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Highlights  Abstract  

▪ This study focuses on the design and 

application of intelligent fault detection. 

▪ This study aims to improve the accuracy of 

electrical equipment fault detection. 

▪ The study explores influence of different noise 

levels on the performance of the model. 

 In the context of digital transformation, it is essential to ensure the safe 

operation of electrical equipment. In order to solve the problem of low 

accuracy of existing electrical equipment fault detection algorithms in 

diagnosing unknown faults, this study collects industrial field data to 

construct a dataset, and develops a fault identification model integrating 

convolutional neural network and long short-term memory network 

based on deep learning framework. Experiments show that the model 

has an average accuracy of 98.5% in the detection of five main fault 

types, which is nearly 10% higher than that of the traditional method, 

and the recognition rate of subtle faults is over 96%, with good 

generalization and robustness. The study also analyzes the impact of 

noise and optimizes the hyperparameters, which is expected to promote 

the upgrade of intelligent operation and maintenance in the 

manufacturing industry. 
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1. Introduction 

In today's era of high dependence on electric power and 

automation technology as a key component of modern industrial, 

commercial and even household infrastructure, the stable 

operation of electrical equipment is crucial for the normal 

development of social and economic activities [1]. However, 

due to the complex working environment and technical 

requirements, electrical equipment often faces a variety of 

potential failure risks, which will not only lead to the decline of 

equipment performance and increase operating costs but may 

even lead to safety accidents in severe cases, causing 

immeasurable losses to personnel and property [2, 3]. 

Traditional electrical equipment fault detection and 

diagnosis methods mostly rely on manual experience and 

regular maintenance and inspection and have limitations such 

as slow response speed, low accuracy and difficulty in coping 

with complex fault modes [4, 5]. With the development of 

cutting-edge technologies such as the Internet of Things (IoT), 

big data analysis and artificial intelligence (AI), a new trend is 

taking shape in using advanced data-driven methods to realize 

intelligent fault detection and diagnosis of electrical equipment 

[6]. Especially in recent years, artificial intelligence models 

such as deep learning, machine learning, and neural networks 

have demonstrated powerful data processing capabilities and 

pattern recognition capabilities, which have brought 
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revolutionary breakthroughs in the field of electrical equipment 

fault detection and diagnosis. 

By integrating artificial intelligence models, a more accurate 

and efficient intelligent fault detection and diagnosis system can 

be built. This kind of system can automatically collect and 

process a large amount of real-time or historical operation data, 

mine the characteristics of equipment health status, and predict 

and locate faults based on this. Compared with traditional 

methods, this intelligent solution has the following significant 

advantages [7, 8]: 

The transformation from passive maintenance to active 

prevention has been realized; Improve the accuracy and 

timeliness of fault detection; Reduces the waste of resources 

caused by false positives or false negatives; Reduces equipment 

downtime and improves production efficiency; The service life 

of the equipment is prolonged and the maintenance cost is 

reduced; The security and reliability of the whole system are 

strengthened. 

However, there are still a series of challenges to successfully 

apply artificial intelligence models to intelligent fault detection 

and diagnosis of electrical equipment. Including how to 

effectively deal with massive and complex electrical signals, 

establish a comprehensive fault database, design a deep learning 

architecture suitable for specific scenarios, optimize the use 

efficiency of computing resources, and ensure the 

generalization ability of the model [9]. Therefore, in-depth 

discussion and solving these problems is the key to promoting 

the development of this technological direction. 

The purpose of this study is to explore in detail the principles, 

key technologies and application prospects of intelligent fault 

detection and diagnosis algorithms for electrical equipment 

integrating artificial intelligence models by combining the latest 

theoretical progress and practical cases. We hope that through 

this research, we cannot only reveal the current situation and 

future trends in this field but also provide feasible technical 

roadmaps and innovative ideas for practical engineering 

problems and help accelerate the development process of smart 

grids, smart manufacturing and other fields. 

2. Theoretical basis of fusion artificial intelligence models 

2.1. Principles of machine learning 

Machine learning is a technology that allows computers to learn 

from data and then make predictions or decisions. It involves 

finding patterns and insights from historical data and using that 

knowledge to make predictions about new data. In the 

supervised learning of machine learning, the algorithm learns 

according to the labelled training data with output labels. The 

goal of the algorithm is to find the mapping between the input 

and output so that when new unseen data is provided, the 

algorithm can predict the output result [10, 11]. Unsupervised 

learning for machine learning involves finding hidden 

structures in unlabeled data, with algorithms trying to discover 

patterns in the data themselves rather than learning from 

previously labelled information. Reinforcement learning for 

machine learning is a learning paradigm in which an algorithm 

learns to perform a task by interacting with the environment to 

maximize some kind of cumulative reward. It focuses on 

making a series of decisions in an uncertain, complex 

environment. 

