluctuations and temperature extremes, and predict failure times 

over a large number of iterations. 

In this study, we employed the Weibull distribution, a widely 
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used model for reliability analysis, to simulate failure times for 

each component. The Weibull distribution is expressed as: 

Where: 

• t: Time to failure 

• γ : Threshold (minimum time before failure) 

• θ: Scale parameter 

• β: Shape parameter 

By running simulations over 1000 iterations, we were able 

to generate failure time distributions for each component. The 

Mean Time to Failure (MTTF) was calculated as the average of 

these failure times, and the Reliability Function (R(t)) was 

derived for each component at various time intervals.

Table 2. Reliability Example for Superheater. 

Component MTTF (days) Reliability (1 year) Reliability (3 years) Reliability (5 years) 

Superheater 1608 50.98% 28.56% 20.01% 

Boiler Tube 306 31.81% 1.35% 0.03% 

Fan 2130 45.04% 27.15% 20.21% 

 

Table 2 illustrates the reliability assessment results for the 

superheater and boiler tubes, including Mean Time to Failure 

(MTTF) and reliability at different time intervals. 

This Monte Carlo Simulation approach, coupled with 

confidence intervals and uncertainty bounds, allows for a more 

accurate, robust, and realistic prediction of component lifespans, 

improving overall system reliability. 

2.3. Multi-Criteria Decision-Making (MCDM) Using AHP 

To ensure that maintenance tasks are prioritized not only based 

on RPN and MTTF but also on critical factors such as cost, 

safety, and environmental impact, Multi-Criteria Decision-

Making (MCDM) methods were employed. In particular, 

Analytic Hierarchy Process (AHP) was used to assign weights 

to each factor and generate a priority ranking for maintenance 

tasks. This approach ensures that multiple dimensions of risk 

and impact are considered when making maintenance decisions. 

Pairwise Comparison Matrix: 

A pairwise comparison matrix was created, where the 

relative importance of factors such as cost, safety, and 

environmental impact was evaluated. The matrix employs  

a scale of comparison, where 1 indicates equal importance, 3 

moderate importance, and 9 extreme importance.

Table 3. Example of Pairwise Comparison for Criteria. 

Criteria Cost Safety Environmental Impact 

Cost 1 3 5 

Safety 1/3 1 3 

Environmental Impact 1/5 1/3 1 

 

Table 3 presents the pairwise comparison matrix used for 

AHP, where the relative importance of criteria like cost, safety, 

and environmental impact was evaluated. 

In the AHP method, once the pairwise comparison matrix is 

constructed, it is crucial to test the consistency of the weight 

assignments. This ensures that the judgments made by the 

decision-makers are reliable and coherent. The consistency of 

the matrix is assessed by calculating the Consistency Ratio (CR), 

which helps determine the degree of consistency in the 

comparisons. 

To test consistency, the largest eigenvalue (λmax) of the 

pairwise comparison matrix is calculated. The consistency 

index (CI) is then computed using the following formula: 

𝐶𝐼 =
𝜆𝑚𝑎𝑥

𝑛−1
            (4) 

where λ_max is the largest eigenvalue and n is the number of 

criteria. The Random Consistency Index (RI) is a pre-defined 

value that depends on the number of criteria (n). The 

Consistency Ratio (CR) is calculated as: 

   𝐶𝑅 =
𝐶𝐼

𝑅𝐼
              (5) 

A CR value less than 0.1 indicates that the pairwise 

comparisons are sufficiently consistent and that the judgments 

made are reliable. If the CR value exceeds 0.1, this suggests 

inconsistency in the comparisons, and the matrix should be 
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revised. 

In this study, the consistency of the pairwise comparison 

matrix was verified, yielding a CR value of 0.08, confirming 

that the judgments were consistent and reliable for the 

prioritization of criteria. 

Weighted Prioritization: 

After calculating the normalized weights for each criterion, 

the maintenance tasks were prioritized based on these weights. 

This approach guarantees that decisions are made with full 

consideration of factors beyond just risk.

Table 4. Example of Weighted Priorities for Maintenance. 

Component Cost (0.5) Safety (0.3) Environmental Impact (0.2) Total Score 

Boiler Tube 0.4 0.3 0.2 0.7 

Superheater 0.5 0.4 0.3 0.8 

 

Table 4 shows the weighted prioritization of maintenance 

tasks based on AHP, incorporating criteria such as cost, safety, 

and environmental impact. 

This AHP-based prioritization ensures that maintenance 

resources are allocated where they are most needed, focusing on 

the components that pose the highest risk to both operational 

efficiency and safety. 

2.4. Uncertainty Modeling and Sensitivity Analysis 

To address the inherent uncertainty in failure predictions, 

sensitivity analysis was employed to assess how variations in 

the occurrence, severity, and detection ratings affect the RPN 

and the overall prioritization of maintenance tasks. This ensures 

that the model is robust, adaptable, and reflective of changes in 

operational conditions. 

The Monte Carlo simulations provided confidence intervals 

and uncertainty bounds for each failure prediction, offering  

a more robust and reliable assessment of the system’s 

vulnerability. 

Table 5. Example Sensitivity Analysis for Boiler Tube. 

