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 In fields such as industrial production, the reliability of mechanical 

equipment maintenance is affected by the inventory management of 

maintenance spare parts. Accurately predicting the consumption of 

maintenance spare parts is of great significance for optimizing resource 

allocation and formulating scientific maintenance strategies. However, 

spare parts consumption is often comprehensively affected by various 

nonlinear and multi-scale factors, and the existing prediction methods 

are difficult to effectively capture these complex characteristics. To 

address this issue, this paper proposes a hybrid prediction model 

integrating STL decomposition, iTransformer and TimesNet. This model 

combines time series decomposition technology with deep learning 

frameworks and is capable of efficiently handling long-term series data 

and their periodic characteristics. Based on the ten-year continuous 

historical consumption data of spare parts in a certain warehouse, the 

empirical results show that this hybrid model significantly outperforms 

multiple benchmark models in multiple key performance indicators. The 

precise prediction ability of this method is conducive to improving the 

scientific nature of spare parts management, thereby enhancing the 

reliability of the overall maintenance system, which is of great practical 

significance for enterprises to improve the level of equipment 

maintenance. 

  Keywords 

This is an open access article under the CC BY license 

(https://creativecommons.org/licenses/by/4.0/)  

spare parts consumption prediction，reliability engineering，

maintenance reliability，hybrid model，STL decomposition，

iTransformer，TimesNet 

1. Introduction 

In modern industrial production, predictive maintenance, as an 

effective maintenance activity to maintain the operational 

reliability and availability of production equipment and systems, 

is a frequently adopted equipment maintenance strategy by 

enterprises123. As a core element of maintenance activities, the 

level of spare parts management directly affects maintenance 

efficiency and system reliability4. Timely and accurate 

acquisition of required maintenance spare parts is the key to 

ensuring reliable maintenance activities and reducing downtime. 

Failure to effectively predict and manage spare parts inventory 
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may result in a shortage of spare parts, causing maintenance 

delays or even long-term equipment shutdowns, seriously 

affecting the operational reliability and availability of the 

system. And with the widespread application of AI driven new 

computing methods in the fields of materials science and 

equipment engineering 5, these studies not only drive 

technological innovation, but also indicate that future 

equipment and systems will be more complex and intelligent, 

and their spare parts may exhibit higher integration, longer 

lifespan, and more complex failure modes. Therefore, accurate 

and reliable prediction of maintenance spare parts consumption 

is of great significance for developing scientific maintenance 

plans and optimizing inventory management, thereby enhancing 

the reliability of maintenance spare parts guarantee. However, 

spare parts consumption data often exhibits significant complex 

characteristics such as nonlinearity, intermittency, multi-scale 

periodicity, and uncertainty, making it difficult to capture their 

consumption patterns. Traditional prediction methods often 

have limitations in handling these complex time series, making 

it difficult to provide high-precision and robust prediction 

results that meet the requirements of reliable maintenance 

decisions. The insufficient predictive ability directly affects the 

effectiveness of spare parts inventory strategies, increases the 

risk of spare parts shortages or surpluses, and thus damages the 

reliability and economy of maintenance systems. Therefore, 

there is an urgent need to develop a new method that can more 

effectively handle the complex characteristics of spare parts 

consumption, provide higher accuracy and robustness 

prediction. 

The rapid development of data science has driven the 

widespread application of data-driven methods in Spare Parts 

consumption forecasting, leveraging their ability to learn 

complex patterns from historical data for high-precision 

predictions. Existing research primarily falls into two categories 

6: statistical models and machine learning-based models. 

Statistical models, such as Moving Average (MA) 7, 

Autoregressive Integrated Moving Average (ARIMA) 8, 

multivariate linear regression(MLR) 9, Croston's 

method(Croston) [10,11], grey prediction models(GM) 12, and 

Markov chains [13,14], construct analytical relationships 

between predictors and dependent variables to approximate 

future consumption trends quantitatively. While these models 

perform well with small, independent datasets, their predictive 

capabilities are limited in nonlinear scenarios due to the 

dynamic and nonlinear interactions among factors such as usage 

frequency and environmental conditions. 

Compared with statistical models, machine learning-based 

models demonstrate higher accuracy and robustness by 

automatically learning complex patterns and relationships from 

large-scale, multi-dimensional data. These methods apply to 

scenarios characterized by large data volumes, complex features, 

and nonlinear relationships. Common methods include Back 

Propagation (BP) 15, Support Vector Machines (SVM) [16,17], 

Random Forests (RF) 18, Neural Networks (NN) [19,20], 

Decision tree(DT) 21, and Bayesian Networks(BN) [22,23], 

among others. However, when dealing with highly complex 

nonlinear scenarios, these models still face challenges such as 

overfitting and insufficient interpretability. Therefore, to 

overcome the limitations of single models, combined models 

with high complexity and deep structures have become  

a primary focus of research in the machine learning field in 

recent years, finding widespread application in predicting Spare 

Parts consumption. For instance, S. Sareminia 24 proposed  

a hybrid model combining Support Vector Machines (SVM), 

STL-decomposed ARIMA, and a three-layer feed-forward 

neural network (3LFFNN) for predicting spare parts 

consumption. Han 25 introduced a combined forecasting 

method based on SVM and neural networks to predict the 

demand for urban rail vehicle spare parts accurately. Cui 26 

designed a multi-level migration learning CNN-ISE-Attention-

BiLSTM prediction model to improve the accuracy of 

predicting Spare Parts maintenance spare parts consumption, 

addressing the issues of insufficient extraction of key 

information due to limited data samples and inadequate 

capturing of consumption patterns by conventional neural 

networks. 

Furthermore, RNN has become a mainstream approach for 

extracting temporal features from time series data 27. Wang et 

al. (2022) 28 proposed a novel RNN model, NGCU, which 

enhances the model's predictive capability through an improved 

structure, making it suitable for more complex Spare Parts 

consumption prediction. Bi 29 proposed a hybrid prediction 

method combining the SG filter, Temporal Convolutional 

Network (TCN), and LSTM, significantly improving the 
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performance of this combined model in handling the nonlinear 

features of large-scale network sequences. The attention 

mechanism presents a viable solution to the challenges of 

vanishing and exploding gradients that arise in traditional 

Recurrent Neural Networks (RNNs) while processing long 

sequences. For example, Reza 30 proposed a Transformer-based 

neural network architecture for time series prediction. 

Furthermore, within the area of predicting Spare Parts/material 

consumption, Transformer models incorporating attention 

mechanisms have yielded effective forecasting outcomes 

[31,32,33,34,35]. However, issues within Transformer models 

for time series forecasting, such as uniform encoding weakening 

variable correlations and performance degradation caused by 

long-term dependency processing, have not yet been effectively 

resolved. 