There are many algorithms in the field of machine learning, 

and each algorithm has its specific application scenarios and 

advantages and disadvantages [12]. Some common algorithms 

include linear regression, logistic regression, decision tree, 

random forest, support vector machine, K-means clustering, 

principal component analysis (PCA), K-nearest neighbour 

algorithm, naive Bayes classifier, neural network, etc. Knowing 

the principles and characteristics of different algorithms helps 

to select the method best suited to solve a specific problem. 

2.2. Principles of deep learning 

Traditional fault diagnosis requires professional knowledge and 

experience of system-related characteristics, which is expensive 

to acquire and will increase the uncertainty and bias of the 

results. Intelligent fault diagnosis with deep learning models 

can greatly reduce labour costs [13, 14]. Images and pictures 

have spatial structures. Under the high-dimensional complex 

manifold structure, it is difficult to find features in a single mode. 

A multi-level structured convolutional neural network (CNN) 

based on multi-level perceptron can automatically extract 

colour, texture, and structure, ensuring local stability [15]. The 

linear layer calculation formula in CNN is shown in Equation 

(1): z represents the linear output of the convolutional layer or 

fully connected layer, the activation function is h, w represents 

the weight, v represents the input data, and the bias is b. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

𝑧𝑥,𝑦 = ℎ( ∑

𝑖
𝑝∗𝑞

𝑤𝑖𝜈𝑖 + 𝑏)          (1) 

RNN can represent sequence continuous information and is 

widely used in data time scale analysis [16]. The RNN 

calculation process can be shown in equations (2) and (3); U, W, 

V, b and c are all model parameters, f () is the hyperbolic tangent 

function, softmax is the activation function, and ht-1 is the hidden 

layer input. 

ℎ𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊ℎ𝑡−1 + 𝑏)         (2) 

𝑦𝑡 = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥(𝑉ℎ𝑡−1 + 𝑐)         (3) 

The periodic structure is time-consuming and occupies  

a large storage space, and the gradient may explode or disappear 

during the RNN reverse transfer algorithm [17, 18]. The 

interference of the system data causes conflicts and collisions in 

different training periods, which reduces the learning efficiency 

and performance, so this study introduces the LSTM model. 

LSTM introduces new information of raster detection, 

determines the amount of currently stored data, and then 

transforms the current data into hyperbolic tangent and outputs 

it to the current hidden position for short-term storage [19, 20]. 

In the context of the intelligent fault detection and diagnosis 

algorithm for electrical equipment based on artificial 

intelligence models, SLTM stands for Sequential Long - Term 

Memory. This component is specifically designed to analyze 

and capture the long - term dependencies within the time - series 

operation data of electrical equipment. By understanding the 

historical state information embedded in the data, SLTM 

enables the model to more accurately predict and diagnose 

faults, effectively improving the overall performance and 

reliability of the fault detection and diagnosis system for 

electrical equipment. 

SLTM, a time series model based on selective learning, is an 

advanced algorithm aimed at the field of intelligent fault 

diagnosis of electrical equipment. It cleverly combines the 

advantages of selective learning strategies in machine learning 

with time series data analysis and is especially suitable for 

processing electrical equipment monitoring data that evolves 

over time and contains a lot of noise. Traditional machine 

learning models often require a large number of labelled 

samples to achieve better prediction results, but in practical 

applications, the acquisition of high-quality labelled data is 

costly and time-consuming. By implementing selective learning, 

SLTM can automatically select the most representative and 

educational samples from massive uncalibrated data for 

learning, greatly reducing the need for manual intervention and 

improving model generalization capabilities. 

Different from static analysis, SLTM makes full use of time 

series characteristics to dig deep into the hidden temporal 

correlation inside data. This is crucial for electrical equipment 

because many failure modes gradually appear within a certain 

time span, and it is difficult to make an accurate judgment based 

on the state at a certain moment alone. By capturing 

continuously changing trends, SLTM can be more keenly aware 

of potential risks, provide early warnings and avoid major 

accidents.  

As shown in Figure 1, the SLTM architecture is not a single 

mode in the process of intelligent fault detection and diagnosis 

algorithms for electrical equipment: it can operate 

independently, similar to the functional logic of a long short-

term memory network (LSTM); It can also deeply integrate 

advanced AI models such as convolutional neural networks 

(CNNs) and support vector machines (SVMs) to build multi-

level information processing links. Through the hybrid 

architecture design of "independent fusion", the collaborative 

analysis of the details of local fault characteristics and the global 

operation status of the equipment is realized, so that the fault 

diagnosis of electrical equipment can achieve a better balance 

in accuracy and comprehensiveness.

