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Highlights  Abstract  

▪ There is a relationship between the type of 

failure and the time of its occurrence. 

▪ Bad weather conditions affect the time of UAV 

failure. 

▪ Type of failure and the time of its occurrence is 

information useful in operating the UAV. 

 This article focuses on the study of the reliability of unmanned aerial 

vehicles (UAVs), whose role in various sectors, including the rescue 

sector, is dynamically increasing. The aim of the study was to analyze 

the key factors affecting UAV failure rate and determine their impact on 

the time to failure. Statistical analysis and simulations were conducted 

within the study, based on collected data, to investigate the relationship 

between the type of failure and the system's time to failure.  

The results of the analyses showed that the time to failure differs 

significantly depending on the cause, particularly for battery-related 

failures. It was also found that unfavorable atmospheric conditions, such 

as strong wind, high temperature, and high humidity, significantly 

shorten the system's time to failure compared to normal conditions, with 

this effect being similar for different types of unfavorable weather. 
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1. Introduction 

Research on the failure rates of unmanned aerial vehicles 

(UAVs) has gained particular significance with the rapid 

increase in their use across civil, commercial, and military 

sectors [4, 5]. One of the key factors associated with the 

development of this technology is ensuring the stability, 

duration, and safety of operations, thus ensuring smooth 

integration with airspace. The literature on the subject 

highlights several factors that influence drone failure rates, 

which can be categorized into three main groups: technical 

factors [8, 9], environmental factors [11, 12], and those related 

to human error [6, 7, 10]. Each of these categories represents  

a different source of risks and potential malfunctions that may 

lead to failure or directly to an accident involving unmanned 

aerial vehicles [1]. 

Technical factors primarily include design defects, 

component wear, software malfunctions, and power supply 

issues [17, 18]. Examples of such issues include engine failures 

[14], propeller problems [13], control system malfunctions, 

battery failures, or communication system problems [23].  

A frequent source of issues are also software errors, including 

those resulting from incorrect coding as well as lack of updates 

to operating systems or controlling applications [19, 20]. 

Furthermore, poor quality of materials used and improper 

maintenance of the aircraft can significantly increase the risk of 

technical failure [15, 16], especially in situations when 

commercial UAVs are used in rescue and crisis operations.  

 

Eksploatacja i Niezawodnosc – Maintenance and Reliability 
Volume 28 (2026), Issue 1 

journal homepage: http://www.ein.org.pl 
 

 

Article citation info: 
Gładysz P, Merkisz J, Borucka A, Reliability of Unmanned Aerial Vehicles in the Context of Selected Factors, Eksploatacja i 
Niezawodnosc – Maintenance and Reliability 2026: 28(1) http://doi.org/10.17531/ein/210312 

(*) Corresponding author. 

E-mail addresses: 

 

P. Gładysz (ORCID: 0000-0002-4676-2006) phddron@gmail.com, J. Merkisz (ORCID: 0000-0002-1389-0503) 
jerzy.merkisz@put.poznan.pl, A. Borucka (ORCID: 0000-0002-7892-9640) anna.borucka@wat.edu.pl,  



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 28, No. 1, 2026 

 

Another group consists of environmental factors, which 

stem from the conditions in which unmanned aerial vehicles 

conduct flights. These include, among others, adverse weather 

and climatic conditions such as strong winds, rainfall, snowfall, 

fog, or fluctuating temperatures, as well as lightning strikes [2, 

21, 22]. The presence of terrain obstacles, such as trees, power 

lines, or tall buildings, also increases the risk of collisions and 

equipment damage [23, 24]. Additionally, GPS signal 

interference or electromagnetic disturbances, occurring for 

example near large industrial installations, may result in a loss 

of control over the device [25, 26]. Another significant factor 

posing a threat during UAV operations is hacking and 

unauthorized pairing. Such activities may lead to the takeover 

of control over the drone, data theft, or disruption of its mission. 

Therefore, it is crucial to implement advanced cybersecurity 

measures, such as strong encryption and access control, in order 

to protect drones from unauthorized integration and ensure the 

continuity of safe aerial operations [43]. 

Equally important are factors related to human error [6, 7, 

10]. The literature emphasizes that insufficient operator training, 

improper mission planning, misjudgment of the situation, or 

non-compliance with operational procedures are among the 

main causes of failures and accidents [27, 28]. It often occurs 

that drone operators overestimate the capabilities of the 

equipment or disregard limitations resulting from 

environmental conditions, which leads to dangerous situations. 

Additionally, errors in system configuration, improper control, 

or failure to respond to warning signals from the system may 

contribute to uncontrolled events. It should also be emphasized 

that flying in crisis situations is characterized by a significant 

psychophysical load. Pilots conducting flights during rescue 

operations must deal with time pressure, fatigue, noise, light 

flashes, and extremely risky flight maneuvers.  