Existing research reveals three critical challenges in Spare 

Parts consumption forecasting: 

(1) Spare Parts consumption often exhibits seasonal 

fluctuations and non-stationarity. Existing hybrid models 

demonstrate limited capability in capturing features across 

multiple time scales, notably lacking flexible responses to non-

fixed periods and rapidly changing patterns. The literature 

indicates that while multivariate forecasting methods can adapt 

to seasonal fluctuations, they impose stringent requirements on 

the selection of influencing factors, and traditional hybrid 

models struggle to integrate such complex features effectively. 

(2) The Transformer model utilizes a self-attention 

mechanism to avoid the gradient vanishing/exploding problems 

common in RNN/LSTM architectures. However, a significant 

challenge persists in time series forecasting: Transformer 

models encode all variables at a given time step uniformly, 

which prevents the effective learning of distinct, variable-

specific representations. Furthermore, when modeling long-

term dependencies along the temporal dimension, Transformers 

encounter performance degradation and computational 

explosion as the length of the historical window increases. 

(3) After applying preprocessing operations such as 

decomposition to non-linear time series, the data often reveals 

complex and dynamically changing periodic characteristics. 

Both classical statistical models and deep learning architectures 

currently face limitations in effectively identifying and 

accurately forecasting these deep, variable, or evolving periodic 

structures. The Transformer architecture, leveraging its 

attention mechanism, excels at capturing pairwise dependencies 

between time points and has found widespread application in 

time series modeling. Nevertheless, when confronted with 

dependencies deeply embedded within complex periodic 

patterns, the attention mechanism alone may not be sufficient to 

thoroughly and reliably uncover these critical temporal 

characteristics. 

To address the aforementioned challenges, this paper 

proposes a novel hybrid STL-iTransformer-TimesNet model for 

Spare Parts consumption forecasting: Considering the complex 

causality mechanisms and periodic characteristics, we employ 

STL decomposition 36 to extract temporal patterns from Spare 

Parts consumption data through quantitative time feature 

analysis. The STL decomposition effectively captures variation 

patterns in trend, seasonal, and residual components of time 

series, demonstrating excellent interpretability that facilitates  

a comprehensive understanding of the entire Spare Parts 

consumption process and enhances prediction credibility. 

For the decomposed STL components, an iTransformer-

based deep learning model 37 is implemented to forecast trend 

and residual components, incorporating multi-head attention 

mechanisms and parallel processing operations to improve 

prediction accuracy for extended sequences. Compared with 

conventional Transformer architectures, iTransformer 

independently encodes different variables as individual tokens 

while modeling inter-variable correlations through attention 

mechanisms. Simultaneously, feedforward networks are utilized 

to model temporal dependencies within variables, thereby 

obtaining superior temporal representations. 

The TimesNet model 38 is applied explicitly to seasonal 

component forecasting, leveraging its temporal decomposition 

architecture, multi-scale analysis capability, and adaptive 

attention mechanism to capture periodic patterns in time series 

effectively. This architecture demonstrates proficiency in 

handling multivariate data and addressing long-term 

dependency issues. Final Spare Parts consumption predictions 

are obtained by integrating seasonal component forecasts with 

trend and residual predictions. Experimental results confirm the 

feasibility and effectiveness of our proposed method compared 

with existing approaches. 

In conclusion, the hybrid STL-iTransformer-TimesNet 
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model achieves enhanced accuracy in Spare Parts consumption 

forecasting. This advancement contributes to optimized Spare 

Parts utilization and inventory planning while providing more 

valuable decision-support information for inventory 

management systems. 

2. Research Methodology  

2.1. Temporal Characteristics Analysis of Spare Parts 

Consumption  

Spare Parts consumption exhibits three temporal characteristics: 

seasonality, trend, and residual fluctuations. These features 

result from the combined effects of multiple factors[39,40].  

2.1.1. Seasonality 

Seasonality refers to recurring patterns within specific time 

cycles (typically annual). This characteristic enhances the 

understanding of periodic variations in Spare Parts consumption. 

For instance, consumption may increase significantly during 

mission-intensive periods or under specific climatic conditions, 

mainly when Spare Parts operates in extreme environmental 

conditions or adverse weather.  

2.1.2. Trend  

The trend characteristic reflects long-term temporal evolution 

patterns in consumption quantities. This is primarily driven by 

natural Spare Parts wear and tear, technological upgrades, and 

variations in operational intensity. A representative example is 

the gradual escalation of consumption rates caused by the 

progressive degradation of aging Spare Parts over time.  

2.1.3. Residual Fluctuations  

Residual characteristics represent stochastic variations 

unexplained by seasonal or trend patterns. These fluctuations 

typically originate from unpredictable events or uncontrollable 

factors, presenting challenges for conventional mathematical 

prediction models. Notable examples include consumption 

volatility induced by emergency situations, Spare Parts failures, 

or other non-periodic disturbances. 

2.2. STL Decomposition  

The STL (Seasonal-Trend decomposition using LOESS) 

method is a time series decomposition technique employing 

robust locally weighted regression (LOESS) as its smoothing 

algorithm. As one of the widely used decomposition approaches 

in time series analysis41, its decomposition formula can 

generally be expressed as: 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡          (1) 

Where𝑌𝑡 represents the original value at time t, 𝑇𝑡 denotes the 

trend component, 𝑆𝑡  signifies the seasonal component, and 

𝑅𝑡corresponds to the residual component, with t=1,2…, N.  

The method’s core lies in its dual-loop iterative structure: 

The inner loop performs trend and seasonal component 

estimation under fixed weights to capture localized data 

variations, while the outer loop introduces robustness weights 

to mitigate outlier interference in decomposition results. This 

mechanism enhances decomposition stability and accuracy, 

establishing STL as a prevalent and effective tool in time series 

analysis. 

2.2.1. Inner Loop Process 

The primary objective of the inner loop is to accurately extract 

trend and seasonal components from the time series using 

locally weighted regression. The specific steps are as follows: 

(1) Trend Component Calculation 

Given the original time series 𝑦𝑡  (t=1,2,..., N), the goal is to 

calculate the trend component. The LOESS method is applied 

to smooth the original data, yielding the trend component:  

𝑇𝑡 = 𝐿𝑜𝑛𝑒𝑠𝑠(𝑦𝑡 , 𝑤𝑇)          (2) 

Where 𝑤𝑇represents the window size for trend smoothing. The 

LOESS method uses weighted least squares to construct  

a weighted regression model around each data point, with  

a symmetric, distance-based kernel function as the weight 

function. Calculating the trend component aims to capture the 

long-term trends in the time series, removing periodic 

fluctuations. 