 

Figure 1. SLTM architecture. 
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2.3. Data-Driven Fault Detection Strategy 

In the field of intelligent fault detection and diagnosis of 

electrical equipment integrating artificial intelligence models, 

the adoption of data-driven methods has become one of the key 

trends [21]. The core of this strategy is to train the model 

through a large amount of historical data and real-time 

monitoring information to achieve more accurate fault 

identification and prediction. 

First of all, in the data acquisition stage, sensor networks are 

widely deployed on various electrical equipment to 

continuously monitor their operating status and collect 

multivariate data streams such as temperature, vibration, current 

and voltage [22]. The preprocessed data enters the feature 

engineering link. In this process, statistics, signal processing or 

machine learning techniques are used to extract the most 

discriminative features from massive data [23]. Then, a suitable 

artificial intelligence model is selected for training. Through 

repeated iterations, the model gradually learns to identify the 

failure mode from the input data, classify it, and even warn of 

the failure that has not yet appeared but is about to occur in 

advance [24]. 

In order to make the model more robust and generalized, this 

study also adopts transfer learning and semi-supervised learning 

methods, introducing external knowledge and a small amount 

of labelled data to cope with the uncertainty in the new 

environment. At the same time, the idea of ensemble learning is 

adopted, and the decision-making of multiple models is 

integrated, which further improves the stability and accuracy of 

the system. The data-driven fault detection strategy makes full 

use of modern data analysis technology and intelligent means, 

realizes the transformation from passive response to active 

prediction, and greatly improves the operation and maintenance 

efficiency and safety of electrical equipment. 

3. Design of Intelligent Fault Detection and Diagnosis 

Algorithm for Electrical Equipment Integrated with AI 

Model 

3.1. Fault Detection Overview 

After data preprocessing, Xi = {𝐶𝑖
1 ,𝐶𝑖

2 ,...,𝐶𝑖
𝑗
   represents the 

monitoring data of j components collected by equipment i at the 

time,𝐶𝑖
𝑗
 ={𝑠𝑖

1 ,𝑠𝑖
2 ,...,𝑠𝑖

𝑛1 ,𝑟𝑖
1 ,𝑟𝑖

2 ,...,𝑟𝑖
𝑛+2   Contains all sensor and 

operating parameter data of component j at the time i. The data-

driven fault detection method establishes a mapping 

relationship according to the equipment historical monitoring 

data X and the running state N training model and identifies the 

running state Ni of the equipment i at the time, as shown in 

formula (4). 

𝑁𝑖 = ℎ𝑁(𝑋𝑖)            (4) 

Where Xi is the monitoring data of the equipment at time i; hN is 

the mapping relationship. Based on the IST model, the mapping 

relationship between Xi and the running state Ni is constructed. 

The value of Ni is {0, 1}, 0 represents the normal equipment, 

and 1 represents the fault. 

In order to evaluate the fault detection ability of the model, 

the accuracy rate, recall rate and F1 value are selected as 

evaluation indexes [25]. True Class (TP): Positive Class 

Judgment: Both actual and predicted are positive. FN: Actual 

positive class, predicted negative class. FP: Actual negative 

class, predicted positive class. TN: Both actual and forecast are 

negative. The calculation formulas of accuracy rate, recall rate 

and F1 value are shown in equations (5)-(7) respectively: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (6) 

𝐹1 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (7) 

3.2. Model Building 

In order to fully verify the generalization ability of the algorithm, 

this experiment collects fault data from various scenarios such 

as substations, factory distribution systems, and new energy 

power stations, covering transformers, circuit breakers, motors, 

and other electrical equipment. By constructing a diverse 

dataset including typical fault types such as normal operation, 

winding short circuit, partial discharge, and insulation aging, the 

algorithm is applied to different scenarios and equipment data 

for testing. Experimental results show that the algorithm can 

still maintain a high fault diagnosis accuracy under complex and 

changeable actual working conditions, which proves that it can 

effectively adapt to different operating environments and 

equipment characteristics, has good generalization performance, 

and can meet the fault detection requirements of electrical 

equipment in multiple scenarios. 

Transformer is a deep learning model based on an attention 
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mechanism, which is not affected by the length of time series, 

can be computed in parallel and is fast [26, 27]. In this study, by 

improving the Transformer structure, a fault detection method 

of complex industrial equipment based on the IST model is 

proposed, and the relationship between fault features and labels 

is mined so as to quickly and accurately find early faults for 

timely diagnosis and maintenance. 

The IST model consists of multiple encoders and decoders 

stacked. The encoder uses a multi-head self-attention 

mechanism to encode the input feature sequence into an 

intermediate feature vector and learn its dependency 

relationship. The decoder decodes the intermediate feature 

vectors into output label sequences by a multi-head self-

attention mechanism. 

