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Highlights  Abstract  

▪ A fault recognition method based on an 

improved convolutional neural network 

(PCNN) is proposed, and a model combining 

the zebra optimization algorithm (ZOA), 

PCNN, and attention mechanism (AT) is 

established.  

▪ Comparative validation between the ZOA-

PCNN-AT model and the traditional CNN 

model demonstrates that the proposed model 

can recognize different fault types with fewer 

iterations, achieves higher recognition 

accuracy, and enhances the reliability of fault 

identification. 

▪ The Empirical Mode Decomposition (EMD) 

algorithm is upgraded to the Improved 

Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise 

(ICEEMDAN) algorithm, yielding denoised 

signals with improved signal-to-noise ratios. 

 Among various faults in computer numerical control (CNC) machine 

tools, motor spindle bearing faults make up the largest proportion. At the 

heart of the electric spindle, the bearing's performance has a direct 

impact on the service life, machining accuracy, and efficiency of the 

entire electric spindle. Once a bearing fails, it usually causes strong 

vibrations, and the vibration characteristics of damage in different parts 

are different. In the past network model application, Convolutional 

Neural Networks (CNN) have better performance in the recognition of 

vibration characteristics of electric spindle bearings, but due to their 

structural limitations, the actual recognition is still misjudged, which 

affects the efficient operation of machine tools and product quality. To 

enhance the reliability of bearing fault identification, this paper selects 

motorized spindle bearings as the main research object. First, it analyzes 

the identification process and issues of traditional CNN regarding 

vibration characteristics. Subsequently, it innovatively proposes a 

Parallel Convolutional Neural Network-Attention Mechanism (ZOA-

PCNN-AT) model improved by the Zebra Optimization Algorithm 

(ZOA). This model incorporates an attention mechanism to improve the 

capacity to capture important features and optimizes the parallel 

convolutional neural network's structure using the ZOA. 
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1. Introduction 

As the core functional component of high-speed precision 

machining equipment, the operating condition of electric 

spindle bearings directly affects machining accuracy and 

equipment reliability. When the equipment is operating, 

different vibrations are signals through which the equipment 

conveys faults to people. Various methods need to be used to 

capture and analyze the vibration signals. Fault diagnosis based 

on vibration signals in various fields has also laid the foundation 

for the fault diagnosis of the electric spindle. Wang et al. [1] 

sought to address the challenge of identifying the earliest fault 

features in rolling element bearing vibration signals. They used 

empirical mode decomposition to decompose the signals with 

added noise. He et al. [2] merged vibration analysis with deep 

learning. This structure has proven to be highly effective for 

signal processing in bearing fault diagnosis. With the increasing 

demands of intelligent manufacturing for machining efficiency, 
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electric spindle bearings are subjected to complex working 

environments characterized by high speed, heavy loads, and 

variable operating conditions, resulting in vibration signals that 

exhibit strong non-stationary and multi-modulation 

characteristics. This poses significant challenges to traditional 

fault diagnosis methods. Zhang et al. [3] employed the super-

resolution sparse representation approach to enhance the 

Intrinsic Mode Function (IMF) components of vibration signals 

processed by Ensemble Empirical Mode Decomposition 

(EEMD), achieving effective denoising and fine-grained 

processing of abnormal vibration signals. Fang et al. [4] applied 

the Continuous Wavelet Transform (CWT) and established  

a vibration model that simplifies the robot into a forced 

vibration system under harmonic excitation, and effectively 

identified the fault characteristics of belt looseness. Liu et al. [5] 

extracted typical frequency features from the wellhead vibration 

data of normal and faulty electrical submersible pump (ESP) 

through wavelet analysis, and applied them to efficiently 

diagnose impeller tip screening faults in oilfields. Vibration 

signal-based feature recognition technology has become  

a crucial means for bearing health monitoring due to its high 

information-carrying capacity. However, existing methods still 

exhibit notable shortcomings in feature decoupling capability 

and recognition accuracy under complex operating conditions. 

Recently, deep learning techniques have demonstrated 

prominent advantages in mechanical fault diagnosis. Among 

them, convolutional neural networks, which leverage their local 

feature extraction capability, have achieved notable success in 

vibration signal processing applications. Shi et al. [6] addressed 

the issue of low accuracy in asynchronous motor fault diagnosis 

by constructing a stacked fault diagnosis model that integrates 

stacked autoencoders and CNN. Tang et al. [7] employed  

a reliable multi-scale quadratic attention embedding CNN to 

diagnose bearing faults. Guo et al. [8] integrated the 

convolutional block attention module with AlexNet and 

synchronized it with the Anomaly Transformer model to 

enhance the accuracy of fault diagnosis. However, traditional 

CNN models face three key challenges when dealing with 

vibration signals from motorized spindle bearings: First, the 

multi-scale characteristics of raw vibration signals are difficult 

to capture using single-structured convolutional kernels 

effectively; second, parameter optimization efficiency is low 

during the training of deep networks; and third, the lack of an 

attention mechanism for critical fault features results in 

insufficient identification capability for weak faults. These 

issues significantly constrain the practical application value of 

diagnostic models in industrial scenarios. 