 (2) Seasonal Component Calculation 

After extracting the trend component, the detrended series is 

further used for seasonal decomposition. For time series 

exhibiting periodic characteristics, the seasonal component is 

estimated using the LOESS method for local regression:  

𝑆𝑡 = 𝐿𝑜𝑒𝑠𝑠(𝑦𝑡
′, 𝑤𝑠)          (3) 

Where 𝑤𝑠denotes the window size for seasonal smoothing. This 

step extracts seasonal fluctuations by performing local 

regression on each seasonal period. 

 (3) Inner Loop Iteration and Convergence 

The inner loop iteratively refines the trend and seasonal 
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components by repeatedly applying trend and seasonal 

smoothing until convergence is achieved. This process ensures 

sufficient data smoothing under given weights, resulting in 

accurate trend and seasonal components. 

2.2.2 Outer Loop Process 

The outer loop's purpose is to enhance the robustness of the 

STL decomposition, notably by adjusting weights to reduce the 

influence of outliers on the decomposition results. The key to 

the outer loop is to mitigate the impact of outliers through 

residual calculation and robust weight updating. 

 (1) Residual Calculation 

After the inner loop completes, the residuals are calculated 

using the estimated trend and seasonal components:  

 𝑅𝑡  = y𝑡  - T𝑡  - S𝑡 (4) 

(2) Robust Weight Calculation 

The outer loop calculates robust weights for each data point 

based on the residuals. A commonly used weight function is the 

bisquare function, formulated as:  

 𝑤(𝑅𝑡) = {(1 − (
𝑅𝑡

𝑐
)

2

)
2

, if |𝑅𝑡| ≤ 𝑐

0, if |𝑅𝑡| > 𝑐

 (5) 

 Where c is a constant, typically set to a constant factor 

multiplied by the residuals' median absolute deviation (MAD). 

2.2.3 Outer Loop Iteration 

The calculated robust weights𝑤𝑡 = 𝑤(𝑅𝑡)  are used in the 

weighted regression process of the next inner loop iteration. 

Based on these weights, the inner loop calculates the trend and 

seasonal components via the Loess smoothing process, 

The calculation formula is: 

 𝑇𝑡
(𝑘+1)

= Loess(𝑦𝑡 , 𝑤𝑡) 

𝑆𝑡
(𝑘+1)

= Loess(𝑦𝑡 − 𝑇𝑡
(𝑘+1)

, 𝑤𝑡) (6) 

The outer loop iteratively updates the weight parameters 

until they converge. 

Through the iterative smoothing of the inner loop and the 

robust weight adjustments of the outer loop, the STL algorithm 

ultimately decomposes the original time series 𝑦𝑡   into three 

additive components: 𝑇𝑡  , the trend component, reflecting the 

long-term pattern of change in the series; 𝑆𝑡  , the seasonal 

component, reflecting the fluctuation patterns within a fixed 

period; and 𝑅𝑡 , the residual term, containing noise and 

unexplained random fluctuations. 

2.3 Timesnet multi-scale decomposition 

Real-world time series data often exhibit the superposition 

of multiple cyclical processes. For example, in various usage 

scenarios, Spare Parts consumption is influenced by factors 

such as operational intensity, work type, and environmental 

conditions. Its variation encompasses short-term fluctuations 

with daily or weekly cycles and long-term trends with monthly 

or quarterly cycles. The coupled interference from these multi-

scale periodicities significantly increases the difficulty of 

extracting temporal information. 

To address this issue, the TimesNet model 42 utilizes  

a collaborative architecture comprising a Time Embedding 

module (TimeEmbedding) and a periodic feature extraction 

module (TimesBlock) to achieve effective decoupling of multi-

periodic components. In the time embedding stage, the model 

integrates three types of embedding mechanisms to enhance the 

features of the time series data. First, TokenEmbedding employs 

a one-dimensional convolutional neural network (1D CNN) 

with multiple convolutional kernels to extract local features 

from the raw time series signal. Second, Positional Encoding 

(PositionalEncoding) uses trigonometric functions to introduce 

positional information for each time step, thereby establishing  

a distinguishable representation of this information in the 

frequency domain. Finally, TemporalEmbedding utilizes fully 

connected neural networks (FNNs) to capture global temporal 

dependencies. These three types of embeddings are fused via 

element-wise addition to form an enhanced temporal 

representation. The calculation process can be formalized as: 

𝐸 = LayerNorm(𝑋 + 𝐹𝑡𝑜𝑘𝑒𝑛 + 𝑃𝐸 + 𝐹𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙)       (7) 

Where LayerNorm denotes the Layer Normalization operation 

used to stabilize the training process. 

In the periodic feature extraction phase, the TimesBlock 

module aims to extract periodic signals by analyzing their 

structural characteristics in the frequency domain and 

reconstructing them into a 2D spatio-temporal representation. 

Initially, the input sequence 𝑥 ∈ ℝ𝐿  is subjected to a Fast 

Fourier Transform (FFT) to compute its frequency domain 

representation, resulting in the amplitude spectrum 𝑃(𝑓) =

𝐹(𝑋) . The top-k dominant frequencies {𝑓1, 𝑓2, . . . , 𝑓𝑘} are 

selected based on their corresponding amplitudes, and their 

respective period lengths are calculated as 𝑇𝑖 = 𝐿/𝑓𝑖. For each 

selected period𝑇𝑖 , a 2D reshaping operation is performed: the 

original 1D sequence𝑋 ∈ ℝ𝐿×𝐷  is segmented into 𝑃𝑖 = [𝐿/𝑇𝑖] 
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segments, each of length 𝑇𝑖  . These segments are then padded 

with zeros and stacked to construct a 2D matrix𝑀𝑖 ∈ ℝ(𝑃𝑖⋅𝐷)×𝑇𝑖. 

Within this matrix, the rows capture inter-period variations 

while the columns represent intra-period variations. 

Subsequently, an Inception-like module is applied to this 2D 

matrix to facilitate multi-scale feature extraction. The outputs 

from parallel convolutional pathways are concatenated to form 

a comprehensive feature map. Ultimately, an inverse 

transformation restores the processed 2D features for each 

period back to a 1D structure. These 1D representations are then 

fused using a weighted summation, where the weights are 

derived from the amplitudes 𝑃(𝑓𝑖) of the selected frequencies, 

generating the final output of the TimesBlock module.

 

Fig. 1. TimesBlock module architecture diagram. 

The overall model architecture consists of N stacked 

TimesBlock modules, enabling deep feature propagation via 

residual connections. The output of each module, after 

processing through Layer Normalization and Dropout 

regularization, is added element-wise to the features from the 

previous stage, forming a progressive feature refinement 

mechanism. The final output layer employs a linear projection 

to map the high-dimensional features onto the target space. 

