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Highlights  Abstract  

▪ We establish a model-fault-feature 

transmission path to support the identification. 

▪ The PIEN framework integrates a hybrid 

prediction network. 

▪ We develop a first-principles residual generator 

that quantifies causal relationships. 

 Real-time fault diagnosis for autonomous underwater vehicles (AUVs) 

is crucial for ensuring overall system safety. As a critical component, the 

thruster operates is prone to failure under complex environments. This 

study proposes a Physics-Informed Estimation Network (PIEN) to 

address thruster fault diagnosis. First, sensor data from the thruster are 

collected to establish corresponding fault mechanism models. The 

estimation network then constructs a predictive model to generate online 

residual data by physical parameters. Finally, a residual fault detector 

determines thruster malfunction status. The experimental validation with 

the "Haizhe" AUV dataset demonstrates PIEN's ability to quickly detect 

different thruster faults in prototypes. It also achieves better diagnostic 

performance than manually designed models. 
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1. Introduction 

Thrusters are core components of autonomous underwater 

vehicles (AUVs), with their operational status being pivotal for 

fault diagnosis in AUV systems [1,2]. Given the environmental 

complexity [3], AUVs face unpredictable operational 

disruptions from external factors such as ocean currents, waves, 

and floating debris [4,5]. Thus, developing reliable, high-

quality fault diagnosis methods is critical. In harsh 

environments, thrusters may experience reduced rotational 

speeds and sudden current surges due to entanglement with 

underwater vegetation or debris, often resulting in 

blockages [6]. Timely detection and mitigation of 

entanglement-induced malfunctions are essential to minimize 

operational risks. Thruster failures in AUVs can disrupt mission 

schedules and compromise vehicle integrity, potentially leading 

to total loss [7,8]. Therefore, accurate diagnosis of thruster 

operational status is critically important for improving both 

efficiency and safety-reliability of AUVs. 

Qualitative diagnosis relies primarily on empirical 

knowledge, predefined rules, and logical reasoning to assess 

faults via expert systems or rule-based methods. This approach 
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typically integrates techniques such as expert experience and 

fault tree analysis. However, due to its reliance on subjective 

judgments, qualitative diagnosis often lacks consistency and 

reproducibility. In contrast, quantitative diagnosis methods 

include both model-based approaches (e.g., dynamic system 

models) and data-driven techniques [9,10]. For instance, 

researchers have developed an observer-based fault detection 

filter designed for networked system models. This approach 

integrates a coordinated controller specifically optimized for 

AUV dynamics. [11]. Further advancements include an 

observation-based model-driven framework that explicitly 

incorporates network environmental factors [12]. 

Model-based methods depend on accurate mathematical 

models of vehicle dynamics, as demonstrated by Freeman et al. 

[13]. While theoretically effective, their diagnostic performance 

is constrained by complex underwater environmental dynamics 

and inherent modeling uncertainties. For instance, [14] 

introduced a model-based fault diagnosis framework for AUV 

rudder systems. Due to the construction of an accurate radar 

system model, this method has achieved good recognition 

results for radar faults. However, this approach faces 

generalization challenges when the underlying model 

inadequately represents system behavior across diverse fault 

scenarios. 

Data-driven methods have shown increasing promise in 

addressing fault diagnosis challenges for AUVs, particularly in 

complex underwater environments characterized by dynamic 

AUV behaviors [15–17]. Machine learning techniques, for 

instance, leverage sensor data to achieve robust fault detection. 

Building on this paradigm, [18] proposed a multi-channel fully 

convolutional neural network to diagnose AUV faults under 

missing data conditions, directly utilizing raw state data as input. 

Similarly, [19] demonstrated that model-free approaches 

exhibit strong adaptability to environmental variations but face 

limitations in generalization when training data lacks diversity. 

Recent innovations include [20]’s self-attention-enhanced 

architecture for improved feature extraction and [21]’s multi-

source data fusion framework, which significantly boosts 

diagnostic accuracy. Notably, deep learning excels in this 

domain by extracting high-level features through its inherent 

nonlinear modeling capabilities, offering a complementary 

advantage to conventional methods. This advantage is fully 

utilized in the above-mentioned application scenarios.

 

Figure 1. The concept of thruster fault cases. 

Deep learning-based models have achieved notable success 

in thruster fault diagnosis. For example, [22] developed  

a specialized recurrent neural network for fault detection in 

magnetically coupled thrusters, while [23] proposed an LSTM-

based predictive modeling framework for temporal fault pattern 

recognition. However, LSTMs require large-scale training 

datasets to effectively learn long-term temporal dependencies 

and complex dynamic behaviors. This poses significant 

challenges in real-world AUV applications, particularly in 

complex underwater environments where acquiring sufficient 

high-quality sensor data is often impractical. 