To address the aforementioned technical bottlenecks, this 

study proposes a ZOA-PCNN-AT model. The solution involves: 

constructing a multi-branch parallel convolutional architecture 

to achieve multi-scale feature extraction of vibration signals; 

introducing a channel-spatial dual attention mechanism to 

enhance weight allocation for critical fault features; and 

employing a novel zebra optimization algorithm to overcome 

network parameter optimization challenges. The ZOA has 

demonstrated significant advantages in optimizing model 

parameters and enhancing algorithm performance. In the 

research directions of fault diagnosis and optimization, 

numerous scholars have also actively explored the potential 

applications. Jiang [9] and others utilized the ZOA to optimize 

the core parameters of the support vector machine (SVM), 

achieving a better fault classification effect. Liang et al. [10] 

utilized an enhanced ZOA to optimize the deep hybrid kernel 

extreme learning machine model, demonstrating promising 

performance in wood processing applications. Liang et al. [11] 

focused on the issue of trajectory planning for obstacle 

avoidance in unmanned aerial vehicles (UAVs) and employed 

the ZOA to enhance the convergence speed. In this study, the 

ZOA is applied to optimize the parallel convolutional neural 

network (PCNN) and integrate it with the attention mechanism 

(AT) to improve the capability of capturing salient features. This 

study designed a comparative experimental protocol: first, a full 

life-cycle test platform for motorized spindle bearings was 

established to acquire vibration data under multiple operating 

conditions; second, time-frequency analysis was performed to 

construct the feature dataset; finally, comparative verification of 

recognition accuracy and generalization capability was 

conducted under different operating conditions with traditional 

CNN, ZOA-CNN and other models. The experimental results 

indicate that the proposed method attains an average recognition 

accuracy of 99.82%, which is more than 9% points higher than 

that of traditional methods. 
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2. Experimental fundamental theory  

A. ZOA Zebra Optimization Algorithm 

The ZOA was initially introduced by Eva Trajkovski et al. in 

2022 as an optimization algorithm inspired by the behavioral 

patterns of the African zebra. ZOA optimizes parameters by 

simulating the foraging and defense behaviors of the zebras 

against predators' attacks, etc. [12], and has advantages such as 

fast convergence speed. Currently, it has been applied in 

multiple fields, including power, automotive, and robotics. The 

calculation process is as follows: 

1) Population initialization 

In ZOA, a zebra individual serves as the unknown solution, 

represented by a vector whose elements represent the solution 

vector components. The plane where the zebra is located 

represents the problem search space. The location of a zebra 

individual affects the value of the decision variables. Firstly,  

a population matrix is established, as shown in Formula 1： 

 𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑥1,1 ⋯ 𝑥1,𝑗 ⋯ 𝑥1,𝑚

⋮ ⋱ ⋮ ⋰ ⋮
𝑥𝑖,1 ⋯ 𝑥𝑖,𝑗 ⋯ 𝑥𝑖,𝑚

⋮ ⋰ ⋮ ⋱ ⋮
𝑥𝑁,1 ⋯ 𝑥𝑁,𝑗 ⋯ 𝑥𝑁,𝑚]

 
 
 
 

𝑁×𝑚

       (1) 

where 𝑋 represent the zebra population; 𝑋𝑖 is the 𝑖 − 𝑡ℎ zebra; 

and 𝑥𝑖,𝑗 denotes the value of the 𝑗 − 𝑡ℎ decision variable raised 

by the 𝑖 − 𝑡ℎ  zebra, where 𝑁  is the count of population 

members (zebras) and 𝑚  represents the dimension of the 

decision variable vector. The objective function is assessed 

according to the magnitudes of the problem parameters 

corresponding to each zebra, and the results are converted into 

a vector form denoted as F, as shown in Formula 2:  

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

        (2) 

where 𝐹𝑖 represents the objective function value obtained by the 

𝑖 − 𝑡ℎ zebra. By comparing it, the optimal candidate solution is 

identified, thereby updating the positions of the zebras.  

2) Foraging behavior 

Within the population, there is a type of zebra that feeds on 

the upper canopy of trees and is called a pioneer zebra (denoted 

as PZ). They provide survival conditions for other low-growing 

and food-dependent species [13]. Pioneer zebras, as the optimal 

members, guide other members to their respective positions. As 

specified in Formulas 3 and 4, zebra positions in the foraging 

phase are updated through the proposed mechanism.  

𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑃1 = 𝑥𝑖,𝑗 + 𝑟 ⋅ (𝑃𝑍𝑗 − 𝐼 ⋅ 𝑥𝑖,𝑗)         (3) 

𝑥𝑖 = {
𝑥𝑖

𝑛𝑒𝑤,𝑃1, 𝐹𝑖
𝑛𝑒𝑤,𝑃1 < 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
         (4) 

where 𝑥𝑖
𝑛𝑒𝑤,𝑃1

  represents the new state of the 𝑖 − 𝑡ℎ  zebra, 

𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑃1

 is its 𝑗 − 𝑡ℎ dimensional value, 𝐹𝑖
𝑛𝑒𝑤,𝑃1

 is its objective 

function value, 𝑃𝑍𝑖 is its 𝑗 − 𝑡ℎ  dimension, r is a random 

number in the interval [0,1], I=round(1+rand), and 𝐼 ∈ {1,2}. 

3) Defensive behavior 

Assume that zebras have an equal probability of choosing 

these two behaviors: 

① Large predators attack zebras; zebras choose to flee. 

② Small predators attack zebras; zebras choose their 

attack strategies. 

In the mathematical model, the first case can be regarded as 

S1 and the second case as S2, as shown in Formula 5. During 

position updating, the update is performed by comparing the 

objective function values at the zebra's new position, as 

mathematically expressed by Formula 6: 

𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑃2 = {

𝑆1: 𝑥𝑖,𝑗 + 𝑅 ⋅ (2𝑟 − 1) ⋅ (1 −
1

𝑇
) ⋅ 𝑥𝑖,𝑗 , 𝑃𝑠 ≤ 0.5;

𝑆2: 𝑥𝑖,𝑗 + 𝑟 ⋅ (𝐴𝑍𝑗 − 𝐼 ⋅ 𝑥𝑖,𝑗), 𝑒𝑙𝑠𝑒,
      (5) 

𝑋𝑖 = {
𝑋𝑖

𝑛𝑒𝑤,𝑃2, 𝐹𝑖
𝑛𝑒𝑤,𝑃2 ≤ 𝐹𝑖;

𝑋𝑖 , 𝑒𝑙𝑠𝑒,
         (6) 

where t stands for iteration contour, T indicates the maximum 

number of iterations, (R=0.01), Ps is the probability that two 

strategies occur randomly (𝑃𝑠 ∈ [0,1]). AZ shows the state of the 

attacked zebra, and 𝐴𝑍𝑖 is its first-dimensional value. 

