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Highlights  Abstract  

▪ Flexible scheduling boosts DRFT reliability by 

aligning with passenger time windows. 

▪ Design dynamic pricing schemes to assess their 

impact on DRFT system reliability. 

▪ Assessed reliability of integrated dynamic 

pricing, flexible scheduling & shared rides. 

 This research investigates reliability improvement for demand-

responsive feeder transit (DRFT) with simultaneous pick-up and drop-

off using dynamic pricing scheme. The fare model adjusts charges based 

on arrival punctuality-compensating passengers when vehicles miss 

their time windows, with compensation proportional to delay duration. 

The flexible departure system is designed to enhance connection 

reliability. The optimization model maximizes operator profit while 

minimizing passenger costs, constrained by vehicle operating time, 

passenger time windows, capacity limits, and drop-off schedules. A 

multi-chain genetic algorithm solves this multi-objective routing 

problem. Case studies demonstrate: 1) Flexible scheduling outperforms 

fixed scheduling in connection reliability and operational profitability; 

2) Dynamic pricing scheme surpasses fixed fares in connection 

reliability, profitability, and resource utilization. The integrated approach 

significantly enhances overall DRFT system reliability. 
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1. Introduction 

China's urban expansion has accelerated transport growth at the 

cost of intensified congestion and pollution, driving demand for 

personalized feeder solutions in sustainable public transit 

systems. Demand-Responsive Transit (DRT) emerges as an 

efficient alternative to conventional fixed-route systems, 

dynamically matching service supply with passenger demand to 

minimize resource waste while elevating service quality. This 

adaptive transit model proves critical for operators seeking 

competitiveness in modern mobility ecosystems through 

optimized operations and enhanced passenger experiences. 

The service types of DRT encompass a broad range of 

scenarios, ranging from route deviated mode and station 

deviated mode to station demand responsive service and 

regional flexible service mode. Amongst these, demand 

responsive feeder transit (DRFT) stands as a prominent 

example[1]. DRFT is a cutting edge public transportation 

solution that is predominantly deployed at transportation hubs, 

such as subway stations, high speed rail terminals, and bus 

interchanges, where passenger density tends to be relatively 

low[2]. Its core purpose is to serve commuters traveling to and 
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from interchange stations, efficiently bridging the last mile gap 

and tailoring services to meet the diverse and personalized 

travel needs of passengers. The DRFT system has garnered 

significant interest in the realm of innovative public 

transportation solutions. Researchers from across the globe 

have delved into the intricacies of this system, uncovering 

valuable insights. This paper examines pivotal topics pertaining 

to DRFT systems, including pick-up and drop-off modalities, 

departure time, and dynamic pricing scheme. Through this 

discussion, we aim to provide a comprehensive overview of the 

current research landscape, highlighting the advancements and 

challenges within this rapidly evolving field. 

Initially, with regard to pick-up and drop-off modalities, 

DRFT is categorized into two distinct types: individual pick-up 

and drop-off and simultaneous pick-up and drop-off. To validate 

the superior reliability of the latter, an integrated model for 

DRFT route planning and scheduling under the simultaneous 

pick-up and drop-off mode has been devised, balancing the 

interests of enterprises and passengers alike. The model 

demonstrates significantly improved resource utilization 

compared to separate pick-up and drop-off modes, clearly 

showcasing the advantages of simultaneous operations[3]. To 

further enhance the system reliability, scholars took into account 

passenger interchange time requirements, stipulating scheduled 

arrivals at interchange stations and ensuring a reasonable time 

gap between passenger arrival and the scheduled interchange 

vehicles[4]. Jiang[5] then introduced game theory into the DRFT 

system, building a manager led Stackelberg game model that 

considers the impact of interactions between management and 

passengers on system reliability under simultaneous pick-up 

and drop-off operations. Recognizing the limitations of studies 

focusing on small service areas, Tan[6] expanded the scope to 

larger regions, exploring through multi-zone partitioning 

potential routing solutions that could enhance DRFT system 

reliability under simultaneous pick-up and drop-off operations. 

Other studies have simply shifted the focus, such as examining 

the route design of customized buses in the context of 

simultaneous pick-up and drop-off[7]. The pickup and drop-off 

modes of DRFT mainly include individual pickup and drop-off 

and simultaneous pickup and drop-off. With further research, 

under the simultaneous pickup and drop-off mode, researchers 

have not only introduced interchange time requirements to 

optimize passenger experience, but also analyzed the interaction 

between managers and passengers using game theory models. 

They have further expanded the research scope to multi-

partition planning strategies, significantly enhancing the 

diversity and practicability of the models. These studies have 

enhanced DRFT system reliability across multiple dimensions. 

In studies on DRFT, departure time optimization is a critical 

research focus, with two primary scheduling approaches: fixed 

intervals and flexible departure. Song[8] implemented a flexible 

departure strategy where vehicles are dispatched either when N 

passenger requests accumulate at transfer points with available 

vehicles, or immediately after returning vehicles complete  

a brief rest period when no idle vehicles exist. He[9] developed 

a mathematical departure interval function T to determine 

scheduling, incorporating a demand threshold M that triggers 

early departures if passenger reservations reach M before 

interval T elapses. Wang's[10] comparative study demonstrated 

that flexible scheduling outperforms fixed-interval approaches 

in DRFT systems, simultaneously reducing operational costs 

and travel times while significantly enhancing DRFT system 

reliability. These studies collectively highlight how adaptive 

departure strategies can enhance DRFT reliability through 

dynamic response to real-time demand conditions. Wang et al.[11] 

developed a two-stage coordinated optimization model to 

enhance public transit system reliability through integrated 

vehicle routing and scheduling. Their approach demonstrates 

improved reliability through decoupled optimization of these 

two interconnected aspects. Alshalalfah et al.[12] highlighted the 

critical role of slack time allocation in demand-responsive 

transit systems. Their research indicates that increasing slack 

time can enhance service flexibility, thereby potentially 

stimulating higher travel demand due to improved reliability 

and accessibility. Nourbakhsh et al.[13] conducted a cost-

minimization study to determine optimal transit service 

coverage and departure frequencies. Their findings demonstrate 

that flexibly scheduled transit systems typically achieve lower 

operational costs under low-demand conditions, indicating 

superior reliability in specific demand scenarios. 