Moreover, many machine learning-based diagnostic 

methods cannot be fully trusted in autonomous systems, 

particularly in safety-critical AUV operations where human 

oversight remains mandatory [24]. Recent progress 

in explainable artificial intelligence aims to bridge this trust 

gap—for example, Chen et al. [25] formalized explainability 

requirements for AI systems transitioning across diverse marine 
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applications. This is crucial for AUVs, as operators depend 

on interpretable diagnostic outcomes to justify high-stakes 

decisions. Integrating physical knowledge further 

enables condition-based maintenance by quantifying asset 

remaining useful life and failure likelihood, thereby minimizing 

unnecessary maintenance interventions while enhancing 

operational safety and availability. 

This study focuses on thruster faults, a predominant failure 

mode in AUVs. Despite their operational criticality, existing 

diagnostic methods struggle to handle time-varying dynamics 

and strong cross-system couplings. To address these limitations, 

we propose a physics-informed machine learning 

framework comprising three steps: A dynamic data selection 

mechanism weights monitoring variables in real-time based on 

their relevance to system behavior, mitigating coupling effects; 

LSTM networks automatically engineer discriminative 

features from time-series sensor data, capturing latent fault 

signatures; A fault detector leverages residual analysis to isolate 

optimal monitoring variables, enhancing sensitivity to incipient 

faults. Finally, experimental validation confirms that this 

integrated approach significantly improves diagnostic 

robustness in coupled, dynamic AUV systems. 

This work advances thruster fault diagnosis through three 

key innovations: 

1. The method proposed in this article extracts fault related 

feature information through a known AUV physical model, and 

establishes a model-fault-feature transmission path to support 

the identification and prediction network. This approach 

uniquely preserves fault-relevant interaction patterns while 

suppressing environmentally induced spurious correlations, 

transforming cross-variable dependencies from diagnostic 

liabilities into assets. 

2. We develop a first-principles residual 

generator that quantifies causal relationships between thruster 

fault and system states. By embedding hydrodynamic thruster 

models into the residual calculation, this module isolates 

failure-specific physical deviations from ambient operational 

noise, achieving fault discriminability in validation trials. 

3.  The PIEN framework integrates a hybrid prediction 

network that synergizes data-driven temporal modeling with 

physics-based state estimation. This dual-channel 

architecture compensates for environmental variability and 

maintains perfect performance for degradation. 

2. Problem Description and Preliminaries 

2.1. Preliminaries 

The motion of an AUV can be described by the surge-sway-yaw 

model, commonly used as in [26]. The model considers the 

vehicle’s physical variables along different directions. The 

equations of motion are given by 

{
𝑀𝜈̇(𝑡) + 𝑁𝜈(𝑡) + 𝐺𝜑(𝑡) = 𝐸𝑢𝐹(𝑡) + 𝜉(𝑡)

𝜂̇(𝑡) = 𝐽(𝜓(𝑡))𝜈(𝑡)
       (1) 

where M represents the matrix of inertia; N denotes damping; G 

is mooring forces; E represents the thruster configuration matrix; 

and 𝐽(𝜓(𝑡)) is the kinematic transformation matrix, 

𝐽(𝜓(𝑡)) = [
cos (𝜓(𝑡)) −sin (𝜓(𝑡)) 0

sin (𝜓(𝑡)) cos (𝜓(𝑡)) 0
0 0 1

]        (2) 

where ν(t)=[ζ(t) v(t) r(t)] ,ζ(t), v(t), and r(t) represents the surge 

velocity, sway velocity, and yaw velocity, respectively; η(t) and 

ψ(t) denote position and the yaw angle, respectively; uF(t) 

represents the thruster input. 