The flowchart is shown in Figure 1.
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Figure 1. Flowchart of ZOA optimization process.  

According to the above process, in CNN, different 

parameter ranges are set to optimize the hyperparameters in the 

network model. This enables the adaptive adjustment of the size 

of each parameter, thereby seeking the optimal solution within 

the model.  

B. Attention Mechanism 

Important information is filtered out of the input and given 

greater weights by the attention mechanism, a computational 

model that mimics human visual or cognitive processes [14]. 

Specifically, the attention mechanism weights the input data, 

reducing attention to irrelevant or noisy information.  

Combining CNN with AT can enhance model performance 

and interpretability. AT mainly consists of transformation layers 

and attention layers.  

1) The transformation layer 

It performs a linear transformation to map the input 

sequences 𝑋 ∈ 𝑅𝑛𝑥×𝑑𝑥  and 𝑌 ∈ 𝑅𝑛𝑦×𝑑𝑦   to three different 

vectors Q (query), K (key) and V (value), where 𝑑  and 𝑛 

represent the dimension and length of the input sequences [15]. 

The vector calculation is shown in Formula 7: 

𝑄 = 𝑋𝑊𝑄，𝐾 = 𝑌𝑊𝐾，𝑉 = 𝑌𝑊𝑉         (7) 

where 𝑊𝐾 ∈ 𝑅𝑑𝑦×𝑑𝑘, and 𝑊𝑉 ∈ 𝑅𝑑𝑦×𝑑𝑣  are linear matrices, 𝑑𝑘 

represents the dimensions of Q and K, and 𝑑𝑣  represents the 

dimension of V. K and V are projected from Y and Q is projected 

from X respectively. This way is called the AT. 

2) The attention layer 

It aggregates the vector Q and the corresponding K, and then 

aggregates the result with the vector V again to update the vector. 

Its mathematical expression is: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉        (8) 

The multi-head AT is essentially composed of multiple 

independent single-head attentions that operate in parallel for 
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computation [16]. To capture relationships across diverse 

subspaces and fuse representations from various subspaces.  

Attention [17] architecture is shown in Figure 2.

Scaled Dot-Product Attention

MatMul

SoftMax

Mask(opt.)

Scale

MatMul

Q K V
 

Multi-Head Attention

Linear

Concat

Scaled Dot-Product 

Attention

Linear Linear Linear

V K Q

h

 
(a) Single-head attention  (b) Multi-headed attention 

Figure 2. Attention structure diagram. 

C. Improve the CNN network 

On the basis of the traditional CNN model, an additional 

channel is added and improved to form the ZOA-PCNN-AT 

model. Firstly, the wavelet time-frequency map [18] is sent into 

two channels respectively. Each channel contains two 

convolution kernels and pooling kernels, with their sizes 

differing between channels. Two channels are used to learn 

different weight values, and the learned feature maps of the two 

channels are concatenated. The fully connected layer is 

improved to an eight-head attention mechanism to strengthen 

the key features. The hyperparameters, such as the learning rate 

and the sizes of the convolution kernels in the two channels are 

optimized using the ZOA algorithm. Finally, the Softmax 

function is used to determine different categories [19]. The 

model structure is shown in Figure 3. 
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Figure 3. The structure diagram of the ZOA-PCNN-AT model. 

3. Vibration identification experiment preparation 

A. Experimental Design 

In this section, the validity of the model is verified by collecting 

the vibration signals of the motorized spindle under different 

fault modes. Firstly, the experimental platform is set up. The 

experimental equipment used in this chapter consists of the 

main body of the CNC grinding machine, M+P VibPilot 

measuring instrument, motorized spindle, acceleration sensor, 

signal processing software, and computer. The motorized 

spindle model studied in this experiment is HGE-MD230Z3, 

and the rolling bearing type used in the front-end bearing group 

is SKF7305. The M+P VibPilot measuring instrument used in 

the experiment supports the highest 8-channel signal acquisition 

with synchronous sampling and 8 analog input channels. The 

selected sensor model is ZKX-3A-450BM-G05E, with  

a sensitivity range of and a sampling frequency of 2048Hz. The 

experimental device is shown in Figure 4. 

M+P VibPilot

admeasuring apparatus

Vibration Signal 

Acquisition Platform

acceleration sensor

electrical spindle system of 

machine tools  

Figure 4. Experimental facility. 
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Arrange the experimental equipment and select appropriate 

measurement points on the electric spindle to install 

acceleration sensors. The sensor measurement points are 

arranged along the axial and radial directions of the electric 

spindle. It measures the vibration acceleration of the electric 

spindle in all three axes of a three-dimensional Cartesian 

coordinate system during operation, as shown in Figure 5. 

The experimental center adopted electrical discharge 

machining [20] to artificially induce four distinct vibration 

patterns in rolling bearings and carried out tests across varying 

load conditions. 

z-axis

y-axis

x-axis

 

Figure 5. Sensor measurement point layout. 