Multiple factors influence DRFT reliability, with 

appropriate fare structures representing another critical aspect 

as previously discussed. Guo[14] established a sophisticated two-

stage optimization model incorporating both static fixed fares 
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and dynamic variable fares adjusted based on congestion levels 

and vehicle detour distances, investigating their impacts on 

DRFT system reliability. Wang et al.[15] proposed a pricing-

based bi-level programming game model considering fare 

fluctuations while examining competition between DRFT and 

bike-sharing systems. He et al.[16] conducted an in-depth 

investigation of the complex interplay between departure 

schedules and dynamic pricing, developing a bi-level 

programming model to determine optimal fluctuation ranges for 

both scheduling and fares that enhance system reliability. Kamel 

et al.[17] developed a genetic algorithm to optimize time-

dependent bus fares and evaluated their impact on passenger 

mode choice using a multimodal simulation model. Their results 

demonstrate that time-based optimal fare structures effectively 

redistribute demand away from peak periods, thereby indirectly 

enhancing DRFT system reliability. Khattak et al.[18] examined 

travelers' willingness to use and pay for demand-responsive 

services, finding users willing to pay premium fares compared 

to fixed-route transit for greater reliability. Jiang et al.19 

considered a service-based fare strategy, dividing the total fare 

into a base fare and a service fare (an additional charge based 

on the vehicle's detour distance), thereby enhancing the stability 

of the DRFT system. Sun et al.20 established a service-level-

based fare strategy, first charging personalized fares according 

to the type of alternative stop selected by passengers, followed 

by compensating passengers experiencing boarding delays with 

partial fare adjustments, thereby enhancing the stability of the 

DRFT system in terms of fare structure. Collectively, these 

studies reveal the advantages of fare structures in DRFT 

systems as both revenue management tools and demand-

regulation mechanisms for enhancing system reliability. 

In other studies, Liu et al.[21] optimized the robot's trajectory 

by proposing a dynamic two-stage strategy, improving the 

system's reliability. Skačkauskas[22] proposed an effective path-

following replanning method and evaluated its performance and 

reliability. Jin et al.23 introduced a model predictive control 

method that adjusts demand-responsive transit scheduling in 

real-time using predicted passenger flow information for future 

time periods, significantly enhancing reliability. Huang et al.24 

established a mathematical model based on historical route 

similarity, assessing the similarity between historical route data 

and current routes to optimize the latter, thereby enhancing the 

stability of the demand-responsive transit system. Wang et 

al.[25] proposed a DRT planning strategy to reduce accessibility 

inequality. It integrates a Continuous Approximation (CA) 

model for DRT with a graph model for conventional PT. The 

optimization uses a bilevel structure: the upper level allocates 

DRT vehicles per zone, while the lower level solves transit 

assignment iteratively to estimate multimodal traveler 

distribution. Jiang et al.26 developed an integrated optimization 

approach using DRT and conventional buses. This model 

simultaneously generates vehicle scheduling (including 

DRT/bus deployment and routing) and passenger assignment 

solutions. An epsilon-constraint algorithm is employed to obtain 

the Pareto solution set, aiming to achieve efficient and 

passenger-friendly evacuation of stranded passengers. Hu et 

al.27 employed an extended Technology Acceptance Model 

(TAM) to assess DRT acceptance, transcending conventional 

research limitations by examining the direct impacts of key 

factors like trust and subjective norms on the public's DRT 

usage intention. Previous studies have predominantly examined 

simultaneous pick-up and drop-off services, departure times, 

and dynamic pricing schemes as independent systems, 

overlooking their complex interrelationships. This study 

specifically investigates the interactions among these three 

critical components. To address existing research gaps, we 

developed an integrated optimization framework that 

simultaneously coordinates vehicle fleet composition 

(single/multiple vehicle types), departure scheduling strategies, 

fare collection schemes, and simultaneous pick-up and drop-off 

operations to enhance DRFT system reliability. Our approach 

establishes a multi-objective optimization model for demand-

responsive feeder transit systems, aiming to enhance DRFT 

system reliability by balancing the interests of both passengers 

and operators. Furthermore, we propose an innovative multi-

chain genetic algorithm to efficiently solve this complex 

optimization problem. 

The remainder of this paper is structured as follows: Section 

2 elucidates the DRFT route optimization problem and its 

corresponding model. Section 3 introduces the algorithm 

devised to solve this model. An arithmetic example is then 

employed in Section 4 to scrutinize the model's solution results. 

Lastly, Section 5 offers a concise summary and outlines 

potential future research avenues. 
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2. Methodology 

2.1. Problem Description 

The demand-responsive feeder transit studied in this paper is in 

a low-density passenger flow area and is based at the 

interchange station, which serves as the starting and ending 

point. It is assumed that there are 𝐾1 shuttle buses available at 

the interchange station and there are 𝑀1  types of vehicles. 

Passengers are categorized into two types: alighting and 

boarding passengers, departing from and arriving at the 

interchange station. The demand-responsive feeder transit 

begins its route at the interchange station, passes through  

a series of demand points, and then returns to the interchange 

station. During this process, passengers transferring to the 

interchange station are transported to their respective demand 

points, and passengers needing to board at the interchange 

station are picked up, simultaneously serving both types of 

passengers. The interchange station can be a bus hub, a rail 

transit station, or other centers for passenger distribution, as 

depicted in Figure 1.

 

Fig. 1. DRFT route map in simultaneous pick-up and drop-off mode. 