Assumption 1. A fault in the rotating thruster can be 

represented as the introduction of a virtual mass m (which may 

be positive or negative). The thruster rotates when fouled at 

velocity ωf . Fig. 1 shows the conception of the thruster fault for 

the whole AUV. The fault in the physical system when the 

thruster is fouled can be expressed as follows [27] 

𝒫𝐟:  𝐽
 d𝜔f

d𝑡
= 𝑇im + 𝐵𝜔f + 𝐶𝑞𝜔f

2 − 𝑇𝑒          (3) 

where J denotes the shaft rotational inertia; B denotes the 

friction coefficient of thruster rotors; Cq denotes the 

aerodynamic torque coefficient; 𝑇im  is the imbalance torque; 

Te denotes the total electric torque. The system Pf explains the 

physical relationship between the variables when thrusters are 

operating. Therefore, the fault transmission path can be derived 

from (3), which can extract the physical meaning of fault 

features. Because the propeller model is included, the resultant 

state-space model is nonlinear and is expressed as follows: 

𝑥̇ = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)          (4) 

and 
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𝑢 = {𝑉𝑥 𝑇𝑖𝑚 }⊤

(5) 

where I denotes the current of the thruster; 𝜃  denotes the 

electrical angle of the motor; Ke denotes the coefficient of the 

back electromotive force; Fk  is the back electromotive force; R 

is the resistance; L1 is the inductance; Vx  is the thruster voltage. 

In AUVs, sensor-collected data typically reflects the system 

state. This data consistently corresponds to movement 

scenarios. Through analyzing AUV state data, operators can 

determine whether the vehicle is in a normal state, and this data 

serves as the basis for fault detection. Various sensor signals 

require screening, including angular signals (yaw, roll, and pitch 

angles), acceleration signals, and electrical signals. Effective 

information is considered when screened through the fault 

physics transmission mechanism. 

2.2. Problem Description 

AUVs often operate in diverse and unpredictable underwater 

environments, which can affect sensor readings and thruster 

performance. Fault characteristics are typically nonlinear and 

influenced by various external factors such as currents, waves, 

and floating objects. These factors increase system complexity 

and complicate fault diagnosis, particularly regarding real-time 

and accuracy requirements. In this study, AUVs' dynamics are 

inherently nonlinear. The surge-sway-yaw model in (1) captures 

these dynamics, but actuator faults further complicate system 

behavior. AUVs require real-time fault diagnosis to ensure 

timely responses to actuator malfunctions. The computational 

demands of advanced diagnostic algorithms, especially deep 

learning-based ones, can be high, potentially causing delays in 

fault detection and response. 

Many machine learning-based fault diagnosis methods 

operate as black boxes, impeding operator comprehension of 

the diagnostic rationale. In safety-critical applications requiring 

human oversight, this lack of explainability undermines trust in 

automated systems. Operators require transparent insights into 

fault detection mechanisms to make informed decisions 

regarding vehicle operation and maintenance interventions. 

3. Fault Detection Frameworks 

The proposed PIEN provides interpretability for data inputs to 

LSTM networks. This physically meaningful 

interpretability enhances the network's memory efficiency, 

enabling acquisition of high thruster-fault-correlated 

residuals to complete the final fault detection model. 

3.1. Designs of Physical-informed Feature Extraction 

To effectively diagnose faults in the thrusters, a robust physical 

model must be constructed. It relates the input parameters 

(control signals) to the output performance (thrust generated). 

This model serves as the foundation for understanding how 

various factors, including actuator faults, influence the vehicle’s 

behavior. 

The physical model for AUV thrusters can be derived from 

fundamental principles of fluid dynamics and thruster 

mechanics. Laboratory experiments enable validation and 

optimization of the physical model by measuring thruster thrust 

under different input conditions. Experimental data aids in 

identifying model limitations and refining parameters, 

especially under failure conditions. By adjusting the LSTM 

structure, the model's predictive performance can be 

significantly improved. Based on the state-space equations of 

the AUV thruster in the background section, a simplified input-

output correspondence can be obtained as follows: 

𝑥̇ = 𝐴𝑥𝐹(𝑡) + 𝐵𝑢𝐹(𝑡)          (6) 

Due to the large number of variables in the output set xF, 

variable filtering must be considered. Equation (3) shows that 

thruster failure induces changes in the overall rotational speed, 

subsequently altering a subset of electrical signals through 

electrical angle variation, 

𝑉𝑥 = 𝐸𝑅 + 𝐾𝑒 ∗ 𝜔𝑓           (7) 

and therefore the electrical signals can be used as a part of 

the outputs of the discernment space. The thrust produced by  

a thruster can be expressed as a function of several key 
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parameters, including voltage and its gate signal (Px), which 

directly affects its performance. Then, since the scenario applied 

in this paper is a brushless DC motor, the battery voltage will 

not be able to be added directly to the motor terminal and needs 

to be converted to AC through an inverter, so the gate switching 

signals of the inverter need to be taken into account when 

considering again the creation of an interpretable physical 

model, 

𝑢𝐹(𝑡) = {𝑉𝑥   𝑃1  𝑃2  𝑃3  𝑃4}         (8) 