Tests were conducted under both normal and faulty 

conditions for the inner ring, outer ring, and rollers. In this 

section, vibration data sets from the drive end bearing under 

various conditions, including a rotational speed of 1800 rpm, 12 

kHz sampling frequency, and a faulty damage diameter of 7 mils, 

are selected for experimental verification. 

According to Shannon's sampling theorem [21], the above 

data set is resampled twice. Each sample point is set to 1024, 

and 100 samples of each signal type are collected. The 

waveform diagrams of different signals after the second 

sampling are shown in Figures 6 and 7. 
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Figure 6. Bearing time domain waveform. 
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Figure 7. Bearing frequency domain waveform diagram. 

The traditional CNN structure established in this section is 

that the pooling layers adopt the maximum pooling method, the 

convolutional, pooling, and fully connected layers use the 

ReLU activation function [22], and the output layer uses the 

Softmax function for feature recognition to handle multi-

classification situations. The optimizer employs the Adam 

algorithm to dynamically adapt the learning rate for every 

model parameter, and the loss function is a cross-entropy loss 

function [23]， shown in Table 1. 

Table 1. CNN Structure. 

Serial number Network layer Size and step length Number of channels 

1 Convolutional 1 3*3，1*1 16 

2 Pooling 1 2*2，2*1 16 

3 Convolutional 2 3*3，1*1 32 

4 Pooling 2 2*2，2*1 32 

5 Convolutional 3 3*3，1*1 64 

6 Pooling 3 2*2，2*1 64 

7 FC 128 1 

 

B. Data Preparation and Preprocessing 

The denoising algorithm based on the wavelet packet-improved 

complete ensemble empirical mode decomposition with 

adaptive noise (ICEEMDAN) first performs wavelet packet 

decomposition on the original signal and processes components 
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with higher energy proportions [24]. The EMD algorithm is 

upgraded to the ICEEMDAN. By applying wavelet threshold 

denoising reconstruction to intrinsic mode function (IMF) 

signals with higher sample entropy values, denoised signals 

with improved signal-to-noise ratios (SNR) are obtained. 

Unlike traditional EMD, ICEEMDAN integrates adaptive noise 

and a complete ensemble strategy, enhancing the stability and 

accuracy of the decomposition process. During decomposition, 

ICEEMDAN incorporates IMF components derived directly 

from the original signal, avoiding residual noise and spurious 

modes caused by random Gaussian white noise injection in 

improved methods like EEMD. The ICEEMDAN algorithm 

workflow is as follows: 

Introduce adaptive noise to the original signal 𝑠(𝑡): 

𝑠(𝑖)(𝑡) = 𝑠(𝑡) + 𝛽0𝐸1 (𝜔(𝑖)(𝑡))         (9) 

Decompose the obtained signal 𝑠(𝑖)(𝑡)  using the EMD 

method, calculate the local mean 𝑁[𝑠(𝑖)(𝑡)] of each component 

(as shown in Formula 10), and obtain the first residual 𝑅1: 

𝑅1 = 𝑁[𝑠(𝑖)(𝑡)]         (10) 

Compute the first IMF component: 

𝐼𝑀𝐹1̃ = 𝑠(𝑡) − 𝑅1        (11) 

Continue adding adaptive noise and decompose to compute 

the second residual: 

𝑅2 = 𝑅1 + 𝛽1𝐸(𝑤(𝑖)(𝑡))        (12) 

Obtain the second IMF component: 

𝐼𝑀𝐹2̃ = 𝑅1 − 𝑅2         (13) 

Repeat the process to compute the 𝑛 − 𝑡ℎ residual and mode 

component. The 𝑛 − 𝑡ℎ residual can be expressed as: 

𝑅𝑛 = 𝑁{𝑅𝑛−1 + 𝛽𝑛−1𝐸[𝑤(𝑖)(𝑡)]}      (14) 

The 𝑛 − 𝑡ℎ IMF component is: 

𝐼𝑀𝐹𝑛̃ = 𝑅𝑛−1 − 𝑅𝑛        (15) 

After ICEEMDAN decomposition, the original signal can be 

reconstructed as: 

𝑠(𝑡) = ∑ 𝐼𝑀𝐹𝑛̃ + 𝑅𝑛
𝑛
𝑛=1         (16) 

Using this method to preprocess the four collected vibration 

signals, the results of filtering are shown in Figure 8.

  
(a) Normal signal (b) Inner ring fault 

  
(c) Outer ring fault (d) Rolling element fault 

Figure 8. The result diagrams of the four types of signals after filtering.

C. Two-dimensional image conversion based on CWT 

CNN can recognize the same patterns appearing at different 

positions in the image. This paper employs the wavelet time-

frequency transform to map the denoised signal into a two-

dimensional image and investigates its impact on the 

recognition accuracy of CNN. 

Wavelet transform illustrates the original vibration signal in 

both the time and frequency domains by translating and scaling 

the mother wavelet. The mathematical principle of the mother 

wavelet can be expressed as: 
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ψ𝑎,𝑏(𝑡) =
1

√𝑎
ψ(

𝑡−𝑏

𝑎
)，𝑎, 𝑏 ∈ 𝑅, 𝑎 > 0      (17) 

where 𝜓𝑎,𝑏(𝑡) represents the continuous wavelet function basis, 

a represents the scaling factor that changes the shape of the 

wavelet, and its function is to affect the scaling ratio of the 

wavelet function. b represents the translation factor of the 

wavelet shift. 