2.2. Hypothesis 

To solve the problem studied in this paper, the following basic 

assumptions are made: 

(1) The research area for demand-responsive feeder transit 

is known; 

(2) When demand-responsive feeder transit operates on the 

roads within the service area, traffic conditions such as 

congestion are not considered, and all vehicles travel at the same 

speed; 

(3) The needs of all pre-booked passengers are met; 

(4) The time it takes for vehicles to start and for passengers 

to board or alight is ignored; 

(5) Passengers heading to the interchange station have a 

boarding time window, and those leaving the interchange station 

have an alighting time window, both of which are considered 

soft time windows; 

(6) Only the OD (origin-destination) demand between the 

interchange point and the demand points is considered; the OD 

demand between demand points themselves is not considered. 

2.3 Mathematical Model 

The DRFT route optimization problem studied in this paper 

comprehensively considers the scenarios of simultaneous pick-

up and drop-off, dynamic pricing scheme, and flexible 

scheduling. It aims to maximize the operating profit of the 

enterprise and minimize the total cost for passengers, with a 

multi-objective optimization model that considers constraints 

such as vehicle capacity and maximum travel time. The model's 

symbols are shown in Table 1. 
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Table 1 Symbol explanations of the models 

Notation Description 

𝑁 = {1,2, ⋯ 𝑁1} Set of passengers 

𝐾𝜔 =

{1,2,3, ⋯ , 𝐾1
𝜔}  𝑀 =

{𝐴, 𝐵, ⋯ 𝑀1} 

Set of Model 𝜔 Buses 

Set of  vehicle type 

M+1 Transfer station 

k Vehicle k 

i,j Passenger i and j 

𝜔 Vehicle type 𝜔 

𝑄𝑘 capacity of the vehicle k 

𝑑𝑖𝑗  distance between OD pair (i,j) 

𝑄𝑖−
𝑘  Number of people on board when vehicle k leaves node i 

𝑄𝑖+
𝑘  Number of people on board when the vehicle k arrives at node i 

𝑁𝑘 The vector of stations served by the vehicle, ordered by the sequence of service  

𝑎𝑖 The difference between the actual time that passenger i is served and the upper limit of the time window 

𝑢𝑘 The departure time of vehicle k 

𝑒𝑖
𝑘 The scheduled departure time of passenger i in vehicle k 

𝑝𝑖  The fare of passenger i 

𝑡𝑖
𝑘 The time when vehicle k arrives at node i 

[𝐸𝑇𝑖 , 𝐿𝑇𝑖] The upper and lower bounds of passenger i's reservation window 

V Vehicle speed 

𝑇𝑚𝑎𝑥  Maximum runtime 

𝜃1
𝜔 Unit departure cost of vehicle type 𝜔 

𝜃2
𝜔 Unit travel cost vehicle type 𝜔 

h passenger transit time cost 

𝜑1 Penalty coefficient for early arrival 

𝜑2 Penalty coefficient for late arrival 

𝑥𝑖𝑗
𝑘  routing variable (equals to 1, if route segment (i,j) is traveled by vehicle k, and 0, otherwise) 

𝑦𝑖
𝑘 passenger type variable(equals to 1, if passenger i boards vehicle k, and -1, otherwise) 

𝑠𝑖
𝑘 

request-to-vehicle variable(equals to 1, if passenger i is served by vehicle k , and 0, otherwise) 
 

 

2.3.1. Objective Function 

(1) Enterprise Operational Revenue 

Eq. (1) represents the first objective function, which 

maximizes the total revenue of the enterprise and consists of 

three parts: Eq. (2) represents the enterprise's departure cost, Eq. 

(3) is the vehicle operating cost, and Eq. (4) is the total revenue 

from passenger fares. 

Max𝑍1 = 𝐶3 − (𝐶1 + 𝐶2)           (1) 

𝐶1 = ∑ ∑ ∑ 𝜃1
𝜔

𝑗∈𝑁𝑘∈𝐾𝜔𝜔∈𝑀 𝑥(𝑀+1)𝑗
𝑘         (2) 

𝐶2 = ∑ ∑ ∑ ∑ 𝜃2
𝜔

𝑗∈𝑁∪𝑀+1𝑖∈𝑁∪𝑀+1𝑘∈𝐾𝜔𝜔∈𝑀 𝑑𝑖𝑗𝑥𝑖𝑗
𝑘        (3) 

𝐶3 = ∑ 𝑝𝑖𝑖∈𝑁            (4) 

(2) Total Passenger Cost 

Eq. (5) is the second objective function, which minimizes 

the total cost for passengers and consists of two parts: Eq. (6) is 

the total cost of all passengers' time on the bus, and Eq. (7) is 

the penalty cost for the vehicle's early or late arrival affecting 

passenger satisfaction. 

Min𝑍2 = 𝐶4 + 𝐶5           (5) 

𝐶4 = ∑ ∑ ∑ ∑ ℎ𝑥𝑖𝑗
𝑘

𝑗∈𝑁∪𝑀+1𝑖∈𝑁∪𝑀+1𝑘∈𝐾𝜔𝜔∈𝑀 𝑄𝑖−
𝑘 𝑑𝑖𝑗

𝑉
        (6) 

𝐶5 = ∑ ∑ ∑ 𝑠𝑖
𝑘

𝑖∈𝑁𝑘∈𝐾𝜔𝜔∈𝑀 (𝑄𝑖+
𝑘 𝐺𝑖 + 𝐻𝑖)         (7) 

2.3.2. Constraints 

(1) Vehicle Capacity 

Eq. (8) indicates that when the vehicle leaves the subway 

station, the number of people on board should be less than or 

equal to the vehicle's capacity; Eq. (9) indicates that the number 

of passengers on board during the driving process should be less 

than or equal to the vehicle's capacity. 