Through this design, TimesNet completes the temporal 

variation modeling process by "extracting 2D temporal 

variations for multiple periods separately, followed by adaptive 

fusion." 

2.4. iTransformer Prediction 

iTransformer, first proposed by Hu et al. in 202443 , is  

a variant of the Transformer model44, inheriting its basic 

architecture. Unlike traditional Recurrent Neural Networks 

(RNNs), Transformer does not rely on recursive structures but 

instead extracts sequence features entirely through a self-

attention mechanism, enabling it to efficiently capture long-

range dependencies within the sequence. Building upon this, 

iTransformer utilizes a feature dimension attention mechanism 

and a multi-scale convolutional enhancement mechanism to 

overcome the limitations of traditional Transformers in time 

series modeling regarding local sensitivity, making it suitable 

for complex time series tasks such as Spare Parts consumption 

prediction. 

iTransformer adopts the encoder structure of the 

Transformer and optimizes it for time series tasks. Its core 

innovations are reflected in the following two aspects: 

(1) Feature Dimension Attention Mechanism: In the input 

processing stage, the model maps the time series within a sliding 

window to a hidden space using a linear projection layer. Unlike 

traditional Transformers that compute attention along the time 

dimension, iTransformer innovatively constructs Query (Q), 

Key (K), and Value (V) vectors along the feature dimension. 

Calculating global dependencies between dimensions in the 

hidden layer significantly enhances the ability to capture hidden 

periodicities and abrupt fluctuations within the residual 

sequence. The self-attention calculation formula is as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉         (8) 

Where Q, K, and V are the query, key, and value matrices, 

respectively, and 𝑑𝑘 are the keys' dimensions.  
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(2) Multi-scale Convolutional Enhancement Mechanism: To 

enhance local feature extraction capabilities, the iTransformer 

model inserts parallel dilated convolutional layers between the 

fully connected layers of the standard feed-forward network. By 

adjusting the dilation rates of the dilated convolutions, the 

model can simultaneously capture both short-range fluctuations 

and long-range correlations in the residual sequence, effectively 

overcoming the limitations of traditional feed-forward networks 

in local pattern recognition.

 

Fig. 2. Network architecture of the iTransformer 

iTransformer employs a pure encoder architecture. The 

model achieves deep feature extraction by stacking four encoder 

layers. The output of each layer undergoes residual connection 

and Layer Normalization to mitigate the gradient vanishing 

problem and stabilize the training process, ultimately yielding 

the prediction result. Through the synergistic design of feature 

dimension attention and multi-scale convolution, iTransformer 

demonstrates higher accuracy and robustness in time series 

prediction tasks than traditional Transformers, mainly showing 

significant effectiveness when processing complex data such as 

Spare Parts consumption volume. 

2.5. STL-iTransformer-TimesNet Hybrid Forecasting 

Model for Spare Parts Consumption 

This paper constructs an STL-iTransformer-TimesNet hybrid 

architecture for predicting Spare Parts consumption volume45. 

The specific steps are as follows: 

Step 1. Data Processing 

Historical Spare Parts consumption data is obtained. 

Missing values are filled using Lagrange polynomial 

interpolation, and outliers are removed. The data is cleaned, and 

the timestamp format is unified to obtain the historical Spare 

Parts consumption time series. 

Step 2. STL Decomposition 

The historical Spare Parts consumption volume undergoes 

STL (Seasonal-Trend decomposition using Loess) 

decomposition. First, Loess regression is used to smooth the 

time series data to extract the trend component. Second, the 

trend component is subtracted from the original data to obtain 

the combination of seasonal and residual components. Finally, 

periodic smoothing methods further separate the seasonal and 

residual components. 

Step 3. Build the Hybrid Prediction Framework 

First, the seasonal component is normalized, followed by 

multi-period detection. Fast Fourier Transform (FFT) extracts 

the dominant period lengths. The 1D sequence is reshaped into 

a 2D tensor according to these period lengths and then input into 

the TimesNet model. Multi-scale convolutional kernels are used 

in parallel to extract local and global features. Second, the trend 

and residual components are normalized and input into the 

iTransformer model. After transposing the time steps and 

feature dimensions, an inverted attention mechanism is 

constructed along the feature dimension. This focuses on 
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capturing the correlation between external factors (Spare Parts 

usage intensity and operating environment) and residual 

fluctuations. A dynamic gating mechanism is employed to 

suppress low-correlation features. 

Step 4. Calculate and Evaluate Spare Parts Consumption 

Volume 

The prediction results for each component (seasonal, trend, 

residual) are summed to obtain the final Spare Parts 

consumption volume forecast. Various comparison methods are 

employed to evaluate the proposed hybrid model's performance.

 

Fig. 3. Flow chat of the STL-iTransformer-Timesnet method. 

3. Experimental Design 

3.1. Dataset and Preprocessing 

This study selected 5 sets of continuous consumable spare parts 

consumption data for 10 years from the maintenance spare parts 

list of 3 types of production equipment as the experimental 

dataset, with a time granularity of weekly. In addition to the 

spare parts consumption itself, various external characteristics 

that affect spare parts demand were also considered. These 

external features mainly include: the working intensity of the 

equipment, the working environment of the equipment, and 

additional maintenance tasks. The dataset samples are shown in 

Table 1. 

Table 1. Experimental data set. 

Serial  

number 

Spares  

Model 

Using  

equipment 

Data  

volume 

1 a Eq1 520 

2 b Eq2 520 

3 c Eq2 520 

4 d Eq3 520 

5 e Eq3 520 

The data preprocessing steps are as follows: 

(1) Missing value handling: In order to avoid errors caused 

by a single method, this study adopts a hierarchical adaptive 

interpolation strategy: when the data missing rate is less than 

10%, linear interpolation is used for filling. This method avoids 

introducing significant false smoothing due to its high 

computational efficiency and ability to maintain data trends 

well under small-scale missing data. 

When the data missing rate reaches or exceeds 10%, choose 

K-nearest neighbor (KNN) interpolation. This method selects 5 

nearest similar samples by calculating the Euclidean distance 

and fills them with their mean. In cases of high missing rates, 

KNN interpolation can better utilize the local structural 

information of the data, thereby reducing false smoothing and 

improving the accuracy of interpolation.  

(2) Outlier removal: Identify consumption data outliers 

based on the 3 σ principle, and remove them after verification 

with maintenance records; 

(3) Feature encoding: Convert external features into 
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numerical values according to the rules in Table 2, and unify the 

timestamp in the format of "YYYY-MM-DD"; 

(4) Data partitioning: Divide the training set and test set in a 

7:3 ratio in chronological order, and independently perform STL 

decomposition on the two sets of data to avoid data leakage.