Parameter Change New RPN 
Impact on 

Maintenance 

Increase in Occurrence by 

10% 
550 

Higher priority for 

maintenance 

Decrease in Detection by 

15% 
600 

Immediate action 

required 

2.5. Extension to Other Industrial Systems 

Although the study focuses on three boilers at a single facility, 

the methodology is designed to be easily transferable to other 

industrial systems with critical equipment such as turbines, 

compressors, or pumps. The flexibility of this methodology, 

which integrates real-time data, fuzzy FMEA, machine learning, 

and Monte Carlo simulations, makes it suitable for a wide 

variety of industrial applications, including oil and gas, 

chemical manufacturing, and power plants [1, 22, 23]. 

 

Figure. 2. Research flowchart. 

Figure 2 below provides a visual representation of the 

methodology employed in this study. It outlines the sequence of 

steps from data collection, through FMEA, Monte Carlo 
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Simulation, AHP-based decision-making, and uncertainty 

modeling. 

3. CASE STUDY 

3.1. Description of the System Studied 

The GNLK complex houses three high-pressure boilers in Unit 

50, operating in parallel to generate steam at 67 bars and 480 °C. 

This steam is distributed to various units, including liquefaction 

units P5 and P6, to support critical operational processes. 

An expansion station (VS/VM) reduces the steam pressure 

to 8 bars and 280 °C, enabling its use in two key processes: 

• Secondary Expansion: feeding a secondary 

expansion station (VM/VU) to supply steam at  

4 bars and 180 °C for utility operations. 

• Desalination: Supplying a desalter to distill 

seawater, producing distilled water for equipment 

cooling. 

The distilled water undergoes further treatment in  

a demineralizer to ensure high purity before being reinjected 

into the boiler system, maintaining a consistent and high-quality 

water supply for steam generation. (See Figure. 2).

 

Figure 3. Steam production process. 

The flow chart illustrates the operation of the boiler used in 

Unit 50 (Figure 3). This boiler was selected for the study due to 

its high frequency of failures compared to other components. 

The process begins with water entering the economizer, 

where it is preheated using the residual heat from the boiler 

exhaust gases. The preheated water then flows into the lower 

drum located within the combustion chamber. At this stage, the 

burner generates the necessary heat to transform the water into 

steam, with air supplied by the fan to optimize combustion. 

The generated steam rises to the upper drum, where water 

and steam are partially separated in the separation drum. The 

steam then flows to the superheater, where it is heated further to 

reach the required temperature for superheated steam. 

Depending on industrial requirements, the superheated steam 

may pass through the desuperheater to adjust its temperature. 

The final output is high-pressure, high-temperature steam (VS) 

that is ready for use in various industrial processes. 

The exhaust flue gases are evacuated through the chimney 

after their residual heat has been utilized across the boiler's 

various sections. This cycle optimizes heat recovery and ensures 

high-efficiency steam production.
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Figure 4. Flow chart of the boiler system in Unit 50, highlighting its main components and operational flow.  

3.2. Identification of critical components 

The FMEA (failure mode and effects  analysis) method is 

designed to identify, mitigate, and reduce failures in various 

industrial sectors, including steam boilers. This method 

evaluates risks using three key criteria: 

• Severity (S): The potential impact of a failure, rated 

on a scale from 1 to 10. 

• Occurrence (O): The probability of the failure 

occurring, also rated on a scale from 1 to 10. 

• Detection (D): The ability to detect the failure 

before it occurs, rated on a scale from 1 to 10. 

These factors are combined to calculate a risk priority 

number (RPN), which helps prioritize components for 

intervention [3, 5, 17, 24-26]. 

The Severity (S), Occurrence (O), and Detection (D) scores 

used in the FMEA analysis were assigned based on actual 

operational data, notably drawn from maintenance records, 

incident reports, and field observations. This estimation relies 

on the in-depth knowledge of the equipment and processes by 

engineers, technicians, and operators familiar with the analyzed 

system. 

While this approach enables a realistic qualitative 

assessment, it introduces a degree of subjectivity. Therefore,  

a sensitivity analysis was conducted to evaluate the influence of 

uncertainties related to the S, O, and D scores on the RPN results. 

This analysis was performed using extreme scenarios 

(pessimistic, realistic, optimistic), thus providing a better 

assessment of the robustness of the prioritizations proposed by 

the FMEA. 

In this study, ten boiler components frequently subject to 

failure were analyzed in terms of their failure modes, root 

causes, and potential effects. The analysis was applied to three 

boilers, and the results, including the RPN values, are presented 

in Table 6. These table provide a detailed breakdown of the 

failure mode and effect analysis (FMEA) for the critical 

components, enabling targeted maintenance and mitigation 

strategies. 
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Table 2. FMEA analysis of critical components in Boilers, highlighting risk priority numbers (RPN).  

C
o

m
p

o
n

en
ts

 

Failure mode Causes of Failure Effects of failures 

Boiler 01 Boiler 02 Boiler 03 

O D G 

R
P

N
 

O D G 

R
P

N
 

O D G 

R
P

N
 

B
o

il
e
r 

tu
b

e
s 

Tube leaks or bursts. 

Significant leaks in 

purge lines and valves. 

Steam leaks on drums 

Corrosion Thermal 

fatigue Overpressure 

Loss of thermal efficiency 

Unplanned system shutdowns 

Prolonged downtime for repair 

7 5 8 280 7 5 9 315 7 5 8 280 

S
u

p
er

h
ea

te
r
 

Bursting of components 

or steam leakage 

Wear caused by 

repeated cycles of high 

temperature and 

pressure 

Prolonged boiler shutdown 

Safety risks for personnel 
6 5 9 270 5 5 8 200 6 5 9 270 

W
a

te
r 

su
p

p
ly

 

Valve leaks 

Pumping issues 

Wear on feed pumps 

and check valves, poor 

valve sealing. 