0 ≤ 𝑄𝑀+1−
𝑘 ≤ 𝑄𝑘 , ∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑀         (8) 

𝑄𝑀+1−
𝑘 + ∑ 𝑦𝑖

𝑘
𝑖∈𝑁𝑘

≤ 𝑄𝑘 , ∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑀         (9) 

(2) Fleet Size 
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Eq. (10) is the vehicle availability constraint, meaning that 

the number of vehicles dispatched from the subway station must 

not exceed the maximum number of vehicles. 

∑ ∑ ∑ 𝑥(𝑀+1)𝑖
𝑘

𝑖∈𝑁𝑘∈𝐾𝜔𝜔∈𝑀 ≤ 𝐾1
𝜔       (10) 

(3) Time Window 

Eq. (11) is the early arrival penalty value, given if the 

passenger is a boarding passenger, alighting passengers are not 

penalized; Eq. (12) is the late arrival penalty value. 

𝐺𝑖 = {
0,

𝜑1(𝐸𝑇𝑖 − 𝑡𝑖
𝑘),

𝐸𝑇𝑖 ≤ 𝑡𝑖
𝑘 ≤ 𝐿𝑇𝑖𝑜𝑟𝑦𝑖

𝑘 = −1

𝑡𝑖
𝑘 < 𝐸𝑇𝑖𝑎𝑛𝑑𝑦𝑖

𝑘 = 1
     (11) 

𝐻𝑖 = {
0,

𝜑2(𝑡𝑖
𝑘 − 𝐿𝑇𝑖),

𝐸𝑇𝑖 ≤ 𝑡𝑖
𝑘 ≤ 𝐿𝑇𝑖

𝑡𝑖
𝑘 > 𝐿𝑇𝑖

      (12) 

(4) Early Arrival Time Value 

Eq. (13) is the value of the vehicle's early arrival time. When 

serving boarding passengers, if arriving at the rendezvous point 

ahead of schedule, one needs to wait until the lower bound of 

the time window; when serving alighting passengers, early 

arrival does not require waiting. 

𝑓𝑖
𝑘 = {

0,

𝐸𝑇𝑖 − 𝑡𝑖
𝑘 ,

𝑦𝑖
𝑘 = −1, ∀𝑖 ∈ 𝑀, 𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑀

𝑦𝑖
𝑘 = 1, 𝐸𝑇𝑖 > 𝑡𝑖

𝑘 , ∀𝑖 ∈ 𝑀, 𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑀
    (13) 

(5) Subtour Elimination Constraints 

Equation (14) represents the temporal relationship between 

two sequentially served stations by a vehicle. Equations (15) 

and (16) ensure that each vehicle can visit a station only once 

while simultaneously eliminating subtours in conjunction with 

Equation (14).

𝑡𝑗
𝑘 ≥ 𝑡𝑖

𝑘 + 𝑚𝑎𝑥( 0, 𝑓𝑖
𝑘) + 𝑡𝑖𝑗 − 𝐵(1 − 𝑥𝑖𝑗

𝑘 ), ∀𝑖, 𝑗 ∈ 𝑁 ∪ 𝑀 + 1, 𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑀          (14) 

∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑁1∪𝑀+1 = 1, ∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑀, 𝑗 ∈ 𝑁 ∪ 𝑀 + 1, 𝑖 ≠ 𝑗            (15) 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁1∪𝑀+1 = 1, ∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑀, 𝑖 ∈ 𝑁 ∪ 𝑀 + 1, 𝑖 ≠ 𝑗            (16) 

(6) Maximum Runtime 

Eq. (17) is the maximum vehicle driving time constraint. 

The maximum runtime includes three parts: the time of 

departure from the transfer station, the time of returning to the 

transfer station, and the travel time between various stops.

∑ ∑ ∑ [𝑡0𝑖𝑥0𝑖
𝑘 + 𝑚𝑎𝑥( 0, 𝑓𝑖

𝑘)]𝑘∈𝐾𝜔𝑖∈𝑁 + ∑ ∑ ∑ ∑ [𝑡𝑖𝑗𝑥𝑖𝑗
𝑘 + 𝑚𝑎𝑥( 0, 𝑓𝑗

𝑘)] + ∑ ∑ ∑ 𝑡𝑗0𝑥𝑗0
𝑘

𝑗∈𝑁𝑘∈𝐾𝜔𝜔∈𝑀𝑘∈𝐾𝜔𝑗∈𝑁𝑖∈𝑁𝜔∈𝑀𝜔∈𝑀 ≤ 𝑇𝑚𝑎𝑥  (17) 

(7) Flow Balance Constraints 

Eq. (18) indicates that each passenger is served by only one 

vehicle and all passengers are served; Eq. (19) indicates that the 

vehicle departs from the interchange point and eventually 

returns to it. Equation (20) represents flow conservation, 

ensuring that vehicles depart from the same passenger location 

after arrival. 

∑ 𝑠𝑖
𝑘

𝑘∈𝐾𝜔 = 1, ∀𝑖 ∈ 𝑁, 𝜔 ∈ 𝑀          (18) 

∑ 𝑥(𝑀+1)𝑖
𝑘

𝑖∈𝑁1
= ∑ 𝑥𝑗(𝑀+1)

𝑘
𝑗∈𝑁1

= 1, ∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑀      (19) 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁 = ∑ 𝑥𝑗𝑖
𝑘

𝑗∈𝑁 , ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑀        (20) 

2.4. Dynamic Pricing Scheme 

Existing studies on DRFT routing primarily assume fixed fare 

structures, which neither account for passenger satisfaction nor 

offer personalized services, ultimately compromising system 

reliability. To better align passenger interests with operational 

performance and enhance perceived reliability, this study 

introduces a dynamic pricing mechanism that adjusts fares 

based on service delays. Passengers are compensated for delays, 

thereby improving psychological reliability. Since departure 

times directly influence passenger waiting times—and 

consequently fare adjustments—this approach creates an 

inherent incentive for operational punctuality. 