Since the measured signal is energy-limited, its allowable 

condition is that the amplitude satisfies the condition: 

∁Ψ= ∫
|Ψ(𝜔)|2

|𝜔|2

+∞

−∞
𝑑(𝜔) < +∞       (18) 

Continuous Wavelet Transform (CWT) decomposes the 

signal into different frequencies [25], and analyzes the local 

variations of the signal at each frequency. For any A, there is: 

𝑊𝑠(𝑎, 𝑏) = ⟨𝑓, ψ𝑎,𝑏⟩ =
1

√𝑎
∫ 𝑓(𝑡)ψ∗(

𝑡−𝑏

𝑎
)𝑑𝑡      (19) 

where 𝑊𝑠(𝑎, 𝑏)  represents wavelet transform coefficients, 

⟨𝑓, 𝜓𝑎,𝑏⟩ represents inner product, 𝑓(𝑡) represents the original 

signal, and 𝜓∗ represents complex conjugate. 

The Complex Morlet wavelet, as the complex form of the 

Morlet wavelet, compared to other wavelets, it exhibits 

excellent resolution, and its adaptive performance is also more 

outstanding. Therefore, we choose it as the wavelet basis of 

CWT. The expression of the Complex Morlet wavelet is shown 

in Formula 20: 

ψ0(𝑡) =
1

√𝜋𝑓𝑏
𝑒𝑥𝑝( 2𝑖𝜋𝑓𝑐𝑡) 𝑒𝑥𝑝(

−𝑡2

𝑓𝑏
)      (20) 

where 𝑓𝑏 is the bandwidth, and 𝑓𝑐 is the center frequency of the 

wavelet. Compared with the Gram angle field and other two-

dimensional image conversion methods, CWT can analyze 

signals in different frequency domains based on the different 

scale and translation characteristics of the wavelet function, and 

has better feature recognition performance [26]. 

The process of wavelet time-frequency transformation is as 

follows: 

1) Determine the relationship between scale and frequency 

The relationship can be determined by Formula 21: 

𝐹𝑎 = 𝑓𝑐 ×
𝑓𝑠

𝑎
         (21) 

where 𝑓𝑠 is the sampling frequency. According to the sampling 

theorem, to make the frequency range of the scale diagram 

(0,
𝑓𝑠

2
), the scale range should be (2 × 𝑓𝑐,∞). 

2) Determine the scale sequence 

To ensure the frequency sequence constitutes an arithmetic 

sequence, the scale sequence is represented in the following 

form: 

𝑐/𝑡𝑜𝑡𝑎𝑙𝑠𝑐𝑎𝑙, 𝑐/(𝑡𝑜𝑡𝑎𝑙𝑠𝑐𝑎𝑙 − 1), … , 𝑐/4, 𝑐/2, 𝑐     (22) 

where 𝑡𝑜𝑡𝑎𝑙𝑠𝑐𝑎𝑙  represents the length of the scale sequence 

used in the wavelet transform, and 𝑐 represents a constant. For 

a given scale 
𝑐

𝑡𝑜𝑡𝑎𝑙𝑠𝑐𝑎𝑙
 , the corresponding frequency is 

𝑓𝑠

2
 , and 

there is: 

𝑐 = 2 × 𝑓𝑐 × 𝑡𝑜𝑡𝑎𝑙𝑠𝑐𝑎𝑙        (23) 

According to Formulas 21 and 23, the corresponding scale 

sequences can be obtained. 

3) Draw the time-frequency diagram 

After determining the scale and wavelet basis, the actual 

frequency sequence can be calculated using Formulas 19 and 23. 

Combining this with the time sequence, a time-frequency 

diagram can be drawn. 

The four types of signals after noise reduction are converted 

into two-dimensional images using CWT. Finally, the time-

frequency diagrams of the bearing in different states are 

obtained, as shown in Figure 9

  
(a) Normal (b) Inner ring fault 
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(c) Outer ring fault (d) Rolling element fault 

Figure 9. Time-frequency diagrams of bearing under different conditions.

D. Data set partitioning 

Record the signals after the two-dimensional image conversion, 

divide them into different fault types, and attach corresponding 

labels to them as the sample set for training. The specific 

configuration is shown in Table 2. 

Table 2. Specific details of data and labels. 

Signal type 
Training set

（%） 

Test set

（%） 
Sample label 

Normal 80 20 1 

Inner ring fault 80 20 2 

Outer ring fault 80 20 3 

Rolling element 

fault 
80 20 4 

Sum total 320 80  

4. Bearing vibration feature recognition based on 

traditional CNN 

A. T-SNE Visualization 

t-SNE (t-distributed Stochastic Neighbor Embedding) is  

a machine learning algorithm used for data dimensionality 

reduction and visualization [27]. It uses gradient descent to 

minimize the cost function and adjusts data points in low-

dimensional space to maximize their relationships in high-

dimensional space. 

Visualizing the classification results obtained from training 

a traditional CNN, it is evident that the model still has 

misclassification cases for samples, as shown in Figure 10. 

B. Forecast the Outcome 

The model was used to make predictions on the test set, as 

shown in Figure 11. The training accuracy and loss are shown 

in Figure 12. 

In the figure, the model has reached convergence when the 

training iteration is about 300 times, and the accuracy of the test 

set prediction can reach 91.25%.

  

(a) The sample distribution before identification (b) The sample distribution after identification 

Figure 10. T-SNE visualization diagram. 
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Figure 11. Forecast result diagram. 

 

Figure 12. Accuracy and loss curves. 

C. Confusion matrix 

The Confusion Matrix is a table used to evaluate the 

performance of classification models in the field of machine 

learning. Using the actual classes and predicted classes [28], the 

confusion matrix divides the classification results into four 

different categories: true positive (TP), false positive (FP), true 

negative (TN), and false negative (FN). 

The calculation rules of the confusion matrix are shown in 

Table 3. 

Table 3. Calculation rules. 