In practical applications, experimental data are often used to 

refine this model. For instance, thruster performance can be 

characterized through laboratory experiments measuring thrust 

under varying input conditions. Based on the physical state of 

AUVs, state variables can be predicted using the inputs as 

follows: 

𝑠𝑓 = {𝑟𝑓   𝑝𝑓  𝑦𝑓 }
𝑇          (9) 

where 𝑟𝑓  denotes the roll angle; 𝑝𝑓 denotes the pitch angle; 𝑦𝑓 

denotes the yaw angle. In case of thruster failure, the attitude-

characterizing angles of the AUV will change. Estimating these 

variables enables more accurate failure characterization. 

Therefore, a physical prediction model can be established 

between state and input variables, yielding 

𝑠̌𝑓 = ℵ{𝑢𝐹} + 𝑣𝑛        (10) 

where 𝑣𝑛 represents the process and measurement Gaussian 

noise. 

Remark  1. The physical model outputs exhibit distinct fault 

frequency characteristics. Consequently, developing an 

accurate physical model that precisely represents input-output 

relationships is essential for reliable thruster fault diagnosis in 

AUVs. Such models serve dual purposes: (1) characterizing 

normal operational behavior, and (2) enabling effective fault 

detection and isolation, ultimately improving AUV operational 

reliability and safety. 

3.2. Prediction Paradigms: LSTM 

An LSTM network comprises multiple memory cells, each 

containing three key gating components [23]. These gates 

collectively regulate information flow, preserving long-term 

dependencies while filtering irrelevant data. This architecture is 

particularly effective for modeling thruster dynamics, where 

temporal relationships between inputs (voltage, current) and 

outputs (thrust) exhibit time-varying characteristics. The input 

gate's mathematical formulation is expressed as: 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)       (11) 

where: 𝑥𝑡  represents the input at time t; For AUV thrusters, 

LSTM networks can be trained to predict thrust output using 

historical input signal data. This approach enables powerful 

performance analysis and fault diagnosis through input-output 

signal prediction. Within AUV fault detection frameworks, 

LSTMs serve as particularly valuable diagnostic tools. 

3.3. Fault Detection Threshold 

At the fault detection process, It first need to compute the 

residual, which represents the difference between the actual 

thrust signal and the predicted signal generated by LSTM 

models. The residual Rt  at time t is mathematically defined as: 

𝑅𝑡 = 𝑇𝑎𝑐𝑡𝑢𝑎𝑙,𝑡 + 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑡       (12) 

where 𝑇𝑎𝑐𝑡𝑢𝑎𝑙,𝑡 is the actual output measured by the sensors at 

time t; 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑡,t is the output predicted by the LSTM model 

at time t. 

The residual 𝑅𝑡  quantifies model prediction accuracy. Small 

residuals indicate close alignment between predictions and 

actual measurements, while large residuals suggest potential 

thruster faults. For effective fault detection, we introduce  

a threshold β defining the acceptable residual range during 

normal operation. When |Rt| > β, a fault condition is indicated. 

This threshold is derived from the training data distribution. 

Residual analysis comparing predicted versus actual thrust 

signals offers an effective fault identification solution for AUV 

thrusters. Fig. 2 illustrates the proposed method's workflow. By 

implementing an optimized detection threshold, the system 

achieves reliable actuator fault identification, enhancing both 

mission safety and operational efficiency. 

Algorithm 1 Explainable Fault Diagnosis Model. 

1:  Input Voltage and PWM signals, V (t), PWM(t) 

2:  Output Physical state variables, s(k) 

3:  Normalize and scale historical input and output data. 

4:  deliver raw data V (t), PWM(t) to denoising. 

5:  Initialize LSTM model with appropriate architecture. 

6:  Train the LSTM model using historical input data to predict output. 

7:  Determine threshold β. 

8:  prediction layer: Obtaining probability to determine the signal. 

9:  Return s(k) 

 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 2, 2026 

 

3.4. The procedure of fault detection 

The proposed AUV thruster fault monitoring methodology is 

depicted as shown in Fig. 2, which comprises three steps: 1) 

Signal Acquisition & Screening: Multiple sensor signals are 

acquired from the AUV, with inputs and outputs filtered through 

the thruster failure mechanism model; 2) Output Prediction: An 

LSTM network predicts the thruster's fault-related output 

variables; 3) Residual Analysis: Physical residuals between 

real-time and predicted data are computed to determine the 

thruster's fault state.