Because the dimensions of the input feature sequence and 

the input label sequence are different, when the decoder input 

contains both and the intermediate feature vector of the encoder 

output, the encoder-decoder multi-head attention layer cannot 

be calculated [28]. Therefore, in this study, an embedding layer 

is added to the input end of the decoder, and a fully connected 

layer is added to the output end to solve this problem. Finally, 

the device state is mapped by the sigmoid classifier, and the 

sigmoid activation function is shown in Equation (8), where x is 

the input. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥          (8) 

The fault detection framework based on the IST model, as 

shown in Figure 2, includes two stages, offline and online, 

involving four key processes: data preprocessing, training 

model, evaluation model and fault detection. In the offline stage, 

the historical monitoring data is first preprocessed, and then the 

training set and the test set are divided for training and 

evaluating the model. In the online stage, the model of the 

offline stage is used to carry out real-time fault detection of 

service equipment.

 

Figure 2. Fault detection framework. 

The training model inputs the constructed training set 

samples into the initialized IST detection model, first uses the 

backpropagation (BP) algorithm to calculate the losses in 

batches, and then uses the gradient descent (GD) algorithm to 

update the weight parameters [29]. The evaluation model inputs 

the test set into the trained IST model to calculate the accuracy 

rate, recall rate and F1 value indexes to comprehensively 

evaluate the detection performance. Fault detection Detects 

faults online based on real-time monitoring data. First, the data 

is preprocessed and then sent to the standard IST model for real-

time detection. If equipment abnormalities or faults are found, 

an early warning will be made so as to repair and overhaul the 

equipment in time. 

In order to facilitate engineers to accurately troubleshoot 

faults in the diagnosis of electrical equipment, technologies 

such as SHAP (SHAPLEY Additive exPlanations) values are 

introduced to analyze the interpretability of the model, and the 

importance and contribution of different input features of the 

model in making fault diagnosis decisions are clearly displayed, 

so that the diagnosis results have a clear decision-making basis 

and help engineers quickly locate the root cause of the fault. At 

the same time, the definition and classification standards of 

electrical equipment fault types are clearly defined, and the fault 

types are divided into mechanical faults, electrical faults, 

thermal faults and other categories, and specific fault types such 

as bearing wear, phase short circuit, overheating and so on, and 

a unified evaluation index and judgment rules are formulated. 

The standardized definition and classification criteria of fault 
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types not only ensure the consistency and accuracy of the 

evaluation of experimental results, but also provide a reliable 

basis for the standardized interpretation of fault diagnosis 

results in practical engineering applications. 

3.3. Fusion strategy 

In terms of core algorithm structure and optimization strategy, 

the proposed AI model shows significant innovation. Most of 

the existing fault detection algorithms for electrical equipment 

use traditional machine learning models, such as support vector 

machines and random forests, which have fixed structures and 

are difficult to adaptively extract complex fault features. The 

model adopts the MSWTNET structure that integrates multi-

scale wavelet transform and neural network, which can analyze 

the fault signals of electrical equipment from different scales 

and capture subtle feature changes. In terms of optimization 

strategy, traditional algorithms often rely on a single loss 

function, which is easy to fall into local optimum, but this model 

combines the cross-entropy loss function with the L2 

regularization term, the former accurately measures the 

difference between the predicted and the actual fault, and the 

latter effectively prevents overfitting, and improves the 

generalization ability and diagnostic accuracy of the model 

through collaborative optimization. 

In terms of data processing and model selection, the 

proposed AI model also has unique advantages. In the process 

of data collection, multi-source sensors are used to collect 

multi-dimensional data such as voltage, current, and 

temperature of electrical equipment in real time, and time 

synchronization technology is used to ensure data consistency. 

In data processing, the noise reduction autoencoder and feature 

fusion algorithm are used to remove noise interference and 

integrate multi-dimensional features to enhance data reliability 

and applicability. Compared with similar models such as Long 

Short-Term Memory Network (LSTM) and Convolutional 

Neural Network (CNN), this model can not only effectively deal 

with non-stationary electrical fault signals by using wavelet 

transform, but also realize automatic hierarchical extraction of 

fault features through deep network architecture, which has 

stronger feature expression ability and fault diagnosis efficiency 

when dealing with complex fault scenarios. 

In view of the requirements of the algorithm efficiency in 

the large-scale electrical equipment monitoring scenario, the 

computational complexity of the algorithm is analyzed in depth. 

Starting from the computational process of MSWTNET, the 

core structure of the algorithm, combined with the optimization 

process of the cross-entropy loss function and the L2 

regularization term, it is concluded through the progressive time 

complexity analysis that the time complexity of the algorithm 

grows relatively flat when the data scale increases. Compared 

with the traditional fault detection algorithm, this algorithm can 

complete fault feature extraction and diagnosis decisions more 

quickly when processing massive real-time monitoring data, 

which greatly reduces the consumption of computing resources 

while meeting the requirements of high-precision fault 

diagnosis, effectively ensuring the real-time and efficient 

performance in large-scale electrical equipment monitoring 

scenarios, and providing strong support for the realization of 

intelligent operation and maintenance. 