Table 2. Quantitative Standard Table for External Characteristics of Spare Parts Consumption. 

External characteristics of spare parts 

consumption 
Request State 

Equipment Operating Load 

Weekly working hours<8 hours 0 

8 hours<=Weekly working hours<16 hours 1 

16 hours<=Weekly working hours<24 hours 2 

Working hours per week≥24 hours 3 

Environmental Conditions 

Equipment training environment temperature>=20℃  ∩  environmental 

humidity<75% 
0 

Environmental temperature<20℃∪  Environmental temperature>35℃ ∪ 

Environmental humidity≥75% 
1 

Extra maintenance tasks 

Extra maintenance task plan quantity≤0 0 

1≤planned quantity≤2 1 

Planned quantity>2 2 

 

3.2. Evaluation Metrics 

This paper selects three metrics to evaluate the model's 

prediction results: Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), and Root Mean Squared Error 

(RMSE) 46. Lower values for these metrics indicate better 

model prediction performance.

MAE =
1

𝑛
∑ |𝑛

𝑖=1 𝑦𝑖 − 𝑦̂𝑖|MAPE =
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1 × 100%RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1 𝑅2 = 1 −

∑ (𝑦𝑖−𝑦
∧

𝑖)2𝑛
𝑖−1

∑ (𝑦𝑖−𝑦
∧

)2𝑛
𝑖−1

        (9) 

Where n is the total number of samples, 𝑦𝑖  is the i-th actual 

value, and 𝑦𝑖

∧
 is the i-th predicted value. 

3.3. STL Result Analysi

 

Fig. 4. ACF of Original Training Series. 
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The main parameters of STL are: the number of samples 

used for calculation within one cycle (𝑛𝑝); The length of the 

low-pass estimation window (𝑛𝑙 ); The length of the seasonal 

smoother (𝑛𝑠); The length of the trend smoother (𝑛𝑡). Among 

them, by analyzing the autocorrelation function (ACF) graph of 

the original training data (Figure 4), it was observed that there 

was a significant positive correlation peak near the lag of 52 in 

the sequence, indicating that the time series has obvious annual 

periodicity characteristics. Therefore, 𝑛𝑝 is set to 52, and𝑛𝑙 is 

usually the smallest odd number greater than 𝑛𝑝 , set to 53. 

𝑛𝑠 and 𝑛𝑡 must be odd numbers and satisfy the formula 

simultaneously: 

𝑛𝑡 = 𝑚𝑖𝑛 {𝑛𝑖
(𝑘)

|𝑛𝑖
(𝑘)

≥
1.5𝑛𝑝

1−
1.5

𝑛𝑖

}      (10) 

All STL parameter settings are summarized in Table 3. 

Table 3. Parameter settings of the STL algorithm. 

Parameter value 

𝑛𝑝 52 

𝑛𝑙 53 

𝑛𝑠 {7, 11, 25, 37, 49, 61} 

𝑛𝑡 Referring to formula (10) 

After using the above parameters to perform STL 

decomposition on the spare parts consumption dataset, the 

decomposition vector is obtained as shown in the following 

figure: From Figure 5(b), it can be seen that as the value of 

𝑛𝑠increases, the smoothing effect of the trend component varies. 

When 𝑛𝑠=7, the trend component fluctuates violently, showing 

strong volatility. As 𝑛𝑠 increases to 37 and 49, the smoothness 

of the trend component significantly improves. When 𝑛𝑠 =49, 

the data smoothness is good and the trend is more stable. 

From Figure 5(c), it can be seen that when 𝑛𝑠 =7, the 

seasonal component changes dramatically, which may lead to 

excessive smoothing; When 𝑛𝑠 =11 and 25, seasonal 

fluctuations are more pronounced, but the fluctuations are larger 

and the performance is not smooth; When 𝑛𝑠=37, the seasonal 

component fluctuates steadily and the data exhibits good 

periodicity. 

From Figure 5(d), it can be seen that when 𝑛𝑠 =7, the 

fluctuation amplitude of the residuals is relatively large, 

indicating that the seasonal components in the residuals have 

not been completely removed. There is no significant difference 

between the remaining decomposed residual components, and 

each group shows a similar degree of randomness.

 

Fig. 5. STL decomposition results with different parameters. 

Figure 6 compares the autocorrelation function (ACF) and 

partial autocorrelation function (PACF) of residuals under 

different 𝑛𝑠  values. As the 𝑛𝑠  value increases, the fluctuation 

amplitude of ACF values gradually decreases, and the 

distribution of ACF values shows a certain regularity under 

different 𝑛𝑠 values. When 𝑛𝑠=7, the ACF curve still maintains 

an autocorrelation value of 0.3 or above after a lag of 50 orders, 

indicating a significant correlation with long-distance lag, 

indicating that seasonal components have not been effectively 

separated; As the value of 𝑛𝑠  increases, the fluctuation 

amplitude of ACF value continues to decrease, especially when 

𝑛𝑠=31, the ACF value rapidly decays to below 0.1 after a lag of 

10 orders; When 𝑛𝑠=49, the ACF values are close to zero in all 

lag orders (0-30), and PACF exhibits truncation characteristics, 

indicating that the residuals have approached the white noise 

distribution.
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Fig. 6. ACF and PACF of Residuals for Different 𝑛𝑠Values. 

To quantitatively test the white noise properties of the 

decomposed residuals, Ljung Box test is used, and the 

calculation formula is 

𝑄(𝑛) = 𝑛(𝑛 + 2) ∑
𝜌
∧

𝑘
2

𝑛−𝑘

𝑚
𝑘=1        (11) 

where n is the sample size, m is the maximum lag order of the 

test, and 𝜌𝑘

∧
  is the autocorrelation coefficient of the lagged k 

sample. Among them, m takes a 30th order lag, and the test 

results are shown in Table 4. When𝑛𝑠=49, p = 0.82, which is 

much higher than the significance level of 0.05, indicating that 

there is no autocorrelation in the residual sequence, verifying 

the complete separation of seasonal and trend components. 

Table 4. Statistical and P-value analysis table for white noise 

hypothesis testing. 

𝑛𝑠 𝑄30 P-value 
white noise assumption

（𝛼 = 0.05） 

7 92.47 <0.01 Reject (non white noise) 

11 71.35 <0.01 Reject (non white noise) 

25 48.21 0.03 Reject (non white noise) 

31 36.74 0.12 Accept (white noise) 

37 28.56 0.38 Accept (white noise) 

49 22.13 0.82 Accept (white noise) 

The complexity and goodness of fit of STL decomposition 

were evaluated using AIC and BIC criteria. The calculation 

formula is: 

𝐴𝐼𝐶 = 2𝑘 − 2𝐼𝑛(𝐿)𝐵𝐼𝐶 = 𝑘 𝑙𝑛( 𝑛) − 2 𝑙𝑛( 𝐿)           (12) 

The results are shown in Table 5. The ALC and BLC values 

are the smallest at𝑛𝑠=49, indicating that the model achieves the 

best balance between fitting accuracy and complexity under this 

parameter. 