Wear on seals or valves. 

Temporary system shutdown to 

prevent overheating. 

Decrease in water supply 

pressure. 

Excessive fuel consumption. 

5 5 7 175 5 5 7 175 5 5 6 180 

F
a

n
 Damper blockage. 

Excessive vibration or 

abnormal noise. 

Coupling deterioration. 

Mechanical wear of 

bearings and dampers. 

Misalignment of 

mechanical 

components. 

Bearing wear. 

Reduced combustion 

efficiency. 

Unexpected system shutdown. 

5 5 6 150 5 4 7 140 5 5 7 175 

B
u

rn
er

 Ignition issues, gas 

pressure irregularities, 

and flame detection 

problems. 

Flame sensor 

malfunction or improper 

calibration of gas 

valves. 

Risk of inefficient combustion 

and unexpected boiler 

shutdown. 

5 4 7 140 3 5 6 90 6 4 7 168 

C
o

n
tr

o
l 

a
n

d
 

se
c
u

r
it

y
 

Failure of safety or 

control systems. 

Defective detectors or 

sensors, communication 

errors, and component 

wear. 

Risks of undetected 

overpressure or underpressure 

Unexpected system shutdown 

4 4 6 96 2 6 7 84 3 7 6 126 

C
o

m
b

u
st

io
n

 

ch
a

m
b

e
r
 

Cracks or deterioration 

of the walls 

Thermal fatigue and 

degradation of 

refractory materials 

thermal expansion 

mismatch between 

refractory materials. 

Thermal losses and reduced 

combustion efficiency 

Increased fuel consumption 

3 6 7 86 3 4 6 72 2 6 7 84 

D
es

u
p

er
h

ea
te

r
 

Leaks on flanges and 

desuperheater valve 

Seal wear or mechanical 

failure. 

Steam overheating, premature 

wear of components 
3 7 6 86 2 5 7 70 2 4 6 48 

E
co

n
o

m
iz

e
r
 

Leakage in tubes and 

valves 

Corrosion caused by 

poor water quality 

Reduced combustion 

efficiency. 

Excessive fuel consumption 

Shutdowns for repairs 

2 5 7 70 1 7 6 42 1 6 7 42 

C
h

im
n

ey
 

Torn flue casing 

Corrosion 

Mechanical fatigue 

Overpressure in the 

chamber 

Poor gas evacuation 

Decreased efficiency 
1 6 7 42 1 6 7 42 1 5 7 35 
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4. Results and discussion  

4.1. Results and Analysis (FMEA) 

In this analysis, the boiler system consists of ten components 

frequently subject to interference or damage. Among these, at 

least five components record the most critical RPN values and 

are classified as critical components. The superheater in boiler 

02 recorded the highest RPN value of 315. Other critical 

components based on high RPN values include boiler tubes, 

water supply systems, burners, and fans. A comparative analysis 

of the FMEA results for the three boilers is presented in Table 7, 

focusing on critical components, failure modes, and RPN values. 

This comparison highlights significant trends, enabling 

informed conclusions and targeted maintenance strategies.

Table 7. Comparison of RPNs by Component. 

Components RPN Boiler 1 RPN Boiler 2 RPN Boiler 3 RPN Average 

Boiler tubes 270 315 270 285 

Superheater 280 200 280 253 

Water supply 175 175 175 175 

Fan 168 140 140 149 

Burner 180 90 150 140 

 

Figure 5. Proportion of Critical Components Based on RPN. 

❖ Observations 

    Boiler tubes: Critical components in all boilers, with 

frequent failures due to high thermal and pressure conditions. 

 Superheater: A component also at high risk, 

particularly in boilers 1 and 3. Requires an enhanced 

maintenance program. 

 Water supply: Moderate risk, but regular monitoring 

is necessary to prevent unexpected failures. 

 Fan: Slightly higher risk in boiler 1, requiring 

improved management of ignition systems. 

 Burner: Variable risk, with particular attention 

required for boilers 1 and 3, where the risk is higher. 

❖ Comparative analysis  

The analysis of the RPNs of the three boilers highlights the 

superheater and boiler tubes as the most critical components, 

with high average RPNs of 285 and 253, respectively. These 

values indicate significant risks associated with high thermal 

and pressure conditions, particularly in boilers 1 and 3. 

Feedwater systems show stable, moderate risk (average 

RPN of 175) across all boilers, necessitating regular 
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maintenance to prevent failures. The burner shows slightly 

higher risk levels in Boiler 1 (RPN of 168), likely due to ignition 

or flame detection issues, whereas Boilers 2 and 3 demonstrate 

greater stability in this regard. 

The fan displays significant variability in its risk indicators, 

with Boiler 1 presenting a higher RPN of 180, indicative of 

frequent vibration or friction issues, compared to Boiler 2, 

which has a significantly lower RPN of 90. 

In summary, priority actions should focus on superheaters 

and boiler tubes, while burners and fans, particularly in boilers 

1 and 3, would benefit from enhanced calibration and more 

frequent inspections. 

Based on the conducted analysis, the superheater and boiler 

tubes are identified as the most critical components across all 

boilers. Enhanced preventive measures should be implemented 

to reduce their RPN and mitigate associated risks. For 

components such as the burner and fan, although the risk is 

moderate, significant differences between boilers highlight the 

need for tailored condition-based maintenance strategies that 

address the specific risk profiles of each boiler. These findings 

underline the importance of adaptive maintenance plans to 

improve overall reliability and operational efficiency. 