Actual 

category/forecast 

category 

Prediction is a 

positive example 

Prediction is a 

negative example 

The actual situation is 

a positive example 
TP FN 

The actual example is 

negative 
FP TN 

According to the calculation rules of the confusion matrix, 

the confusion matrix of the training outcomes can be obtained, 

as shown in Figure 13. 

 

Figure 13. Forecast result diagram. 

Through the confusion matrix, multiple evaluation metrics 

can be calculated, and these metrics are used to assess the 

performance of the classification model [29]. 

1) Accuracy 

To measure the model's overall prediction accuracy, this 

metric is defined as the proportion of correctly predicted 

samples to the total number of samples.  

accuracy rate =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
      (24) 

2) Precision 

To assess the model's effectiveness in correctly predicting 

positive instances, this metric is defined as the rate of true 

positives among all predicted positive samples.  

precision rate =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
       (25) 

3) Recall 

To assess the model's effectiveness in identifying positive 
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instances, this metric is defined as the rate of true positives 

among all actual positive examples. 

recall rate =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
      (26) 

4) F1 score 

To evaluate the model's ability to balance precision and 

recall, this metric is defined as the harmonic mean of precision 

and recall, making it particularly suitable for imbalanced 

datasets. 

𝐹1 = 2 ×
(precision rate×recall rate)

(precision rate+recall rate)
      (27) 

D. Experimental Result 

According to the above formulas, the indicators of the 

experimental results can be obtained. The recall rates, 

precisions, and F1 scores of different categories are shown in 

Table 4. 

Table 4. Calculation results of different indicators. 

Categories/ 

Indicators 

Recall rate 

(%) 

Accurate rate 

(%) 

F1-score mode 

(%) 

1 85 89.4737 87.1795 

2 90 90 90 

3 95 95 95 

4 95 90.4762 92.6829 

Considering the rigor of the experiment, the above method 

was used to conduct ten repeated independent experiments. The 

accuracies of the prediction are shown in Table 5. 

Table 5. The results of 10 experiments were predicted. 

Number of experiments Accuracy rate（%） 

1 91.25 

2 91.3 

3 91.56 

4 92.02 

5 91.01 

6 90.95 

7 91.21 

8 91.63 

9 91.37 

10 91.26 

The table shows that the traditional CNN model achieves an 

average recognition accuracy of 91.4%. This suggests that the 

model demonstrates relatively strong judgment performance for 

various types of fault signals. 

This shows that it is feasible to convert vibration signals into 

two-dimensional images for feature recognition. However, due 

to the simple structure of the traditional CNN model, this paper 

will improve the CNN structure to enhance the performance of 

the model. 

5. Bearing vibration feature recognition based on 

improved CNN 

Building upon the experimental data presented in the earlier 

subsection, the traditional CNN network model has relatively 

better performance in the recognition of the vibration 

characteristics of the electric spindle bearing. However, due to 

the problem of the model structure, there are still cases of 

incorrect recognition. To address this issue, in this section, the 

CNN structure will be improved to enhance the recognition 

performance of the CNN network. Through experiments and 

comparison with the traditional model, the proposed method's 

generalization capability will be verified.  

The improved CNN model was trained using the same 

datasets as in the previous section, with the maximum number 

of iterations of ZOA set to 10, the optimization range of the 

learning rate set from 0.001 to 0.1, the size range of the 

convolution kernel of branch 1 set from 1 to 5, the size range of 

the convolution kernel of branch 2 set from 2 to 6, and the 

optimization range of batch size set from 10 to 50. After 

optimizing the hyperparameters through ZOA, the optimal 

learning rate of the model is 0.0048492, the convolution kernel 

size of branch 1 is 1 ∗ 1, the convolution kernel size of branch 

2 is 4 ∗ 4, and the batch size is 30. 

The experimental results are visualized by t-SNE, as shown 

in Figure 14. 

 

(a) The sample distribution before identification 
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(b) The sample distribution after identification 

Figure 14. T-SNE visualization diagram. 

Through t-SNE visualization, the distribution of samples 

before and after dataset recognition can be more intuitively 

observed. Compared with the original samples, the improved 

model can achieve aggregation of the same category and 

distinction of different categories, and no outliers appear in the 

data after classification. Therefore, the improved CNN has 

better visualization effects 

The prediction result graph of the training set is a tool used 

to visualize the model's performance on the training data. By 

displaying the model's prediction results on the training data as 

charts or graphs, the fitting of the model to the training data can 

be more clearly observed. After model training, the prediction 

effect of the improved CNN model on the training set is shown 

in Figure 15. 

 

Figure 15. Predictive rendering of the training set. 

The fitness curve [30] usually refers to the curve plotted 

based on the fitness of different candidate solutions in an 

optimization problem. It can show the performance of different 

solutions in the search space and help analyze and compare the 

quality of different candidate solutions. Judging from the shape 

and trend of the fitness curve, one can determine the distribution 

of candidate solutions and whether there are local or global 

optimal solutions, etc. 

The fitness curve of ZOA during training is shown in Figure 

16. 

 

Figure 16. Fitness curve of ZOA. 

As is evident from the above graph, with the increase in 

optimization iterations, the fitness curve monotonically declines. 

This indicates that during the training of the model, with the 

increment of iterations, the target function values (fitness) of the 

candidate solutions found by the optimization algorithm keep 

decreasing. This suggests that the algorithm is moving towards 

a better solution. 

In Figure 17, the ZOA-PCNN-AT model has reached 

convergence when the training iterations are around 200. 

Compared with the traditional CNN model, the ZOA-PCNN-AT 

model can identify different fault types with fewer iterations and 

has a better prediction effect. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026 

 

 

Figure 17. CWRU data set model training curve. 

By the training results, the confusion matrix of the ZOA-

PCNN-AT model on the CWRU dataset can be obtained.  

as shown in Figure 18. 