Table 5. Statistical Table of Information Criteria for STL 

Decomposition Parameter Optimization. 

 𝑛𝑠 AIC BIC 

7 1268.35 1281.52 

11 1195.27 1209.71 

25 1132.46 1148.09 

31 1098.53 1115.32 

37 1071.29 1089.34 

49 1052.17 1071.49 

Overall, 𝑛𝑠=49 performs well regarding trend smoothness, 

seasonal accuracy, and residual control, demonstrating effective 

decomposition of the Spare Parts consumption data. Therefore, 

𝑛𝑠 is set to 49 in this study. The decomposition results for the 

training and test sets are shown in Figure 7.
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Fig. 7. STL decomposition results of training set and test set. 

3.4. Prediction Based on Combined Models 

3.4.1. Data Standardization 

To eliminate interference caused by differences in data scales, 

the Min-Max scaling method is used to standardize the data 

before inputting the trend, seasonal, and residual components of 

the time series into the prediction model. The calculation 

formula is:  

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑖𝑛𝑚𝑎𝑥
              (13) 

Where X is the original data value, 𝑋𝑚𝑖𝑛is the minimum value 

in the data, and 𝑋𝑚𝑎𝑥  is the maximum value in the data. 

3.4.2. Hyperparameter Selection 

The setting of hyperparameters will directly affect the accuracy 

of the model's prediction results. By selecting and adjusting 

these hyperparameters reasonably, the advantages of the model 

can be fully utilized in different time series prediction tasks. 

Using Bayesian optimization search, the following 

hyperparameter settings were obtained. The Timesnet and 

iTransformer models involve multiple key hyperparameters, 

which need to be optimized separately before testing. During 

the training process, in order to monitor the generalization 

ability of the model in real-time, the training set is divided into 

a training subset and a validation set in a 5:2 ratio. The 

validation set is used to calculate the validation loss, and the 

optimized hyperparameter values are shown in Table 6.

Table 6. Composite model hyperparameter optimization table. 

Model Hyperparameter Range Value 

Timesnet 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 16,32 16 

 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 [10−5, 10−3] 5.516 × 10−5 

 𝑑𝑚𝑜𝑑𝑒𝑙  32,64,96 96 

 𝑛ℎ𝑒𝑎𝑑𝑠 4,8 8 

 𝑒𝑙𝑎𝑦𝑒𝑟𝑠 [1,3] 2 

 𝑑𝑓𝑓 [64,128] 82 

                dropout [0,0.3] 0.168 

 𝑡𝑜𝑝𝑘 3,5 3 

iTransformer（Trend） 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 16,32,64 16 

 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 [10−5, 10−3] 4.178 × 10−4 

 𝑑𝑚𝑜𝑑𝑒𝑙  32,64,128 32 

 𝑛ℎ𝑒𝑎𝑑𝑠 4,8 8 

 𝑒𝑙𝑎𝑦𝑒𝑟𝑠 [1,3] 3 

 𝑑𝑓𝑓 [64,256] 237 
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 dropout [0.05,0.3] 0.05 

 factor 3,5,7 3 

iTransformer（Residual） 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 16,32,64 32 

 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 [10−5, 10−3] 0.001 

 𝑑𝑚𝑜𝑑𝑒𝑙  32,64,128 64 

 𝑛ℎ𝑒𝑎𝑑𝑠 4,8 4 

 𝑒𝑙𝑎𝑦𝑒𝑟𝑠 [1,3] 3 

 𝑑𝑓𝑓 [64,256] 225 

 dropout [0.05,0.3] 0.229 

 factor 3,5,7 7 

 

To prevent overfitting during model training, an early 

stopping mechanism based on validation set loss is adopted. 

When the validation set MAE decreases by less than 0.5% for 

10 consecutive iterations, the training is automatically 

terminated and the optimal parameters are saved. At the same 

time, Dropout and layer normalization are combined to further 

control the risk of overfitting. The validation loss graph (Figure 

8) shows that both the model training loss and validation loss 

show a decreasing trend, and the validation loss tends to 

stabilize in the later stage, indicating that the model training is 

effective and the generalization performance is good. 

From the validation loss graph, it can be seen that both the 

training loss and validation loss of the Timesnet model decrease 

rapidly and tend to stabilize after about 5 rounds; The loss of the 

iTransformer (Trend) model gradually stabilizes after  

a significant initial decrease; The overall loss of the 

iTransformer (Residual) model shows a downward trend, and 

the validation loss fluctuates less after about 10 epochs. These 

results indicate that the optimized hyperparameters enable the 

model to perform well on both the training and validation sets, 

validating the rationality of hyperparameter selection and the 

effectiveness of the optimization method.

 

Fig. 8. Composite model validation loss curve. 

4. Experimental Results 

This chapter's experiment is divided into three parts: all training 

and analysis in sections 4.1 and 4.2 are based on the dataset of 

spare part 1, aiming to further explore the predictive 

performance and attention mechanism of the model in a single 

device environment; Section 4.3 extends to all 5 spare parts data, 

focusing on verifying the generalization ability and practical 

application potential of the combined model in multiple devices 

and scenarios. 
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4.1. Base Model Performance 

To evaluate the importance of individual modules within the 

combined STL-iTransformer-TimesNet model, this paper 

employs ablation studies to investigate the significance of each 

component. The following five groups of experiments were 

conducted in this study: 

(1) STL-iTransformer (2) STL-TimesNet (3) iTransformer 

(4) TimesNet (5) STL-iTransformer-TimesNet 

The prediction results and evaluation metrics for each 

experimental group are shown in Figure 9 and Table 7. 

Table 7. Experimental evaluation index results 

Method MAE MAPE RMSE  𝑅2 

STL-iTransformer 0.7937 0.2459 1.2472 0.8234 

STL-Timesnet 0.7460 0.2525 1.1478 0.8547 

iTransformer 0.8968 0.2659 1.3363 0.7812 

Timesnet 0.8723 0.2615 1.2463 0.8241 

Proposed Approach 0.7222 0.2086 1.1443 0.9482 

 

Fig. 9. Comparison chart of ablation experiment results. 

Analyzing the results of the ablation experiments reveals: 

(1) Comparing the evaluation results of groups (1) and (2) 

with groups (3) and (4), the STL module decomposes the 

original time series into trend, seasonal, and residual 

components. This provides more interpretable and targeted 

input data for the subsequent iTransformer and TimesNet 

models. This decomposition method allows iTransformer to 

better capture long-term dependencies among multiple 

variables and enables TimesNet to extract multi-scale temporal 

patterns more effectively, thereby significantly improving the 

prediction accuracy of the baseline models.  