Figure 5 represents the proportion of critical components 

based on their Risk Priority Numbers (RPN). It highlights the 

components with the highest failure risks that require targeted 

maintenance. 

4.2. Critical component reliability assessment 

The critical components of the boiler were identified through 

the previously conducted FMEA analysis. Of the ten 

components evaluated, five were identified as critical, primarily 

due to their significantly elevated Risk Priority Numbers 

(RPNs). These components will undergo a detailed reliability 

assessment using Monte Carlo simulation techniques. 

The selected probability distributions for analysis include 

normal, lognormal, Weibull, and exponential distributions [4, 

18, 27]. Prior to selecting a distribution, Dixon or Grubb tests 

are applied to identify and exclude potential outliers, 

particularly extreme values that may skew the analysis. 

Removing these values reduces dataset variability, justifying the 

use of Monte Carlo simulation for reliability modeling [20]. 

Several statistical tests are referenced in the literature to 

assess the suitability of the distribution, such as the Anderson-

Darling (AD) test, Kolmogorov-Smirnov (K-S) test, Chi-square 

test, Pearson correlation coefficient, and Shapiro-Wilk test. The 

distribution will be applied to real-time-to-failure (TTF) data, 

with the most appropriate method determined by the sample 

characteristics [4, 18, 20]. Parameters for the reliability model 

are then calculated based on the selected distribution [18]. 

• Example for Boiler 03 (Boiler Tubes): 

The following results were obtained using R code for the 

boiler tubes component of boiler 01 (Figures 6 and 7): 

 

Figure 6. Flow chart of the boiler system in Unit 50, 

highlighting its main components and operational flow. 

 

Figure 7. Tests results. 
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❖ Interpretation of the results obtained 

✓ Dixon's Test for Outlier Values: Dixon's test 

identifies 1862 as a significant outlier in the data 

sample, with an extremely low critical p-value (< 2.2 

× 10⁻¹⁶). 

✓ Grubbs's Test for Outlier Value: Grubbs's test 

corroborates the results of Dixon's test, also identifying 

1862 as a statistically significant outlier, with a very 

low p-value (1.992 × 10⁻⁵). 

✓ Anderson-Darling Normality Test: The Anderson-

Darling test indicates a rejection of the normality 

hypothesis with a critical p-value of 1.525 × 10⁻⁶. This 

confirms that the data do not follow a normal 

distribution. 

✓ Shapiro-Wilk Normality Test: The Shapiro-Wilk test 

also rejects the normality hypothesis, with a very low 

p-value (8.325 × 10⁻⁶). This reinforces the conclusion 

that the TTF data are not normally distributed. 

❖ Summary of Test Results 

The TTF data reveal a statistically significant outlier (1862) 

and do not conform to a normal distribution. Lognormal and 

Weibull distributions are suitable candidates for modeling these 

data. Based on the AIC (Akaike Information Criterion) and BIC 

(Bayesian Information Criterion) criteria, the 3P-Weibull 

distribution provides the best fit. This distribution incorporates 

an initial threshold of 12 days before failure, accurately 

reflecting the observed data trends. 

The AIC and BIC are two measures of the quality of  

a statistical fit that allow for the comparison of multiple 

distribution models and the selection of the one that best fits the 

data, while penalizing overly complex models. A model can be 

justified as the most efficient if it achieves the lowest AIC and 

BIC scores.

 

Figure 8. Dixon and Grubbs Test Results. 

Figure 8 above represent the results of Dixon and Grubbs 

tests for identifying outliers. The Dixon test curve identifies 

potential outliers based on a statistical decay, and the Grubbs 

test curve focuses on extreme values in the dataset. 

Table 8 provides a detailed summary of the selected 

distributions and parameters for each component. 
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Table 8. Summary of the best distribution and parameters for real-time failure. 

B
o

il
er

 

Components Distribution 

Parameters 

Shape (β) scale (θ) Threshold (γ) 

B
o

il
e
r 

0
1

 

Superheater 3P-Weibull 0.47 899.87 124 

Boiler tubes 2P-Weibull 1.27 311.36 / 

Water supply 3P-Weibull 0.60 263.14 18 

Burner 3P-Weibull 0.70 337.05 9 

Fan 3P-Weibull 0.38 509.98 102 

B
o

il
e
r 

0
2

 Superheater 3P-Weibull 0.51 572.39 53 

Boiler tubes 3P-Weibull 0.49 431.43 129 

Water supply 3P-Weibull 0.42 372.24 38 

Burner 2P-Weibull 1.50 712.40 / 

Fan 3P-Weibull 0.32 934.16 117 

B
o

il
e
r 

0
3

 Superheater 3P-Weibull 0.46 771.22 31 

Boiler tubes 3P-Weibull 0.74 211.53 12 

Water supply 3P-Weibull 0.44 432.42 3 

Burner 3P-Weibull 0.66 209.60 14 

Fan 3P-Weibull 0.53 551.78 151 

 

4.2.1. Generating random numbers and transforming 

random number data 

This study employs an integrated methodology for assessing the 

reliability of critical boiler components. The framework 

includes three main methods: Failure Modes and Effects 

Analysis (FMEA), Monte Carlo Simulation (MCS), and 

Analytic Hierarchy Process (AHP). Each method contributes 

uniquely to the analysis, from identifying failure risks to 

simulating system behavior and prioritizing components for 

improvement. The following sections provide a detailed 

description of each method's role in the overall framework. 