 

Figure 18. CWRU data set confusion matrix. 

To ensure the accuracy of the experimental outcomes, the 

above-mentioned method was used for ten independent 

experiments with repetition. The accuracy is shown in Table 6. 

Table 6. The results of 10 experiments were predicted. 

Number of experiments Accuracy rate（%） 

1 100 

2 99.5 

3 99.8 

4 100 

5 99.7 

6 99.5 

7 100 

8 100 

9 99.9 

10 99.8 

From the above table, the average recognition accuracy of 

the model can reach 99.82%, which indicates that this model 

has better judgment performance for different types of fault 

signals. Compared with the traditional CNN model, the ZOA-

PCNN-AT model has improved its diagnostic performance by 

9.21%. 

To further evaluate the model's performance, ablation 

experiments on the network structure were carried out [31]. By 

gradually deleting different component modules in the network 

to study their impact on performance. After each ablation, ten 

independent experiments were repeated, and the average 

recognition rate of training was recorded and is shown in  

Table 7. 

Table 7. Table of accuracy comparison in ablation experiments. 

Construction 
Training set 

recognition rate 

Test set recognition 

rate 

ZOA-PCNN-AT 100% 99.82% 

CNN 81.65% 81.21% 

ZOA-CNN 82.43% 81.74% 

ZOA-CNN-AT 99.03% 98.16% 

PCNN-AT 96.41% 94.33% 

ZOA-PCNN 93.62% 90.78% 

As shown in Table 7, the improved ZOA-PCNN-AT network 

structure proposed in this chapter shows notably better 

recognition results than the other five methods. The average 

recognition accuracy can reach up to 99.82%. Through ablation 

experiments, it can be observed that different component 

modules have a notable effect on improving the performance. 

6. Bearing vibration feature recognition based on 

improved CNN under service conditions 

A. Vibration Signal Acquisition 

After noise reduction, signal samples are collected under 

different states. Because of the scarce training samples, data 

augmentation is performed on the collected vibration data to 

reduce the occurrence of training overfitting. In this paper,  

a random overlapping sampling method of signals is adopted for 

dataset enhancement; that is, each segment of the signal is 

randomly sampled with continuous data points of the same 

length as the original signal. The number of sampling points is 

1,024, and the sampling frequency is 512 Hz. 100 samples are 
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collected for each rotational speed, as shown in Figure 19. 

Sampling point

Overlap amount Offset amount
 

Figure 19. Data set extension. 

Fault signals of various types shall be divided according to 

the same criteria, as shown in Table 8. 

Table 8. Specific details of the data and labels. 

Signal type Training set Test set Sample label 

Normal state at 1000 rpm 80 20 1 

Normal state at 3000 rpm 80 20 2 

Pull stud wear at 1000 rpm 80 20 3 

Pull stud wear at 3000 rpm 80 20 4 

Bearing wear at 1000 rpm 80 20 5 

Bearing wear at 3000 rpm 80 20 6 

Sum total 480 120 600 

B. Vibration Signal Preprocessing 

The vibration signals of the electric spindle under 6 different 

states are preprocessed. Taking the bearing wear signal at  

a rotational speed of 3000 rpm as an example. Figure 20 shows 

the frequency spectra of each node after wavelet packet 

decomposition, and the energy proportion, as shown in  

Figure 21.  

 

 

 

Figure 20. Bearing wear signal at 3000 rpm wavelet packet 

decomposition node spectrum diagram. 
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Figure 21. Frequency distribution of energy. 

In Figure 21, the signal energy corresponding to node [3,6] 

accounts for the highest proportion, while the remaining signal 

energy proportions are less than 10%. Therefore, the frequency 

distribution of the original signal is concentrated in this node, 

while other nodes represent the frequency distribution of noise 

signals. Therefore, the signal of this node is used as the 

component for wavelet packet reconstruction. 

Due to the high energy proportion of nodes [3,6], 

ICEEMDAN decomposition was performed on them to obtain 

IMF components in different frequency bands, and the results 

are shown in Figure 22.

 

Figure 22. ICEEMDAN decomposition result of the bearing wear signal at 3000 rpm. 

The sample entropy of all IMFs is calculated, as shown in Table 9. 

Table 9. Sample entropy values of different IMFs for bearing wear signals at 3000 rpm. 

IMF serial number Sample entropy value 

IMF1 1.2961 

IMF2 0.99029 

IMF3 0.66611 

IMF4 0.59559 

IMF5 0.36808 

IMF6 0.26979 

IMF7 0.13193 

IMF8 0.04704 

Average IMF 0.5456 
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Filtering is performed according to the magnitude of their 

sample entropy, and the comparison of results before and after 

filtering is shown in Figure 23.

  

Figure 23. Comparison of bearing wear signals before and after IMF filtering at 3000 rpm.

The filtered IMFs are reconstructed to obtain the denoised 

vibration signal of the electric spindle bearing wear at 3000 rpm, 

as shown in Figure 24:
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Figure 24. Comparison between the original bearing wear and the filtered signal at 3000 rpm.

The vibration signals of the electric spindle under fault and 

normal states at different rotational speeds are processed using 

the above method. The comparison results between the original 

signals and the denoised signals under different states are shown 

in Figure 25. 
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(a) Normal state at 1000 rpm (b) Normal state at 3000 rpm 
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(c) Pull stud wear at 1000 rpm (d) Pull stud wear at 3000 rpm 
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(e) Bearing wear at 1000 rpm (f) Bearing wear at 3000 rpm 

Figure 25. Comparison Chart of Original Signal and Filtered Signal.

C. Feature Recognition 

The obtained signals are converted into two-dimensional 

images through CWT and subjected to compression processing. 