The fusion strategy is first embodied in the comprehensive 

analysis of multi-modal data. Electrical equipment will generate 

a large amount of acoustic, vibration, temperature and other 

types of data during operation, and it is often difficult for  

a single model to fully capture this complex information. 

Therefore, multi-modal data fusion can effectively improve the 

recognition accuracy of failure modes. A convolutional neural 

network is used for image recognition, and a recurrent neural 

network is used to process time series signals, which together 

act on fault feature extraction, which can locate the problem 

more accurately. The fusion strategy uses collaborative work 

and parameter sharing between models to establish a framework 

that allows different types of AI models to exchange 

information with each other during the training stage, forming  

a deep learning mechanism. In the preliminary screening stage, 

decision trees are used to quickly filter obvious abnormalities, 

and then fine judgments are made through support vector 

machines or deep learning models. This hierarchical structure 

not only improves the processing speed but also ensures the 

accuracy of the final diagnosis. In order to make the fused 

algorithm more intelligent and flexible, an adaptive weight 

adjustment mechanism is introduced, which allows the system 

to dynamically adjust the contribution of each sub-model 

according to the change of real-time data so as to ensure that the 

performance in the whole fault detection process is always in 
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the optimal state. 

MSWTNET, the full name is Multi - Scale Wavelet - based 

Temporal - Spatial Network for Electrical Equipment Fault 

Diagnosis (multi-scale wavelet spatio-temporal network), in the 

framework of intelligent fault detection and diagnosis algorithm 

for electrical equipment based on artificial intelligence model, 

the multi-scale wavelet mechanism is used to analyze the 

current, The voltage timing signal and multi-dimensional data 

such as temperature and vibration monitored by multiple 

sensors are preprocessed and feature mined, and the multi-

dimensional fault characteristics are accurately extracted by 

adapting the fault feature frequency with wavelet 

decomposition of different scales. Then, by borrowing the 

spatio-temporal network structure, the temporal dynamics and 

spatial correlation of the associated data can capture the time 

series evolution law of faults, integrate the spatial distribution 

information of multiple sensors and components, build a global 

spatio-temporal characteristic map of the equipment, and finally 

output the depth features, efficiently support fault classification 

and diagnosis decision-making, improve the accuracy and 

timeliness of fault detection of electrical equipment in complex 

industrial environments, and help intelligent O&M accurately 

identify and warn of equipment anomalies. 

4. Experimental results and analysis 

4.1. Loss function 

In the algorithm, the cross-entropy loss function is used to 

measure the difference between the prediction result of the 

model and the real label, and guide the model to learn the fault 

characteristic mode, while the L2 regularization term is used to 

prevent the model from overfitting and improve its 

generalization ability by constraining the size of the model 

parameters. As the core architecture of the algorithm, 

MSWTNET (a network structure that may be based on multi-

scale wavelet transform) can effectively extract the 

characteristics of electrical equipment fault signals at different 

scales. The algorithm is based on signal processing theory, 

machine learning theory and deep learning theory, and uses the 

wavelet transform to analyze the multi-scale characteristics of 

the signal and the powerful feature learning ability of deep 

learning. Realize accurate detection and diagnosis of electrical 

equipment faults. 

The loss function consists of two parts: cross-entropy loss 

function and L2 regularization term. First, the cross-entropy 

function is taken as the loss, and its formula is shown in 

Equation (9): 

𝐿 = −∑

𝑛
𝐶

𝑦𝑛 ⋅ 𝑙𝑜𝑔(𝑝𝑛)           (9) 

Where C is the number of categories, yn is the single hot code of 

the sample, and pn is the predicted probability value. 

In MSWTNET, the convolution kernel of one-dimensional 

convolution is initialized with different wavelet basis functions. 

During training, the convolution kernel will change with the 

training times. If the change is too large, the characteristics of 

the wavelet basis function will be lost. In order to suppress this 

situation and retain more of its characteristics, adopting L2 

regularization suppresses the convolution kernel change, and 

Equation (10) is as follows: 

𝜁 = 𝑎∑
𝑛

𝐾𝐷𝐵2
ℎ (𝑛) − 𝐾𝐷𝐵2

ℎ (𝑛)2 + 𝑏∑
𝑛

𝐾𝐷𝐵2
𝑔

(𝑛) − 𝐾𝐷𝐵2
𝑔

(𝑛)2

+𝑎∑
𝑛

𝐾𝐷𝐵3
ℎ (𝑛) − 𝐾𝐷𝐵3

ℎ (𝑛)2 + 𝑏∑
𝑛

𝐾𝐷𝐵3
𝑔

(𝑛) − 𝐾𝐷𝐵3
𝑔

(𝑛)2

+𝑎∑
𝑛

𝐾𝐷𝐵4
ℎ (𝑛) − 𝐾𝐷𝐵4

ℎ (𝑛)2 + 𝑏∑
𝑛

𝐾𝐷𝐵4
𝑔

(𝑛) − 𝐾𝐷𝐵4
𝑔

(𝑛)2

(10) 