Monte Carlo simulations require transforming uniformly 

distributed random numbers in the range (0,1) into non-uniform 

distributions such as Weibull and lognormal. The inversion 

transformation method is commonly used for this purpose due 

to its efficiency and simplicity [19]. This method relies on 

inverting the cumulative distribution function (CDF) of the 

desired distribution. If F(t) represents the CDF of a given 

distribution, the random variable t can be obtained as follows: 

𝑡 = 𝐹−1(𝑋)            (3) 

where X is a uniformly distributed random number in the range 

(0,1). 

For Weibull and lognormal distributions, the random 

variable t is calculated using the following equations [19]: 

• Weibull distribution : 

𝑡 = 𝛾 + 𝜃(− ln(𝑋))
1
𝛽⁄            (4) 

where γ is the threshold parameter, θ is the scale parameter, 

and β is the shape parameter. 

• Lognormal distribution : 

𝑡 = 𝑒𝜇+𝜎.𝑋             (5) 

where μ is the mean of the logarithmic values, and σ is the 

standard deviation. 

In this study, 1000 random numbers are generated and 

transformed into the target distributions. Table 4 presents an 

example of the transformed random numbers for the boiler tubes 

of boiler 03. 
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Figure 9. Scatter Plot: Random Numbers vs Transformed Data. 

Figure 9 above illustrates the relationship between random 

numbers and their corresponding transformed data. It helps 

visualize the correlation between the original and transformed 

datasets.

Table 9. Results of Random Number Generation and Transformation (Boiler tubes of Boiler 03). 

Selected random number group : 

  1] 0.6154411698 0.8150036929 0.3430093485 0.3882764990 0.0146181230 0.1578017345 0.5783333324  

   [8] 0.1069918287 0.9727296822 0.0404412686 0.1766726782 0.1780670269 0.3710839346 0.1676601360  

 …………………………………………………………………………………………………………………… 

…………………………………………………………………………………………………………………… 

 [981] 0.6967233189 0.5801492480 0.2947124066 0.0954643143 0.1648187668 0.8703669664 0.7532430857  

 [988] 0.8154430322 0.4617513919 0.7397549737 0.7263432376 0.7650615645 0.9757218659 0.3212862888  

 [995] 0.5557329513 0.6763559836 0.9170438380 0.0272347340 0.1226700931 0.0941418891  

 

Transformed data : 

  [1]  211.02346  439.21520   77.96473   93.45017   12.73042   31.83287  185.68493   23.32273 1195.28052  

  [10]   14.92059   35.42654   35.70139   87.33919   33.68101  467.13804  149.05809  935.14417   21.61949  

…………………………………………………………………………………………………………………… 

…………………………………………………………………………………………………………………… 

[982]  186.85217   63.45062   21.63279   33.14179  564.37399  344.21842  440.02416  123.14986  327.35504  

 [991]  311.64112  359.96680 1246.85881   71.19479  171.72482  260.71606  732.34220   13.70104   25.76605  

[1000]   21.44481 

 

Goodness-of-Fit Tests for Weibull Distribution Selection: 

In this study, Weibull distributions were chosen to model the 

failure times of critical boiler components. However, to justify 

the selection of Weibull distributions over other alternatives, 

goodness-of-fit statistics were conducted for each component's 

failure data. The following fit tests were applied to assess how 

well the Weibull distribution fits the observed data: 

1. Kolmogorov-Smirnov (K-S) Test: This test compares 

the empirical distribution function (ECDF) of the data 

with the cumulative distribution function (CDF) of the 

fitted distribution. The p-value from this test indicates 

how well the Weibull distribution fits the data. A p-

value greater than the significance level (usually 0.05) 

suggests that the Weibull distribution is a good fit for 

the data. 

2. Anderson-Darling (A-D) Test: Similar to the K-S test, 

the A-D test assesses the fit by giving more weight to 

the tails of the distribution. A low p-value from the A-

D test would indicate a poor fit, while a high p-value 

suggests that the Weibull distribution adequately fits 

the failure data. 

The following table provides the results of these fit tests for 
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each component: 

Table 10. Distribution Fit Tests for Boiler Components Using 

Kolmogorov-Smirnov and Anderson-Darling Tests. 

Component 
p-value (Kolmogorov-

Smirnov) 

p-value (Anderson-

Darling) 

Superheater 0.92 0.86 

Boiler Tube 0.85 0.90 

Water Supply 0.76 0.80 

Burner 0.89 0.87 

Fan 0.91 0.88 

Table 10 presents the results of the distribution fit tests for 

boiler components, where the Kolmogorov-Smirnov and 

Anderson-Darling tests were applied to the failure data. The 

high p-values (greater than 0.05) for both tests indicate that the 

data fits well with the chosen distribution, enhancing the 

reliability of the analysis and the selection of the appropriate 

distribution for each component. 

These p-values demonstrate that the Weibull distribution is 

a reasonable fit for the failure data of all components, as the p-

values are all above the typical significance level of 0.05. 

Therefore, the Weibull distribution was chosen for further 

reliability analysis. 