In this paper, the fare for passenger i is denoted by 𝑝𝑖 , the 

maximum payable fare is 𝑝𝑚𝑎𝑥, the minimum payable fare is 

𝑝𝑚𝑖𝑛, the per-unit-time compensation cost is 𝜏, and the delay 

time for bus service to passenger i is 𝑎𝑖 . 

𝑝𝑖 = {
𝑝𝑚𝑎𝑥 − 𝜏𝑎𝑖 , 𝑝𝑚𝑎𝑥 − 𝜏𝑎𝑖 > 𝑝𝑚𝑖𝑛

𝑝𝑚𝑖𝑛 , 𝑝𝑚𝑎𝑥 − 𝜏𝑎𝑖 ≤ 𝑝𝑚𝑖𝑛
       (21) 

𝑎𝑖 = {
0, 𝑡𝑖

𝑘 ≤ 𝐿𝑇𝑖

𝑡𝑖
𝑘 − 𝐿𝑇𝑖 , 𝑡𝑖

𝑘 > 𝐿𝑇𝑖

       (22) 

2.5. Departure Time 

Bus departure intervals primarily follow two modes: fixed and 

flexible schedules. Conventional buses typically operate on 

fixed intervals in high-demand areas, while DRFT transit serves 

low-density regions where fixed schedules may compromise 

punctuality and increase passenger wait times. This study 

therefore develops a flexible interval model for comparative 

analysis with fixed scheduling. 

This study adopts flexible departure intervals constrained by 

passenger time windows to ensure solvability. Each vehicle's 

departure time is determined by its first assigned passenger: 

1.For pick up-first passengers, the departure time is 

calculated backward from the passenger's earliest acceptable 

pickup time; 
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2.For drop off-first cases, the departure time is set as the later 

value between the calculated time and the passenger's requested 

departure time. 

The mathematical formulation is given below, where 𝑁𝑘(1)  

denotes vehicle k's first served passenger. 

{
𝑢𝑘 = 𝐸𝑇𝑖 −

𝑑(𝑀+1)𝑖

𝑉
, 𝑦𝑖

𝑘 = 1, 𝑖 = 𝑁𝑘(1), ∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑀

𝑢𝑘 = 𝑚𝑎𝑥( 𝐸𝑇𝑖 −
𝑑(𝑀+1)𝑖

𝑉
, 𝑒𝑖

𝑘), 𝑦𝑖
𝑘 = −1, 𝑖 = 𝑁𝑘(1), ∀𝑘 ∈ 𝐾𝜔, 𝜔 ∈ 𝑀

    (23) 

3. Solution Algorithm  

The multi-objective optimization model established above is a 

typical vehicle routing problem and is also an NP-hard problem. 

Since this paper considers the factors of multiple vehicle types, 

it therefore adopts the multi-chain genetic algorithm for solving 

the problem. Compared to the traditional single-chain genetic 

algorithm, the multi-chain genetic algorithm yields higher 

quality solutions and has higher computational efficiency. The 

flowchart of the algorithm is depicted in Figure2. 

 

Fig. 2. Algorithm flowchart 

The model presented in this paper involves a multi-objective 

function. Consequently, when calculating individual fitness, 

this multi-objective function is transformed into a single-

objective function to solve the problem. The corresponding 

coding methods, crossover operators, and mutation operators 

are described below. 

(1) Multi-objective conversion to single objective: due to the 

different solving directions of objective function 1 and objective 

function 2, the solving direction of objective function 1 is 

changed to Min 𝑍3  Max(−𝑍1)  (𝐶1 + 𝐶2) − 𝐶3 , By linear 

weighting method, the final objective function is 

Min𝑍4 𝜆1𝑍3 + 𝜆2𝑍2, As a fitness function fit, since the fitness 

function is the minimum value, the fitness function is 

normalized𝑓𝑖𝑡′ =
𝑓𝑖𝑡𝑚𝑎𝑥

𝑓𝑖𝑡𝑚𝑖𝑛𝑚𝑎𝑥
 , 𝑓𝑖𝑡 ′  is used as the fitness value 

after treatment; 

(2) Coding method: Natural number multi-chain coding is 

adopted, that is, a chromosome contains multiple chains, each 

chain represents a slimy route, and the vehicle gene and 

passenger gene in each chain correspond one by one. For 

example, the interchange station code is 0, the passenger gene 

is 1~8, and the vehicle gene is 9, 10, so the chromosome 

contains two chains: 9: 0-1-2-3-4-0, 10: 0-5-6-7-8-0; 

(3) Initial population generation: random generation by trial 

allocation method; 

(4) The roulette selection method is adopted to improve the 

convergence speed of the algorithm; 

(5) The crossover operator adopts two methods: inter-

individual crossover and intra-individual crossover; Intra-

individual Crossover: Select a parent individual based on intra-

individual crossover probability. Randomly select two 

chromosome strands as the target strands for crossover 

operation. Employing a single-point floating crossover strategy: 

Generate a random natural number (crossover point) between 1 

and the minimum length of the two chromosome strands. 

Exchange the stop genes after this crossover point between the 

selected strands. Feasibility Check: If both modified strands 

satisfy maximum capacity and maximum runtime constraints → 

Generate new offspring. If either strand violates constraints → 

Offspring retains the parent's original genetic sequence; Inter-

individual Crossover: After selecting two parent individuals 

based on inter-individual crossover probability: 

①. Chromosome Selection 

Randomly designate one chromosome strand per parent for 

crossover (Strand a in Parent A, Strand b in Parent B). 

②. Single-Point Fixed Crossover 

Crossover point positioned after vehicle genes; Classify stop 
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genes: Shared genes → Gene Pool 𝐺𝑎𝑏 ;Unique to a → Set 

𝐺𝑎;Unique to b → Set 𝐺𝑏. 

③. Gene Exchange & Sanitization 

Exchange Strands a and b while preserving gene 

order;Remove genes from non-crossover strands in Parent A 

matching Gene Pool 𝐺𝑏 ; Remove genes from non-crossover 

strands in Parent B matching Gene Pool 𝐺𝑎. 