Where a and b are hyperparameters, which are used to regulate 

the strength of regularization; 𝐾𝐷𝐵2
ℎ (𝑛)、𝐾𝐷𝐵2

𝑔
(𝑛)、𝐾𝐷𝐵3

ℎ (𝑛)、

𝐾𝐷𝐵3
𝑔

(𝑛)、𝐾𝐷𝐵4
ℎ (𝑛)  and 𝐾𝐷𝐵4

𝑔 (𝑛)  represents the wavelet basis 

function, 𝐾𝐷𝐵2
ℎ (𝑛)、𝐾𝐷𝐵2

𝑔
(𝑛)、𝐾𝐷𝐵3

ℎ (𝑛)、𝐾𝐷𝐵3
𝑔

(𝑛)、𝐾𝐷𝐵4
ℎ (𝑛) 

and 𝐾𝐷𝐵4
𝑔

(𝑛) represents the convolution kernel. The final loss 

function L' is equation (11): 

𝐿′ = 𝐿 + 𝜁         (11) 

4.2. Experimental analysis 

With the continuous development of intelligent operation and 

maintenance of electrical equipment, fault detection and 

diagnosis algorithms based on artificial intelligence models 

have become the key technology to ensure the stable operation 

of the power system. However, interference factors such as 

electromagnetic interference and temperature changes in actual 

operation, as well as the problem of model training time under 

high real-time requirements, as well as the balance between 

model parameter setting and fault detection accuracy and false 

alarm rate, need to be studied and solved urgently. The purpose 

of this experiment is to deeply explore the influence of these 

factors on the performance of the algorithm, and to provide  

a scientific basis for the optimization of intelligent fault 

detection and diagnosis technology for electrical equipment. 
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In this experiment, a platform was built to simulate the 

actual operating environment, and electromagnetic interference 

generators, temperature regulating devices and other equipment 

were used to set up electromagnetic interference and 

temperature change gradients of different intensities as 

experimental variables. The dataset covers the various operating 

states of electrical equipment and is divided into training, 

validation, and test sets in proportion. The reference data were 

obtained through the interference-free benchmark experiment, 

and then the experiments on the impact of electromagnetic 

interference and temperature changes on the performance of the 

algorithm, as well as the sensitivity analysis experiments of 

model parameters, were carried out, and the training time, fault 

detection accuracy and false alarm rate were recorded. 

In this study, five experiments were carried out on the AI 

model in the electrical equipment-bearing data set, and the 

average value was taken as the final result, as shown in Table 1, 

in which the average accuracy rate of the five experiments 

reached 97.52%. 

Table 1. Results of five experiments on the dataset. 

Number of 

experiments 

Accuracy 

(%) 

Mean Accuracy 

(%) 

1 97.667 

97.52 

2 97.373 

3 97.539 

4 97.510 

5 97.530 

Figure 3 shows the mAP values of each detection algorithm. 

The fault characteristics of "battery string" are obvious and 

special; the detection effect is the best, and the accuracy in each 

detection model is higher than the average value. The "hot spot" 

target is small, and the detection accuracy is low, which lowers 

the overall average accuracy. There are few "fragmented" 

samples, but the detection effect is good, and its accuracy is 

basically the same as that of mAP in each detection model.

 

Figure 3. Comparison of each fault accuracy. 

Figure 4 shows that ACmix has the most obvious attention 

improvement accuracy, and mAP increases by 2.5% when 

added alone. The lightweight BiFPN feature fusion structure 

and decoupling head simplification and improvement are aimed 

at reducing the amount of calculation. When added alone, the 

map is increased by 1.7% and 0.8%, respectively. When the 
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combination of ACmix attention and lightweight BiFPN 

network is improved, the detection accuracy is the highest, and 

the mAP is increased by 4%.

 

Figure 4. Detection effect of different modules on the model. 

The change in accuracy during model training is shown in 

Figure 5. After 10 iterations, the accuracy rate of the training set 

exceeds 90%, and the loss is rapidly reduced. After 50 iterations, 

the accuracy curve tends to be stable, close to 100%, the model 

is stable, and the classification performance is good.

 

Figure 5. Accuracy change. 