Alternative Distributions: 

Although Weibull distributions were selected based on the 

goodness-of-fit tests, alternative distributions such as Log-

Normal and Exponential were also considered. However, the 

results from the Kolmogorov-Smirnov and Anderson-Darling 

tests indicated that these alternative distributions did not fit the 

failure data as well as the Weibull distribution, as evidenced by 

their lower p-values. For instance, the Log-Normal distribution 

yielded p-values below 0.05 for most components, indicating 

poor fit, while the Exponential distribution showed significant 

deviation from the observed failure times, particularly in the tail 

distributions. Therefore, the Weibull distribution was chosen for 

its superior fit. 

4.2.2. Validity Test 

Validation plays a crucial role in the model development process. 

It ensures that the model's predictions align closely with real-

world data, thereby enhancing the reliability of the analysis. In 

this study, the Mann-Whitney U test is used to compare the 

results of the random number transformations with actual data 

to assess whether there are significant differences [4, 18, 19]. 

As an illustration, the validation process is applied to the 

boiler tubes of boiler 03 to evaluate the accuracy of the 

transformation results. 

For illustration, the verification process is applied to the 

three boiler elements to evaluate the accuracy of the 

transformation results in Table 11.

Table 11. Results of Random Number Generation and Transformation. 

Boiler 
Components 

 
W p-value Greater than the standard alpha threshold of 0.05? 

Boiler 01 

Superheater 3523 0.98 Yes 

Boiler tubes 10603 0.94 Yes 

Water supply 775 0.26 Yes 

Burner 8911 0.73 Yes 

Fan 2530 0.96 Yes 

Boiler 02 

Superheater 4842 0.86 Yes 

Boiler tubes 4222 0.75 Yes 

Water supply 438 0.66 Yes 

Burner 3887 0.89 Yes 

Fan 285 0.84 Yes 

Boiler 03 

Superheater 4251 0.77 Yes 

Boiler tubes 13116 0.94 Yes 

Water supply 6896 0.71 Yes 

Burner 15104 0.48 Yes 

Fan 3523 0.96 Yes 

 

Table 11 illustrates the value p-value is greater than the 

conventional significance threshold of 0.05, indicating that the 

Mann-Whitney U test fails to reject the null hypothesis. This 

result suggests that the real TTF data and the transformed data 
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are statistically similar in terms of distribution. 

4.2.3. Calculation of parameters for random number 

transformation 

To accurately model the failure behavior of critical components, 

it is essential to determine the most appropriate statistical 

distribution and its parameters. These parameters are derived 

from a distribution test applied to the real-time-to-failure (TTF) 

data. The calculated parameters are then used for random 

number transformations in Monte Carlo simulations. 

The results obtained from the distribution test and parameter 

calculation serve as inputs for the simulation process. Table 

12 provides a summary of the best-fitting distributions and their 

optimal parameters for transforming random numbers.

Table 12. Best distribution and parameters for the random number transformations. 

B
o

il
er

 

Components Distribution 

Parameters 

Shape (β) scale (θ) Threshold (γ) 

B
o

il
e
r 

0
1

 

Superheater 3P-Weibull 0.44 585.10 124 

Boiler tubes 3P-Weibull 1.20 324.28 1.95 

Water supply 3P-Weibull 0.59 145.82 18 

Burner 3P-Weibull 0.65 290.28 9 

Fan 3P-Weibull 0.37 484.81 102 

B
o

il
e
r 

0
2

 

Superheater 3P-Weibull 0.53 536.60 53 

Boiler tubes 3P-Weibull 0.49 364.77 129 

Water supply 3P-Weibull 0.41 160.91 38 

Burner 2P-Weibull 1.48 756.42 / 

Fan 3P-Weibull 0.33 509.91 117 

B
o

il
e
r 

0
3

 Superheater 3P-Weibull 0.46 684.64 31 

Boiler tubes 3P-Weibull 0.69 183.82 12 

Water supply 3P-Weibull 0.56 221.48 18 

Burner 3P-Weibull 0.62 179.26 14 

Fan 3P-Weibull 0.50 454.51 151 

 

4.2.4. MTTF calculation and reliability results from 

Monte Carlo simulation 

The Mean Time to Failure (MTTF) and the reliability level were 

calculated using Eqs. (6), (7), and (8) [28]. The MTTF formula 

was chosen based on the Weibull distribution parameters.

 

Figure 10. Failure Time Distribution for Critical Boiler Components (Weibull Distribution). 
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For a 2P-Weibull distribution: 

𝑀𝑇𝑇𝐹 = 𝜃 ∗ Γ(1 +
1

𝛽
)          (6) 

For a 3P-Weibull distribution: 

𝑀𝑇𝑇𝐹 = 𝛾 + 𝜃 ∗ Γ(1 +
1

𝛽
)         (7) 

Using the boiler tube component of boiler 03 as an example: 

MTTF = 12+ 183.82× Γ (1 + 1/0.69) 

MTTF = 12+ 183.82× Γ (2.44) 

MTTF = 277.069≈ 277 days. 

Reliability Calculation, R(t): 

𝑅(𝑡) = 𝑒−
(
𝑡−𝛾

𝜃
)
𝛽

           (8) 

With numerical values: 

R(t) = e−(277.07 − 12 183.82⁄ )0.693  

R(t) = 0.2755 = 27.55% 

Figure 10 illustrates the Weibull distribution for the failure 

times of critical components. It helps to understand the failure 

behavior of the system and indicates the likelihood of 

component failures over time. 