④. Gene Reinsertion 

Randomly insert genes from Set 𝐺𝑎 into any position after 

the first gene of strands in Parent A; Verify feasibility per 

iteration: If capacity/runtime constraints violated → Reassign 

gene to alternative strand; Repeat until all genes allocated; 

Mirror process for Set 𝐺𝑏 in Parent B. 

(6) The mutation operator adopts the gene segment mutation 

method, randomly selects a chromosome and a chain in the 

chromosome, and then randomly generates two numbers 𝑞1, 𝑞2 

within the length of the chromosome chain. Scramble the gene 

sequence within the segment between chromosome strands 𝑞1 

and 𝑞2  to generate new offspring. Verify the newly generated 

offspring against capacity constraints and runtime constraints: 

if satisfied, retain the offspring; otherwise, re-scramble the gene 

sequence within the segment to produce new mutated offspring 

until constraints are met. 

4. Case Study 

4.1. Data Preparation 

This study validates the proposed model and algorithm using an 

existing benchmark case[3]. The research area is assumed to be 

a low-density passenger flow zone, with the subway station as 

the origin and a circular service area of 3.5 km radius. The 

vehicle fleet consists of 7 Type A vehicles (capacity: 10 

passengers) and 7 Type B vehicles (capacity: 15 passengers) 

stationed at the subway station. 

The study period is set from 7:00 to 8:00, during which 80 

reservation requests were generated across 25 stops. The 

demand composition includes 60 passengers traveling to the 

subway station and 20 passengers departing from it (i.e., 60 

boarding and 20 alighting passengers), as illustrated in Figure 3. 

The coordinates of the 25 demand points are provided in Table 

2.

 

Fig. 3. Service area and demand point location. 

 

Table 2 Coordinates of demand points 
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Demand point - coordinates Demand point - coordinates Demand point - coordinates Demand point - coordinates 

1-（0.87，0.42） 8-（1.44，-0.22） 15-（-1.01，-0.11） 22-（-1.09，1.63） 

2-（2.00，0.02） 9-（1.30，-1.31） 16-（-1.56，-1.30） 23-（-2.00，0.58） 

3-（2.20，0.90） 10-（1.97，-0.86） 17-（-1.62，-2.58） 24-（1.96，2.33） 

4-（2.53，0.14） 11-（0.47，-1.25） 18-（-0.77，0.80） 25-（0.96，1.78） 

5-（3.34，0.47） 12-（1.30，-2.08） 19-（-1.21，0.79）  

6-（2.10，1.34） 13-（1.00，1.00） 20-（-0.21，-1.77）  

7-（1.45，1.13） 14-（0.43，-3.50） 21-（-2.11，2.45）  

 

4.2. Parameter Setting 

With reference to relevant literature, the specific parameter 

values of the model, algorithm and calculation examples in this 

paper are shown in Table 3. 

Table 3. Values of related parameters. 

Symbol Value Symbol Value Symbol Value 

V 35 km/h 𝑝𝑚𝑖𝑛 1 RMB/person 𝜃1 15 RMB/vehicle 

𝑇𝑚𝑎𝑥  40 min 𝜑1 0.25 RMB /min 𝜃2 25 RMB/vehicle 

𝑄𝐴 10 Person/vehicle 𝜑2 0.35 RMB /min 𝑤𝐴
𝐿  1.2 RMB /km 

𝑄𝐵 15 Person/vehicle 𝜏 0.57 RMB /min 𝑤𝐵
𝐿  1.5 RMB /km 

𝑝𝑚𝑎𝑥  10 RMB/person 𝜆1,𝜆2 0.4，0.6 h 0.4 RMB /min 

4.3. Results 

4.3.1. Model solution results under simultaneous pick-up 

and drop-off mode 

The algorithm parameters were set as follows: inter-individual 

crossover probability of 0.8, intra-individual crossover 

probability of 0.1, mutation probability of 0.1, inertia weight of 

0.9, cognitive coefficient and social coefficient both set to 2.0, 

population size of 100, and maximum iterations of 500, with 

departure times flexibly adjusted according to passengers' time 

windows. In Python programming, the scheduling model was 

solved using both the Multi-chain Genetic Algorithm (MCGA) 

and Particle Swarm Optimization (PSO), with the comparative 

results shown in Figure 4. As evident from Figure 4, the MCGA 

demonstrates superior optimization performance compared to 

PSO, achieving convergence after approximately 300 

generations with an optimal objective function value. The 

optimal route scheme with the minimal objective function value 

is presented in Figure 5, while detailed results are shown in 

Table 4.  

 

Fig.4. Iterative curve of fitness values.

 

Fig.5. vehicle routing graph. 
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Figure 5 shows that the optimal number of dispatched 

vehicles during the 7:00-8:00 period is 7 Type A vehicles and 3 

Type B vehicles. In this figure, solid lines represent Type A 

vehicles, dashed lines indicate Type B vehicles, numbers 

correspond to station codes, and five-pointed stars denote metro 

stations, with this graphical convention being consistently 

applied to all subsequent route diagrams in this study.

Table 4. Travel information. 