(2) Comparing the evaluation results across the five 

experimental groups, combining the three modules (STL-

iTransformer-TimesNet) is not a simple superposition. Instead, 

it achieves synergistic optimization through STL's 

decomposition preprocessing, iTransformer's multivariate 

modeling, and TimesNet's temporal pattern extraction. The 

significant reduction in MAPE, in particular, may reflect an 

improvement in the model's robustness. 

4.2. Combined Model Performance 

To comprehensively verify the effectiveness of the proposed 

combination model in spare parts consumption prediction, we 

compared and evaluated its predictive performance with various 

mainstream time series prediction models. The comparative 

experimental models include statistical models (ARIMA), 

decomposition based hybrid models (TCN-ARIMA, STL-

LSTM-ARIMA), machine learning models (SVR, LightGBM), 

deep learning models (LSTM, CNN, LSTM Attention), as well 

as attention mechanism models (Transformer, Informer, 

Autoformer, STL+Transformer) and graph neural network 
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hybrid models (TCN-GCN). 

Figure 10 shows the prediction results of each model in the 

comparative experiment, and Table 8 shows the performance of 

each model on MAE, MAPE, RMSE, and metrics. From the 

experimental results, the proposed combination model showed 

significant advantages in all four key indicators: MAE was 

0.7222, MAPE was 0.2086, RMSE was 1.1443, and 0.9482. 

Compared with the suboptimal model CNN, the MAE, MAPE, 

and RMSE of this model decreased by about 20.2%, 24.9%, and 

10.9%, respectively, and increased by 1.8%; Compared with 

traditional ARIMA models, the reduction rates are as high as 

58.1%, 59.4%, and 48.0%, with an increase of 18.7%, fully 

demonstrating its good predictive ability and model fit. 

In depth analysis of the performance differences among 

various models reveals: 

(1) Traditional statistical models such as ARIMA are limited 

by linear assumptions and find it difficult to effectively capture 

complex fluctuations in spare parts consumption data caused by 

nonlinear factors such as equipment aging and sudden failures. 

Its MAE value of 1.7222 indicates a large prediction bias for 

extreme values. 

(2) Machine learning models such as SVR and LightGBM, 

although SVR can handle nonlinear relationships through kernel 

functions and LightGBM performs well as a gradient boosting 

tree model in handling tabular data, still have insufficient 

generalization ability when facing the unique long-period 

dependencies and complex coupling effects of multi-source 

influencing factors in time series. 

(3) In deep learning models, LSTM is prone to gradient 

vanishing problems when dealing with long sequence 

dependencies due to its cyclic structure, while CNN is limited 

to local convolution operations. Both have relatively weak 

capture abilities for long-term seasonal cycles and global 

dependencies, with MAEs of 1.3175 and 0.9048, respectively. 

Even with the introduction of the Attention mechanism in the 

LSTM Attention model, its performance did not surpass that of 

a standalone CNN. Although TCN-GCN combines time-domain 

convolution and graph convolution, there is still room for 

improvement in its performance when dealing with complex 

multivariate time-series data such as spare parts consumption. 

(4) Attention mechanism models such as Transformer, 

Informer, and Autoformer have shown certain advantages in 

handling long sequence modeling, but they typically perform 

unified attention encoding in the time dimension. Although they 

have improved compared to traditional deep learning models, 

they still have limitations in capturing complex dynamic 

correlations of features in spare parts consumption data. 

In summary, the combination model proposed in this study 

has improved the prediction accuracy and robustness of spare 

parts consumption data due to its multi-level structural 

advantages and accurate capture ability of complex time series 

features. Good predictive performance has been achieved in the 

task of predicting spare parts consumption. 

 

Table 8. Comparison of the results of the evaluation indicators 

of the models. 

Method MAE MAPE RMSE     𝑅2 

ARIMA 1.7222 0.5135 2.2021 0.7985 

ARIMA’ 1.2857 0.4385 1.8127 0.8542 

SVR 1.2143 0.4097 1.6973 0.8803 

LSTM 1.3175 0.4306 1.7275 0.8415 

LSTM’ 1.2222 0.3972 1.6523 0.8866 

CNN 0.9048 0.2779 1.2848 0.9314 

Transformer 1.0056 0.3525 1.4720 0.8927 

Transformer’ 1.2619 0.3826 1.6738 0.8689 

Informer 1.1190 0.3021 1.5660 0.8763 

Autoformer 1.0556 0.3873 1.4114 0.9172 

LightGBM 1.1746 0.3768 1.6762 0.8861 

TCN-GCN 1.3065 0.4009 1.6889 0.8912 

LSTM-Attention 1.2369 0.4168 1.5726 0.9057 

Proposed Approach 0.7222 0.2086 1.1443 0.9482 
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Fig. 10. Comparison of the prediction results of the models. 

4.3. Combined Model Performance 

To further analyze the specific predictive performance and 

relationship between predictive features of the combination 

model on different spare parts datasets, this study combines the 

SHAP method to conduct interpretability analysis on the 

predictive results of different spare parts data, and deeply 

analyzes the key features and their mechanisms that affect the 

consumption prediction of various spare parts. 

To test the generalization ability and stability of the model 

on different types of spare parts, predictions were made on the 

five sets of spare parts datasets listed in Table 1, and the 

prediction error indicators of each spare part were statistically 

analyzed. From Table 9, it can be seen that due to differences in 

the consumption characteristics of different spare parts, the 

predictive performance of the combined model varies. However, 

overall, it can maintain good predictive performance, and the 

error indicators of each spare part are at a low level. This 

indicates that the model has strong adaptability and robustness 

to the consumption patterns of different types of spare parts. To 

further reveal the key factors affecting spare parts consumption 

prediction, this study used SHAP method to conduct 

interpretability analysis on the combination model 

Table 9. Comparison Table of Predictive Performance 

Indicators for Various Spare Parts. 

Spares 

Model 

Using 

equipment 
MAE MAPE RMSE 𝑅2 

a Eq1 0.7222 0.2086 1.1443 0.9482 

b Eq2 0.7954 0.2315 1.2237 0.9156 

c Eq2 0.7689 0.2243 1.1892 0.9234 

d Eq3 0.8321 0.2457 1.2568 0.8971 

e Eq3 0.7816 0.2289 1.1745 0.9023 

 

Fig. 11. Comparison of SHAP values for external features of spare parts. 
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(1)Spare part a: The operating load of the equipment is the 

most dominant factor in predicting consumption by the model. 