The results of these calculations are summarized in Table 13, 

which provides the MTTF and reliability values based on Monte 

Carlo simulations for the boiler tube component.

Table 13. MTTF and reliability results based on Monte Carlo simulation. 

B
o

il
er

 

Components MTTF (days) R (MTTF) % R (365) % R (1095) % R (1825) % 

B
o

il
e
r 

0
1

 Superheater 1608 22.01 50.98 28.56 20.01 

Boiler tubes 306 39.62 31.81 01.35 00.03 

Water supply 242 27.57 18.84 03.84 01.19 

Burner 404 29.45 31.91 09.41 03.67 

Fan 2130 18.30 45.04 27.15 20.21 

B
o

il
e
r 

0
2

 Superheater 1027 25.40 47.19 24.17 15.26 

Boiler tubes 896 23.78 44.53 20.05 12.08 

Water supply 524 20.57 26.14 11.28 06.63 

Burner 684 42.29 72.26 17.68 02.47 

Fan 3143 16.29 45.56 28.84 22.36 

B
o

il
e
r 

0
3

 Superheater 1027 25.40 48.67 29.41 21.13 

Boiler tubes 277 27.55 20.74 03.25 00.74 

Water supply 524 20.57 27.60 08.77 03.55 

Burner 624 42.26 21.91 04.71 01.48 

Fan 1064 24.26 50.31 23.69 14.71 

 

4.3. Results and analysis (MCS) 

Monte Carlo simulations applied to the five critical components 

of the boilers reveal the following insights: 

(1) High Reliability: Among all components, fans display the 

longest mean time to failureamong all components. They 

demonstrate stable reliability over time, requiring less 

frequent maintenance. 

(2) Low Reliability: Burners and hot tubes display shorter 

MTTF values and rapid declines in reliability, 

highlighting their higher susceptibility to failure. These 

components require frequent maintenance or 

replacement to prevent system disruptions. 

Moderate Reliability: Superheaters and feedwater 

components show moderate MTTF values with gradual 

(3) declines in reliability. While more reliable than burners 

and tubes, they remain less stable compared to fans. 
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Figure 11. Reliability Analysis of Critical Components (Smooth Curves). 

Figure 11 shows how the reliability of different components 

(Superheater, Boiler Tubes, Water Supply, Burner, and Fan) 

varies over time periods of 1 year, 3 years, and 5 years. As time 

progresses, the reliability of certain components decreases, 

indicating the need for timely maintenance. 

Simulation results reveal an average system reliability under 

50%, indicating elevated risk of shutdowns and degraded 

efficiency. This value was derived using Monte Carlo 

simulation techniques, which modeled the failure scenarios of 

components under varying operational conditions. The 

reliability estimates were based on the failure data and statistical 

distributions applied to each element. The result indicates a high 

likelihood of failure for these components within a short period, 

emphasizing the need for timely preventive maintenance. In 

industrial contexts, a reliability value below 50% suggests that 

these components are at risk of causing unplanned downtimes 

and significant disruptions in production. This finding 

underscores the importance of implementing frequent 

maintenance schedules and early detection techniques to 

improve overall system performance and reduce operational 

losses.

 

Figure 12. RPN Analysis for Critical Boiler Components Across Different Boilers. 
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Figure 12 above represents the Risk Priority Number (RPN) 

for critical boiler components. It shows the risk distribution 

across different boilers, highlighting components that require 

immediate maintenance attention. 

These findings provide a basis for prioritizing maintenance 

activities and managing spare part inventories effectively. For 

instance, fans require less attention, while burners and tubes 

should be the focus of immediate preventive measures. Strategic 

recommendations based on these results can enhance boiler 

performance and minimize downtime. 

In real-world applications, the prioritization of 

maintenance tasks should not rely solely on RPN and MTTF 

values, as these factors do not fully capture the operational 

context. Therefore, we have integrated Multi-Criteria Decision-

Making (MCDM) techniques, such as Analytic Hierarchy 

Process (AHP) and TOPSIS, to consider additional criteria that 

are crucial for effective maintenance planning. 

1. Cost: Maintenance decisions are influenced by the 

cost of replacing or repairing components. 

Components with high RPN and high maintenance 

cost should be prioritized for preventive maintenance. 

2. Downtime: The cost of downtime can be substantial 

in terms of lost production and operational delays. 

Components that, if failed, would lead to significant 

downtime are prioritized higher. 

3. Part Availability: The availability of replacement 

parts is critical. Components with long lead times for 

spare parts should be given higher priority to prevent 

long outages. 

4. Safety: For critical components, the safety risks 

associated with failure should be evaluated. 

Components that pose a higher risk to personnel safety 

in case of failure are given priority. 

By using AHP or TOPSIS, a weighting system is applied 

to each of these factors, and maintenance priorities are 

determined based on their overall impact. These methods 

provide a holistic assessment that goes beyond RPN and MTTF, 

ensuring that decisions are made not only based on risk but also 

on broader operational concerns. 

The following recommendations are based on the results of 

the combined FMEA and Monte Carlo Simulation (MCS) 

analysis, to enhance the reliability, safety, and performance of 

industrial boilers: 

1. Enhanced Monitoring of Critical Components 

• Prioritize inspections of superheaters and boiler tubes, 

identified as the most at-risk components. 

• Implement alert thresholds based on Monte Carlo 

simulation results (e.g., reliability < 30%). 

2. Tailored Predictive Maintenance 

• Adjust maintenance intervals using estimated life 

distributions (e.g., 3-parameter Weibull). 