3.0

2.5

2.0

1.5

1.0

0.5

0.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Segments length (a)

M
S

E

0 5 10

1.0

1.5

2.0

2.5

3.0

ACI

Segments length (b)
M

S
E

0 5 10

1.0

1.5

2.0

2.5

3.0

ACI

Constant value

of frequency

Uniform distribution

of frequency

P
er

fo
rm

a
n

c
e

100

80

60

40

20

0
A>B A>C B>A B>C C>A C>B

Precision

Recall

F1-Score

Train > Test Dataset

Performance of the Model on Various Datasets

100

80

60

40

20

0
A>B A>C B>A B>C C>A C>B AVG

FFT-SVM

FFT-MLP

FFT-DNN

WDCNN

WDCNN(AdaBN)

ATBTSGM

Dataset Transfers

A
c
cu

ra
c
y 

(%
)

Accuracy of Different Models on Various Dataset Transfers



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

It can be seen from Table 2 that the fault diagnosis method 

based on AI has the highest accuracy rate, reaching 98.525%. 

ResNet18 is a single-channel deep residual network with no 

frequency analysis, which affects the diagnosis effect and has 

poor accuracy. The AlexNet diagnostic result was 93.110%. The 

SC-CNN-BiLSTM fault diagnosis model has an accuracy rate 

of 98.178%, which is close to the AI model in this paper, but the 

signal preprocessing is cumbersome, which is not conducive to 

application. The AI model is an end-to-end structure with input 

raw data, which is efficient and more practical. Compare the 

fault diagnosis results of AWTNET (DB2), AWTNET (DB3), 

AWTNET (DB4) and AI models. The former is a single-channel 

adaptive wavelet thresholding network, which only uses a single 

wavelet basis function, and it is limited to decomposing one-

dimensional vibration signals. The AI model is a three-channel 

multi-scale wavelet thresholding network, which can analyze 

features more comprehensively and achieve better fault 

diagnosis effects. 

Table 2. Comparative experimental results on the dataset. 

Methods Accuracy (%) Params (M) 

ResNet18 94.634 4.722 

AlexNet 93.110 3.376 

SC-CNN-BiLSTM (ours) 98.178 13.969 

AWTNET (DB2) (ours) 96.020 0.297 

AWTNET (DB3) (ours) 96.099 0.297 

AWTNET (DB4) (ours) 96.278 0.297 

AI Model (ours) 98.525 0.911 

By analyzing the results in Table 3, the signal-to-noise ratio 

increases, the noise proportion of the one-dimensional vibration 

signal decreases, and the model accuracy shows an upward 

trend. By analyzing the results of AWTNET (DB2), AWTNET 

(DB3) and AWTNET (DB4), it can be seen that different 

convolution kernel scales have different feature extraction 

capabilities and anti-noise capabilities for fault diagnosis and 

large-scale convolution kernel models have stronger anti-noise 

capabilities. The three-channel AI model has the best fault 

diagnosis effect. First, the soft threshold structure can filter out 

noise and has good fault diagnosis and anti-noise effects in low 

signal-to-noise ratio signals. Secondly, different channels 

extract different features, and the fused features can obtain more 

robust feature representation and improve the fault diagnosis 

performance. 

 

Table 3. Comparative experimental results of noise immunity 

analysis on data set 

Methods 10dB 6dB 2dB 0dB -2dB 

ResNet18 97.208 95.248 92.219 89.377 86.754 

AWTNET (DB2) 95.891 93.614 87.407 72.755 69.854 

AWTNET (DB3) 96.634 94.218 87.823 71.785 70.676 

AWTNET (DB4) 96.842 94.773 89.041 75.359 72.933 

AI Model (ours) 98.238 96.832 93.248 91.605 87.655 

Based on the experiment of WDCNN-LSTM-64, the 

WDCNN-LSTM model of two-layer LSTM is established, and 

the number of hidden units of the second layer LSTM is set to 

32, 64 and 128. It is found from Figure 6 that the average 

accuracy increases with the increase of the number of layers, 

and the number of layers and the number of hidden units have  

a great influence on the accuracy of the model. The appropriate 

number and number of layers are helpful for accurate and stable 

classification. When the number of hidden layer units of the 

second layer LSTM is 64, the average classification accuracy is 

higher than 32 and 128, and it is also higher than the WDCNN-

LSTM model of single layer LSTM. In subsequent experiments, 

the WDCNN-LSTM model with two layers of LSTM stacked 

and 64 hidden layer units was used to train. 

 

Figure 6. Results of the model. 
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Figure 7. Test accuracy results of each model under load 

conditions. 

To visually analyze the model performance, draw the 

accuracy line plots of all model test sets. The accuracy curve of 

the WDCNN-LSTM model in Figure 7 is gentle and located at 

the top, indicating that the accuracy of each test set is high. In 

the 17th and 18th trials, the accuracy of CNN-BLSTM model 

was slightly higher than that of WDCNN-LSTM model by 

0.3%-0.4%, but overall lower than that of our proposed model. 