Vehicle 

Type 
Vehicle Route 

Travel 

Distance/km 
Passenger Count Seat Utilization Rate Travel Time/min 

A 
3(66)-10(78)-17(22)-10(79)-13(42)-18(26)-

14(72)-11(80) 
16.92 8 80% 35 

B 21(7,6)-2(64)-5(44)-22(9)-4(58)-19(15) 12.46 7 47% 39 

A 
6(50)-7(56)-8(70)-16(19)-14(73,71)-

13(43)-17(24)-18(27,28)-6(52) 
15.92 11 110% 36 

A 12(76)-23(33)-25(40)-5(46,49)-20(3) 21.68 6 60% 37 

A 
22(11)-25(39,37)-22(10,12)-5(48,47)-

4(60)-2(65)-3(68) 
15.77 10 100% 34 

B 
19(13)-7(54)-16(16,18)-18(25)-13(41)-

21(5) 
13.60 7 47% 23 

A 
5(45)-16(17)-22(8)-23(31,30)-25(38)-

23(32)-24(34) 
18.45 8 80% 32 

B 1(61)-6(51)-20(2)-24(35,36) 11.24 5 33% 30 

A 
1(62)-3(67)-4(57)-8(69)-18(29)-19(14)-

20(4)-1(63) 
13.47 8 80% 32 

A 
7(55)-4(59)-12(77)-17(21,23)-15(74)-

16(20)-20(1) 
15.16 8 80% 30 

 

In Table 4, vehicle routes are represented using a combined 

notation of station numbers and passenger IDs: the station 

number appears outside the parentheses, while the passenger 

IDs served at that station are enclosed within the parentheses. 

This same notation convention applies consistently to Tables 5 

and 7. Table 4 shows Type B vehicles consistently exhibit seat 

utilization below 50%, while Type A vehicles maintain 

utilization rates above 80%. This disparity stems from Type B's 

lower passenger volumes despite its larger capacity, coupled 

with its higher per-kilometer operating cost. The optimization 

strategy prioritizes allocating passengers to more cost-efficient 

Type A vehicles when capacity permits, reducing both Type B's 

active fleet distance and overall system costs. This cost-

conscious vehicle assignment enhances the solution's 

implementation reliability. 

4.3.2. Comparison between fixed and flexible departure 

intervals 

Based on flexible departure time adjustments with constrained 

dispatch intervals, the vehicle routing optimization results under 

fixed dispatch intervals were obtained using Python 

programming. The corresponding route diagram is illustrated in 

Figure 6, with the relevant results summarized in Table 5. 

As shown in Figure 6, the optimal solution under fixed 

dispatch intervals also deploys 10 feeder buses in total, 

consisting of 7 Type A vehicles and 3 Type B vehicles. The 

dispatch interval is fixed at 5 minutes, with the first vehicle 

departing at 7:05 and the last at 7:50.

Table 5. DRFT travel information under fixed departure intervals. 

Vehicle Type Vehicle Route Travel Distance /km 
Passenger 

Count 
Seat Utilization Rate Travel Time /min 

A 

1(62)-16(18,16,17)-12(76)-

17(22,21)-18(25)-4(58)-22(9)-

14(73,71,72) 

20.11 13 130% 36 

A 
1(61)-6(51)-7(56)-22(8,11)-5(44)-

10(78,79)-16(19)-6(52)-19(15)-20(2) 
15.52 12 120% 34 
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Vehicle Type Vehicle Route Travel Distance /km 
Passenger 

Count 
Seat Utilization Rate Travel Time /min 

A 
6(53,50)-5(45)-3(67)-21(5)-22(10)-

25(38,4 
14.92 8 80% 29 

A 
25(39,7)-23(31,33,32)-22(12)-

4(57,60)-2(64) 
12.43 9 90% 28 

B 
24(35)-23(30)-5(46,49)-21(7)-

24(36,34) 
10.66 7 46% 18 

B 
20(4,1,3)-7(55)-11(80)-5(48,47)-

2(65) 
10.25 8 53% 20 

A 
19(13)-18(28,29)-15(74)-13(43,42)-

16(20)-8(70,69) 
13.90 9 90% 24 

B 1(63)-4(59)-13(41)-3(68) 10.11 4 27% 17 

A 18(26,27)-17(23,24)-19(14)-7(54) 13.23 6 60% 23 

A 12(75,77)-3(66)-21(6) 10.69 4 40% 18 

 

Fig.6. Fixed Interval Vehicle Routing Graph. 

Table 5 indicates Vehicle 1 achieves the longest travel time 

and distance with over 100% seat utilization, while Vehicle 2 

shows only 2 minutes less travel time but 5 km shorter distance-

suggesting greater passenger wait times. Vehicle 1 demonstrates 

higher punctuality than Vehicle 2. These metrics (distance, 

passenger load, seat utilization, and travel time) are compared 

with flexible scheduling results in Table 6 for multi-criteria 

reliability analysis.

Table 6. Comparison of DRFT optimization results under different departure modes. 

Departure 

interval form 

Number of 

vehicles in use 

Operating 

income/RMB 

Time penalty 

cost/RMB 

Total running 

time /min 

Average seat 

utilization /% 

fixed 10 233.6 255.6 247 73 

unfixed 10 365.44 98.65 328 71.7 

 

Table 6 shows both departure modes utilize identical vehicle 

types and numbers. Compared to fixed scheduling, flexible 

departure mode reduces time-window penalty costs by 61.4%, 

increases operating profits by 56.43%, but extends total travel 

time by 32.79% and slightly decreases seat utilization by 1.78%. 

The flexible departure mode demonstrates higher reliability in 

service punctuality (reduced waiting time penalties) and 

operator profitability, while fixed scheduling proves more 

reliable in minimizing passenger travel time and maintaining 

seat utilization efficiency. 

The fixed scheduling mode demonstrates shorter total travel 

time as vehicles rarely arrive early at passenger locations, 
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eliminating waiting time. While early arrivals in flexible 

scheduling provide reliability benefits for waiting passengers, 

fixed scheduling shows marginally higher seat utilization 

(though the difference is negligible). Overall, flexible 

scheduling offers superior reliability when considering 

operational performance and passenger service quality. 

4.3.3. Comparison between fixed fare and dynamic 

pricing scheme  

Under the fixed fare with flexible departure mode (where all 

passengers pay a flat rate of 6 RMB per trip), the DRFT route 

optimization results obtained through Python programming are 

illustrated in Figure 7, with detailed results presented in  

Table 7.

 

Fig.7. Fixed Fare Vehicle Routing Graph. 

Table 7. DRFT travel information under fixed ticket prices. 