• Use decision-support software tools to schedule 

shutdowns based on risk profiles. 

3. Integration of Advanced Diagnostic Tools 

• Install smart sensors (for pressure, vibration, 

temperature) to detect early signs of failure. 

• Deploy robotic inspection technologies for areas that 

are difficult to access. 

4. Ongoing Training for Maintenance Personnel 

• Organize targeted training sessions focused on 

interpreting predictive tool data. 

• Train technicians to identify early warning signs of 

component failure. 

5. Proactive Spare Parts Management 

• Establish an inventory of critical components 

characterized by high Risk Priority Numbers and low 

mean time to failure, to reduce intervention delays. 

• Set up automatic replenishment thresholds for 

components with a high likelihood of failure. 

Implementing these measures would significantly reduce 

costs associated with unplanned downtimes, extend the lifespan 

of key components, and improve service continuity in thermal 

systems. 

5. FUTURE RESEARCH DIRECTIONS 

The findings of this study pave the way for several promising 

research directions aimed at enhancing the reliability and 

predictive maintenance of industrial boilers. These future 

avenues focus on integrating advanced technologies, refining 

existing models, and exploring innovative methodological 

approaches to address current limitations and improve system 

performance. 

One key area for future research is the integration of 

advanced technologies. Digital monitoring and diagnostic 
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systems, equipped with smart sensors and real-time analysis 

tools, could significantly improve the detection of failures in 

thermal power plants. These systems would enable faster 

responses to anomalies, reducing unplanned downtime and 

enhancing operational efficiency. Additionally, advancements 

in materials, such as corrosion-resistant and thermal fatigue-

resistant alloys, along with the adoption of new energy 

production technologies like hybrid renewable energy systems, 

could enhance the durability and reliability of industrial boilers. 

These innovations would not only extend the lifespan of critical 

components but also reduce maintenance costs and improve 

energy efficiency. 

Another important direction is the improvement of risk 

assessment models. Future studies could explore the integration 

of additional risk factors, such as environmental impacts, 

maintenance costs, and production losses, to provide a more 

comprehensive analysis of risks. This holistic approach would 

enable better prioritization of maintenance actions and more 

informed decision-making. Furthermore, enhancing the 

generalization of models by testing them across diverse 

industrial systems and operational environments would 

strengthen their robustness and applicability. The integration of 

machine learning, particularly deep learning, as suggested by 

Rao et al. (2024) [29], could also offer significant advancements 

in predictive maintenance. These techniques could enable more 

precise modeling of failure scenarios and more accurate 

predictions of failure times, improving overall system reliability. 

Additionally, combining multiple models, such as fuzzy 

methods, Monte Carlo simulations, and machine learning, could 

enhance the accuracy and robustness of predictions. For 

instance, the ExJ-PSI model proposed by Patil et al. (2022) 

could integrate expert judgments while reducing uncertainties 

in risk assessment [23]. 

The integration of fuzzy and hybrid methods also presents  

a valuable research opportunity. Fuzzy methods, when 

incorporated into Failure Modes, Effects Analysis (FMEA), can 

improve the accuracy of risk identification by accounting for 

uncertainties and subjective expert judgments. This approach, 

as highlighted by Wang et al. (2021) and Khodadadi-Karimvand 

and Shirouyehzad (2021) [30, 31], would allow for more 

effective prioritization of maintenance actions. Similarly, 

hybrid methods, such as combining Fuzzy TOPSIS with FMEA, 

could enhance risk prioritization in complex industrial settings. 

As demonstrated by Magalhães and Lima Junior (2021) [32], 

this combination offers a robust framework for managing 

uncertainties and multiple criteria, leading to more effective risk 

management and maintenance planning. 

In conclusion, these future research directions aim to 

strengthen the reliability of industrial boilers by leveraging 

advanced technologies, refining risk assessment models, and 

exploring innovative methodological approaches. By 

combining these efforts, researchers and practitioners can 

develop more adaptive, efficient, and robust predictive 

maintenance systems. This will not only reduce operational 

costs but also enhance the safety, performance, and 

sustainability of industrial facilities, ensuring their long-term 

reliability in demanding operational environments. 

 

6. CONCLUSIONS 

This study demonstrates that the integration of Failure Mode 

and Effects Analysis (FMEA) with Monte Carlo Simulation 

(MCS) provides a comprehensive and robust framework for 

improving the reliability of critical boiler components. FMEA 

enables a structured identification and prioritization of failure 

modes based on their severity, occurrence, and detectability, 

while MCS adds a probabilistic dimension by simulating 

realistic failure scenarios and estimating the Mean Time to 

Failure (MTTF). 

The analysis highlighted that components such as 

superheaters and boiler tubes show high RPN values and weak 

reliability, warranting top maintenance priority. 

This combined approach enhances maintenance planning by 

refining inspection intervals, improving resource allocation, and 

anticipating component failures. It is also adaptable to various 

industrial systems beyond steam generation. 

Future work could explore the integration of real-time 

monitoring systems and AI-driven predictive models to further 

enhance failure detection and reduce uncertainties. Expanding 

the dataset through continuous data acquisition and including 

additional variables such as cost, environmental impact, and 

energy efficiency would further refine maintenance planning. 

In conclusion, the joint use of FMEA and MCS is a valuable 

decision-support tool for improving equipment reliability, 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026 

 

reducing operational risks, and extending the life of critical components in complex industrial environments.
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