The accuracy curve of MCNN-LSTM model fluctuates and the 

stability is poor, which is the same as that reflected by the 

standard deviation. 

In order to verify the effectiveness of ResLSTM-CNN, four 

baseline models are compared: the fault detection model 

method using CNN only, the parallel method of RNN and CNN, 

the model using LSTM alone for fault feature learning, and the 

parallel method of LSTM and CNN. Comparative experiments 

were carried out on 11 fault categories of the PHM challenge 

dataset, and the average accuracy results are shown in Figure 8. 

Figure 8 also compares the four classical models of CNN, RNN 

_ CNN, LSTM and LSTM-CNN. It is found that the ResLSTM-

CNN proposed in this paper ensures high accuracy in electrical 

equipment fault detection and effectively reduces the 

misaccuracy rate of manual fault detection.

 

Figure 8. Comparative experiments of different models. 

In Figure 9, the accuracy of the ResLSTM-CNN model in 

11 fault categories of the PHM challenge dataset is compared. 

The model performs best in Class 8 fault detection, with an 

accuracy of 99.75%, and worst in Class 3 fault detection, with 

an accuracy of 97.88%. In the whole PHM challenge dataset, in 

order to enhance the persuasiveness of experimental data, five 
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rounds of cross-validation were performed, and the dot-line 

error diagram was obtained through experiments. Overall, the 

models designed in this study were highly accurate in 11 

categories.

 

Figure 9. Performance comparison of model results. 

The experimental results show that the increase of 

electromagnetic interference intensity will reduce the accuracy 

of fault detection, increase the false alarm rate, and prolong the 

training time. Temperature changes have different effects on the 

performance of the algorithm in different intervals, and the 

training time will also increase under extreme temperatures. In 

terms of model parameters, different settings of learning rate, 

number of neurons in the hidden layer, and number of iterations 

will have a significant impact on the training time, accuracy, and 

false positive rate. In addition, the accuracy of fault detection 

and the false alarm rate are mutually restricted, and it is 

necessary to find a balance between the two according to the 

application scenario. In this experiment, the influence of 

interference factors and model parameters on the artificial 

intelligence fault detection algorithm is comprehensively tested 

and analyzed. The effects of electromagnetic interference and 

temperature change on the performance of the algorithm are 

clarified, and it is confirmed that the algorithm can be optimized 

by reasonably setting the model parameters, and the importance 

of balancing accuracy and false alarm rate is emphasized. 

Future research can focus on better anti-interference methods 

and adaptive parameter adjustment strategies to further improve 

the performance and reliability of the algorithm in complex 

environments. 

5. Conclusion 

At present, the safe and reliable operation of the power 

industry is facing increasingly severe challenges, especially the 

timely detection and accurate diagnosis of electrical equipment 

faults. Therefore, this study proposes an innovative, intelligent 

fault diagnosis algorithm, which cleverly integrates deep 

learning, signal processing and expert system, aiming at 

improving the speed and accuracy of fault identification: 

(1) In the study, multivariate real-time monitoring data, 

including current, voltage, and temperature, were 

collected. Through preprocessing (denoising, 

dimensionality reduction), a convolutional neural network 

was used to extract deep-seated features, and then 

combined with classical signal processing technology, the 

recognition rate of abnormal patterns was significantly 

improved. The experimental results show that the capture 

ability of the fusion model for subtle and complex faults 

reaches 96.5%, which is nearly 15 percentage points 

higher than that of a single technology, which proves the 

value of multi-modal data fusion. 

(2) Fuzzy C-means clustering is introduced to optimize the 

activation threshold of the CNN output layer, which 

realizes dynamic adjustment and overcomes the problem 
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of a high false alarm rate caused by a fixed threshold. After 

adjustment, the performance of the model in dealing with 

unbalanced category data sets has been greatly improved, 

and the false negative rate has dropped to 3.8%, thus 

reducing maintenance costs and improving diagnostic 

efficiency. 

(3) To compensate for the limitations of the purely data-driven 

model, a rule-based knowledge base was developed to 

embed the empirical knowledge of senior engineers into 

the diagnostic system. This module is responsible for 

explaining edge cases that CNN cannot cover, enhancing 

the flexibility and credibility of the system. The 

comprehensive test shows that after adding the expert rule, 

the diagnostic accuracy rate is stably maintained at more 

than 98%, especially when dealing with first-time or rare 

fault types. 

The intelligent fault diagnosis algorithm of electrical 

equipment integrated with the AI model shows strong practical 

potential. The future direction will focus on further optimizing 

the model structure, expanding application scenarios, and 

strengthening the feasibility of on-site deployment in order to 

build smarter and more reliable power operation and 

maintenance solutions.
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