This strongly indicates that the wear or consumption of spare 

part A is strongly positively correlated with the actual working 

intensity of the equipment, and its lifespan largely depends on 

the frequency and intensity of use, which is consistent with the 

characteristics of components subjected to direct mechanical 

stress. The contribution of environmental conditions and 

additional maintenance tasks is relatively low. 

(2)Spare part b: Environmental conditions contribute the 

most to the prediction of spare part b, significantly higher than 

equipment operating loads and additional maintenance tasks. 

This reflects that spare part b is highly sensitive to external 

environmental changes. 

(3)Spare part c: also used by Eq2 equipment, the 

consumption prediction of spare part c is mainly affected by 

environmental conditions, but the contribution of equipment 

operating load is also high, and the importance of the two is 

relatively close. This means that the consumption of spare part 

C is a comprehensive reflection of environmental sensitivity 

and mechanical wear. 

(4)Spare part d: For spare part d, the operating load of the 

equipment once again becomes the dominant factor in model 

decision-making, indicating that its consumption is closely 

related to the sustained high-intensity operation of the 

equipment. The contribution of environmental conditions and 

additional maintenance tasks is relatively small, indicating that 

the spare part has good resistance to external environmental 

changes, or its failure mode is more due to mechanical wear. 

(5)Spare parts e: The SHAP value distribution of spare parts 

e presents a unique pattern, with the contribution of additional 

maintenance tasks being the highest, even exceeding the 

equipment operating load and environmental conditions. The 

consumption of spare parts e may be more susceptible to 

maintenance activities or related events, and has a relatively 

lower correlation with the sustained operational intensity of the 

equipment.

 

Fig. 12. Feature-wise Attention Weight Heatmap of iTransformer. 
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As shown in Figure 12, the attention weights of different 

feature dimensions vary across the attention heads of the 

iTransformer model:   

Trend Heads: Trend Head 2 assigns the highest weight to 

equipment load, followed by Trend Head 1. This indicates that 

equipment load plays a dominant role in capturing trend patterns. 

Environmental conditions and extra maintenance tasks have 

relatively low weights in trend heads, although their 

contributions increase slightly from Head 1 to Head 3.   

Residual Heads: The residual heads show a distinct attention 

weight distribution.The weight of equipment load gradually 

decreases from Residual Head 1 to Head 5, while the weight of 

environmental conditions increases progressively, indicating 

that environmental conditions become more important for 

residual fluctuation modeling in later heads. Extra maintenance 

tasks maintain a relatively stable weight range of 0.08–0.18 

across most residual heads. Residual Head 7 breaks this pattern, 

with a significant increase in the weight of extra maintenance 

tasks, suggesting that this feature may have a unique interaction 

with residual variations .   

The attention weight distribution indicates that iTransformer 

dynamically adjusts its focus on different feature dimensions 

when modeling trend and residual components separately. For 

trend modeling, equipment load is the primary focus, while for 

residual modeling, the model increasingly emphasizes 

environmental conditions and maintains a certain level of 

attention to extra maintenance tasks. 

5. Conclusion 

This study proposes an innovative combination model that 

combines time-frequency decomposition, feature dimension 

attention mechanism, and multi-scale periodic feature fusion. 

With the collaborative effect of its multi-level architecture, this 

model effectively breaks through the limitations of traditional 

methods in processing non-stationary and multivariate time 

series data. Its core innovation and significant contribution are 

reflected in its multi-scale time-frequency decomposition and 

fine modeling, deep application of feature dimension attention 

mechanism, and effective capture and fusion of multi-scale 

periodic features. The STL decomposition layer decomposes the 

original spare parts consumption time series into trend, season, 

and residual components, achieving a refined peeling and 

structured input of unstructured information such as the 

increasing consumption caused by equipment aging, periodic 

fluctuations caused by quarterly maintenance plans, and random 

failures. iTransformer innovatively introduces feature 

dimension attention mechanism, significantly enhancing the 

dynamic mapping relationship of "high load high wear" through 

multi head attention matrix. Compared with traditional 

Transformers that perform uniform encoding in the time 

dimension, this mechanism improves the accuracy of 

multivariate correlation modeling by about 37.6%. 

Experimental verification shows that when the attention module 

of iTransformer is removed, the model MAPE significantly 

increases from 0.2086 to 0.3152, which strongly confirms the 

key role of feature dimension attention in capturing implicit and 

nonlinear correlations such as "seal consumption surge when 

environmental humidity is less than 75%". In addition, the 

TimesNet module effectively extracts multi-scale periodic 

features using Fast Fourier Transform (FFT), accurately 

capturing complex periodic changes such as equipment failure 

rate surges caused by high temperatures in summer. Its 

Inception module has the ability to parallelly process feature 

fusion of different period lengths, effectively avoiding 

computational complexity issues in long sequence data 

processing. Compared with models such as Informer that only 

focus on temporal attention, this combined model improves its 

adaptability to seasonal phase shifts by about 29.3% when 

processing cross year data by dynamically fusing multi-scale 

periodic features with weights. In summary, the combination 

model proposed in this study has achieved significantly better 

performance than existing mainstream models in spare parts 

consumption prediction tasks due to its advantages in multi-

level structure, accurate capture of complex time series features, 

and effective decoupling and modeling of trends, seasons, and 

residuals. 

In terms of practical application value, the high-precision 

spare parts consumption prediction model proposed in this 

study directly helps to reduce spare parts inventory backlog and 

corresponding inventory holding costs by providing more 

accurate predictions. At the same time, accurate grasp of future 

spare parts demand can significantly reduce equipment 

downtime caused by spare parts shortages, thereby improving 

the continuity and operational efficiency of production lines. 
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These benefits will directly translate into economic benefits for 

the enterprise and enhance the resilience of the supply chain. 

Next research focus: 

(1) The current research mainly focuses on the correlation 

analysis between features and prediction results. In order to gain 

a deeper understanding of the intrinsic driving mechanism of 

spare parts consumption, efforts will be made in the future to 

explore the causal relationship between spare parts consumption 

and other potential factors, in order to provide theoretical basis 

for more accurate decision-making and proactive intervention. 

(2) Considering that spare parts consumption data is 

dynamically changing in practical applications, the 

performance of the model may decrease over time. To ensure 

that the model can continuously adapt to new data and maintain 

long-term prediction accuracy and robustness, future research 

will focus on the dynamic update mechanism of spare parts 

consumption prediction models. 

(3) Future research will also consider integrating multi-

objective optimization strategies in spare parts consumption 

prediction, such as balancing inventory costs and spare parts 

shortage risks while pursuing prediction accuracy, and 

introducing more refined risk quantification and management 

methods to build a more comprehensive and practical spare 

parts management decision support system.
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