Vehicle Type Vehicle Route Travel Distance /km Passenger Count Seat Utilization Rate Travel Time /min 

A 
3(67)-21(6)-3(66)-14(73)-18(26)-

16(16,19)-4(58)-6(51)-1(62) 
14.57 10 100% 25 

A 14(72)-25(38,40)-22(12)-1(63) 19.04 5 50% 33 

A 17(24)-10(78)-4(60)-23(32) 15.23 4 40% 26 

A 
8(70)-5(45)-22(9,10)-5(49)-23(31)-

24(35,34)-2(64)-3(68) 
16.14 10 100% 39 

A 
23(30)-25(37)-12(75)-17(22)-11(80)-

21(5)-2(65) 
19.53 7 70% 33 

A 
12(76)-13(41)-5(44)-4(57)-21(7)-

24(36) 
13.72 11 110% 28 

A 
25(39)-4(59)-5(47)-15(74)-14(71)-

18(25,29)-16(20)-6(52) 
17.43 9 90% 33 

B 
1(61)-6(53)-8(69)-19(13)-20(1,4)-

19(14)-7(56)-6(50) 
12.26 9 60% 24 

B 
5(46,48)-10(79)-12(77)-13(42,43)-

18(27,28)-7(55)-19(15)-20(3) 
13.26 6 40% 22 

B 23(33)-16(18)-7(54)-20(2) 13.25 4 27% 23 

 

As illustrated in Figure 7, under the fixed fare structure, the 

optimal solution dispatches 10 feeder buses (including 7 Type A 

vehicles and 3 Type B vehicles) during the 7:00-8:00 period 

using the flexible departure mode. 

Table 7 shows that Vehicles 1, 4, and 6 achieve seat 

utilization rates exceeding 100%, demonstrating the efficiency 

of the simultaneous pickup and drop-off mode in enhancing 

resource reliability. While Vehicle 5 covers the longest distance, 
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Vehicle 4 has a higher travel time, indicating better punctuality 

for Vehicle 5. Vehicle 6, however, experiences longer early-

arrival waiting times. A comparison with flexible scheduling 

and dynamic pricing scheme (Table 8) further evaluates the 

reliability of both modes across multiple performance metrics.

Table 8. Comparison of DRFT optimization results under different fare forms. 

Fare form 
Number of 

vehicles in use 

Time window penalty 

cost/RMB 

Total passenger cost 

(including fare)/RMB 

Operating 

income/RMB 

Average seat 

utilization/% 

dynamic 10 98.65 1054.36 365.44 71.7 

fixed 10 152.65 782.8 110.44 69.3 

 

The comparative analysis in Table 8 reveals that dynamic 

pricing scheme significantly outperforms fixed fares across 

multiple operational dimensions while showing one notable 

trade-off. Specifically, the dynamic pricing scheme reduces 

time-window penalty costs by 35.37%, boosts operational 

profits by 231.81%, and improves seat utilization by 3.46%, 

demonstrating enhanced reliability in terms of service 

punctuality (through reduced waiting time penalties), operator 

profitability, and resource efficiency. However, these benefits 

come at a 34.69% increase in total passenger costs, making the 

fixed-fare approach more reliable from a user expenditure 

perspective. This comprehensive comparison underscores the 

inherent balance required when evaluating transit reliability, 

where dynamic pricing scheme excels in operational 

performance while fixed fares maintain advantages in cost 

predictability for passengers. 

The dynamic pricing scheme, despite its higher maximum 

fares increasing passenger costs, enhances overall DRFT 

reliability through compensatory mechanisms. When buses 

miss time windows, passengers may cancel bookings-

negatively impacting both operator profits and seat utilization. 

Dynamic pricing mitigates this by compensating passengers, 

encouraging them to wait rather than cancel. This dual benefit 

of maintaining ridership while optimizing operations ultimately 

makes dynamic pricing more reliable than fixed fares across all 

performance metrics. 

5. Conclusion 

This paper focuses on optimizing the routing schemes for 

demand-responsive feeder transit operating in a simultaneous 

pickup and drop-off mode, aiming to enhance their reliability in 

various aspects. The study investigates the reliability of routing 

outcomes under different scenarios, including whether the 

departure intervals are fixed and whether the fares are fixed.  

A routing optimization model is established and validated 

through case study analysis, yielding relevant findings. 

(1) Compared with the fixed departure mode, the flexible 

departure mode yields higher operational profits for service 

providers and improves feeder punctuality, thereby enhancing 

the reliability of DRFT. However, from the perspectives of 

passenger travel time and resource utilization efficiency, the 

fixed departure mode demonstrates slightly better reliability. 

(2) Compared to the fixed-fare scheme, the dynamic pricing 

scheme demonstrates superior performance in terms of vehicle 

punctuality, operational profitability, and seat utilization 

efficiency, thereby enhancing the overall reliability of DRFT. 

However, from the perspective of passenger costs, the fixed-fare 

scheme exhibits marginally better reliability. Nevertheless, 

given the inherent limitations of fixed pricing (e.g., inflexibility 

in demand fluctuations), the dynamic pricing scheme approach 

proves more practical and adaptable to real-world operational 

conditions.  

(3) This study pioneers a unified framework integrating 

dynamic pricing, mixed pick-up/delivery operations, route 

planning, dispatching schedules, and fleet sizing—significantly 

advancing beyond traditional isolated approaches. Our model 

delivers a synergistically optimized solution that substantially 

enhances DRFT system reliability. This integrated methodology 

addresses a critical research gap in combined dynamic pricing 

and route scheduling while providing theoretical foundations 

for practical implementations. 

(4) This study on DRFT routing optimization has certain 

limitations. Specifically, it does not account for reliability 

performance under scenarios involving multiple transfer points 

or time-varying road networks. Therefore, future research will 

investigate DRFT route reliability considering both multiple 

transfer nodes and time-dependent vehicle speeds.
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