The processed sample set is then input into the PCNN network 

for training. ZOA's maximum iteration count is set to 10, with 

the optimization interval for the learning rate defined as 0.001 

to 0.1. The convolution kernel size interval for Branch 1 is set 

as 1 to 5, and that for Branch 2 is 2 to 6. The optimization 

interval for batch size is specified as 10 to 50. Through model 

training, the fitness curve of the PCNN is obtained as shown in 

Figure 26. Obviously, with the increase of iteration times, the 

fitness of candidate solutions found by the optimization 

algorithm continuously decreases, indicating that the algorithm 

is progressing toward better solutions.  
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Figure 26. The fitness curve of CNN was improved. 

 

 

When the iteration count is approximately 7, the model's 

fitness starts to converge, demonstrating the effectiveness of the 

ZOA optimization algorithm in hyperparameter optimization. 

Through ZOA hyperparameter optimization for the model,  

a learning rate of 0.0052619, a convolution kernel size of 1×1 

for Branch 1, a convolution kernel size of 2×2 for Branch 2, and 

a batch size of 20. The sample classification diagram after t-

SNE dimensionality reduction is shown in Figure 27.

  
(a) The sample distribution before identification (b) The sample distribution after identification 

Figure 27. t-SNE visualization schematic. 

As shown in Figure 27, the model can intuitively identify the 

vibration conditions of the electric spindle under different states 

after dimensionality reduction by t-SNE. Figure 28 shows the 

prediction outcomes for the test set. 

 

Figure 28. Test set prediction results. 

According to the figure, the model achieves a prediction 

accuracy of 92.5% for the electric spindle under different states. 

Based on the calculation of experimental results, the 

confusion matrix is shown in Figure 29. 

 

Figure 29. Confusion Matrix of Test Set. 
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The calculation results of different indicators are shown in 

Table 10. 

Table 10. Different metric calculation results. 

Categories/ 

Indicators 
Recall rate(%) 

Accurate 

rate(%) 

F1-score mode 

(%) 

1 100 95.2381 97.561 

2 95 100 97.436 

3 90 85.7142 87.805 

4 100 100 100 

5 85 83.3333 88.947 

6 95 90.4761 92.683 

As can be seen from the above table, all calculated values 

exceed 80%, indicating that the model performs well and the 

training results are relatively reliable. 

 

Figure 30. Training curve of the model. 

As shown in Figure 30, the model tends to converge when 

the training set is iterated approximately 225 times, with the 

accuracy reaching 93%. The model is effective in identifying 

the vibration conditions of the electro-spindle in various 

operating conditions. 

Considering the rigor of the experiment, ten repeated 

independent experiments were conducted using the above 

method, as shown in Table 11. 

Table 11. Results of ten experimental predictions. 

Number of experiments Accuracy rate（%） 

1 92.5 

2 95.3 

3 96.1 

4 94.2 

5 94.6 

6 93.5 

7 94.4 

8 94.6 

9 94.5 

10 95.1 

An analysis of the table content reveals that the ZOA-

PCNN-AT model has an average recognition accuracy of 95% 

for the vibration characteristics of electric spindles under 

service conditions, indicating the effectiveness of the proposed 

method.  

D. Analysis of Model Recognition Performance Under 

Strong Noise Background 

To ensure the integrity of the experiment, the collected original 

signals were subjected to noise addition processing, with 

Gaussian white noise added to simulate the recognition 

performance of the model for different working conditions of 

the electric spindle in a strong noise environment. The signal-

to-noise ratio (SNR) index was used to evaluate the degree of 

signal interference by noise: a smaller SNR indicates stronger 

interference of noise on the original signal, making the vibration 

characteristics more difficult to identify. 

The SNR range after noise addition was set from -10 dB to 

10 dB for testing the proposed model. Ten experiments were 

conducted under each SNR condition, and the results were 

recorded. To ensure the reliability of the experimental results, 

the recognition accuracy of the model for vibration 

characteristics under that SNR condition was determined by 

averaging the 10 experimental results. To intuitively observe the 

performance level of the model, ablation of the model structure 

was performed. The recognition effects of CNN, PCNN-AT, 

ZOA-PCNN, and ZOA-CNN-AT models on the vibration 

characteristics of the electric spindle in a noise environment 

were tested as references.  
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Figure 31. The accuracy of models in a noisy environment. 
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In Figure 31, the recognition accuracy of vibration 

characteristics by different models gradually improves. Among 

them, the model used in this chapter exhibits the highest 

recognition accuracy, reaching approximately 94.5% when the 

SNR is 10 dB. The CNN model shows the poorest recognition 

performance, with a maximum accuracy of only about 80%. 

Therefore, the model still demonstrates good recognition 

performance in noisy environments. 

7. Conclusion 

This paper presents a study on recognizing bearing vibration 

features using an enhanced CNN, informed by a literature 

review and field investigations. First, the EMD algorithm is 

upgraded to the ICEEMDAN. By performing wavelet threshold 

denoising reconstruction on IMF signals with higher sample 

entropy values, denoised signals with improved signal-to-noise 

ratios are obtained. Subsequently, a ZOA module is 

incorporated into the traditional CNN architecture, where the 

Zebra Optimization Algorithm (ZOA) adaptively optimizes 

hyperparameters such as learning rate and convolutional kernel 

size. This process yields an optimal hyperparameter 

combination, including a best learning rate of 0.0048. Finally, 

by conducting ablation experiments, it can be concluded that 

compared with the traditional CNN model, the improved model 

enhances diagnostic performance by 9.21%, and can reach 

approximately 94.5% when the signal-to-noise ratio is 10 dB. 

This significantly improves the reliability of CNC machine tool 

fault diagnosis.
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