 

Figure 2. The procedure of proposed method. 

4. Case Studies 

The experimental platform for this study is the 'Haizhe' 

autonomous underwater vehicle (AUV), equipped with 

comprehensive instrumentation for operational control and fault 

diagnosis. 

4.1. AUV Prototypes 

The 'Haizhe' AUV was designed for underwater operation (Fig. 

3), with its performance monitored through multiple sensors 

providing real-time operational data. The collected dataset 

included thrust commands, depth measurements, and IMU 

readings - all critical for fault diagnosis. Key specifications are 

detailed in [28]. Using the 'Haizhe' AUV as an experimental 

prototype enables verification of detection accuracy. 

The experimental evaluation incorporated three 

representative fault scenarios in the 'Haizhe' AUV (Assumption 

1). Normal operation: The AUV functioned without any faults. 

Propeller damage: Severe impairment to the propeller caused  

a notable decrease in thrust. Depth sensor malfunction: A bias 

was artificially introduced into the depth readings.

 

Figure 3. The AUV prototype underwater. 
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Figure 4. The thruster blade fault type. 

 

Figure 5. The thruster controller signal. 

For example, when the actual depth measured 0.5 m, the 

faulty sensor reported 0.6 m. Each fault condition underwent 

multiple 10-20 second trials to ensure sufficient state data 

collection. The acquired data were systematically labeled 

according to fault type. The data collection process involved the 

following steps. 1) The specific fault type was configured for 

the ’Haizhe’ AUV; 2) The initialization was executed to verify 

that all components were functioning correctly; 3) The dataset 

generated from these experiments included 1225 samples across 

the five fault types, where the 20% dataset are employed to test 

the model. 

4.2. Comparisons with State-of-the-Art Methods 

All experimental data are collected from operational AUVs and 

professionally labeled by domain experts. As illustrated in Fig. 

5, each thruster utilizes dedicated gate signals for control input. 

Fig. 6 presents the voltage signals under various fault conditions, 

which combined with gate signals form the prediction network 

inputs. While voltage signals alone exhibit no discernible fault 

characteristics in the time domain, our physical model (Section 

III) enables thruster fault prediction by processing both voltage 

and control signals as inputs to generate dynamic thruster 

outputs. Comparative results of different prediction methods are 

shown in Figures 7-9.
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Figure 6. The state variable of AUVs. 

Table 1. The accuracy of thruster fault detection (%). 

Fault type Slight Sensor fault Abnormal load Propeller Damage 

LSTM 81.5 92.5 89.5 90 

TCN 76.5 91.7 81.6 85.6 

WT+LSTM 88 92 91 90.5 

WT+CNN 90.5 96 92 93.7 

Proposed PIEN 95 98 94.5 96 

 

Figure 7. The prediction result of LSTM. 
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Figure 8. The prediction result of TCN. 

 

Figure 9. The prediction result of  the proposed method. 

Table 1 gives evidence of the superiority of the method 

proposed in this paper over other methods. The proposed 

method achieved the highest accuracy across all fault types. 

These results highlight PIEN's particular effectiveness in 

actuator fault diagnosis. While the LSTM baseline showed 

competent performance (81.5% for slight damage, 92.5% for 

sensor faults, 89.5% abnormal load, 90% propeller damage), it 

was consistently outperformed by PIEN. The Temporal 

Convolutional Network (TCN) exhibited competitive results, 

especially for sensor faults, yet failed to match PIEN's accuracy. 

The consistently high accuracy rates confirm PIEN's robustness 

in detecting diverse fault types, including cases where 

traditional methods struggle. This performance advantage stems 

from PIEN's integrated architecture, which combines LSTM-

based prediction with physics-guided residual analysis for 

comprehensive fault condition assessment. 

The experimental results demonstrate that the proposed 

method achieves high diagnostic accuracy in discriminating 

between normal and faulty operational states. By enabling real-

time fault alerts through residual analysis, the system facilitates 
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prompt corrective actions, significantly improving AUV 

operational safety. 

5. Conclusions 

This study presents an innovative fault diagnosis framework for 

AUVs that integrates long short-term memory networks with 

physics-guided residual analysis. The proposed method enables 

effective thruster fault detection by: predicting thrust output 

from control signals, and analyzing residuals between predicted 

and measured thrust values. Experimental validation using the 

instrumented 'Haizhe' AUV platform demonstrates the method's 

capability to reliably detect actuator faults. This approach 

establishes a robust diagnostic framework for maintaining 

vehicle control integrity across diverse marine operating 

conditions.
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