Thus, the failure rate of unmanned aerial vehicles is  

a complex and multifactorial phenomenon. Understanding and 

identifying the sources of potential threats – both technical, 

environmental, and those arising from human error – is crucial 

for improving the safety of operations involving unmanned 

aerial vehicles. A proper analysis of these factors enables the 

development of effective strategies for minimizing failure risks 

and enhancing the overall reliability of drone systems. 

Therefore, failure analysis is a frequently addressed topic in 

scientific publications. Many studies utilize a statistical 

approach. For instance, NTSB reports and the Aviation Safety 

Reporting System (ASRS) database are often sources of 

empirical data for regression analysis and hazard modeling, 

which help determine the probability of failure depending on 

flight time, weather conditions, or mission type [29, 30]. In 

works such as those by Clothier et al. [31], probabilistic models 

have been developed to predict the consequences of failures in 

the context of threats to people and infrastructure. Another 

commonly used research method is computer simulations [34] 

and numerical analyses [35], particularly in assessing the 

reliability of unmanned systems. Works by Ghazali et al. [32] 

and Iannace et al. [33] utilize artificial intelligence for fault 

detection. These studies have shown that the integration of 

diagnostic systems based on machine learning can significantly 

enhance UAVs' ability to identify and compensate for 

malfunctions in real-time. In [13], the authors proposed using  

a clustering algorithm – 𝑘 -means – to detect UAV failures 

during flight, focusing particularly on propeller malfunctions 

and failures. Field studies are also being conducted. Authors 

such as Salazar et al. [36, 37] have analyzed real-world cases of 

drone failures used in logistics and environmental monitoring. 

They demonstrated that the most common causes of failures are 

power issues (e.g., battery failures), communication disruptions, 

and software errors. The significant impact of weather 

conditions, especially wind and precipitation, on the reliability 

of UAV systems is also highlighted [41, 42]. 

In summary, the literature on drone failure rates covers  

a broad range of research methods, from statistical analysis and 

risk modeling, to computer simulations, empirical studies, and 

applications in real-world flight conditions. The results of these 

studies not only provide insights into the most frequent causes 

of malfunctions but also suggest directions for further 

development of technologies that enhance flight safety, such as 

autonomous diagnostic systems, system redundancy, and 

improved route planning algorithms that take risks into account. 

Overall, it can be stated that research on drone failure rates 

focuses on several key areas, including the identification of 

factors affecting the reliability of these devices, the 

development of methods for assessing their reliability, and the 

evaluation of the effectiveness of different approaches in 

minimizing failure risks.  
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This article presents an analysis and evaluation of the causes 

of battery failures in unmanned aerial vehicles used by the State 

and Volunteer Fire Departments, as well as a study of the 

distribution of time to failure using the Weibull distribution 

model. The application of this approach allowed for a detailed 

assessment of the characteristics and dynamics of damage under 

specific conditions of intensive operation. The unique nature of 

this work lies in the inclusion of real-world data from rescue 

systems, which has been rarely studied so far. This analysis not 

only allows for a better understanding of failure mechanisms 

but also enables the forecasting of battery lifespan under high-

risk operational conditions. The results obtained may provide  

a significant contribution to the development of reliability 

management methods for equipment used in emergency 

services. 

2. Material and methods 

2.1. Algorithm for the Study  

The study utilized data provided by pilots from the State and 

Volunteer Fire Departments regarding the operation of 

unmanned aerial vehicles (UAVs) collected during training and 

operational flights conducted by fire protection units. The entire 

aerial operation was carried out using an electrically powered 

quadcopter with two LiPo batteries. Based on the reports, 

databases were created containing information on the UAV's 

non-failure operation time, which is the dependent variable in 

this study, the cause of failure, and additionally describing the 

existing weather conditions that may have influenced the 

occurrence of the malfunction (high temperature, strong wind, 

humidity). The study was conducted according to the algorithm 

presented in Figure 1.

 

Figure 1. Research Procedure Algorithm 

According to the presented scheme, the first step involved 

characterizing and assessing the impact of selected factors on 

the non-failure operation time of unmanned aerial vehicles 

(UAVs). To verify the normality of the distribution, the 

Kolmogorov-Smirnov test was used [39, 40]. The Kolmogorov-

Smirnov test utilizes the distance between the empirical 

cumulative distribution function and the theoretical normal 

distribution 𝑁(𝜇, 𝜎2). It should be applied to a large number of 

samples. If the parameters of the distribution are not known, the 

estimators of the mean value 𝜇  and standard deviation 𝜎  are 
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determined on a sample basis. For an ordered realization of the 

sample 𝑥(1) ≤ 𝑥(2) ≤. . . ≤ 𝑥(𝑛)  we define an empirical 

distribution of the form: 

𝐹𝑛(𝑥) =

{
 

 
0, 𝑑𝑙𝑎 𝑥 < 𝑥(1),

𝑖

𝑛
, 𝑓𝑜𝑟 𝑥(𝑖) ≤ 𝑥 < 𝑥(𝑖+1), 1 ≤ 𝑖 < 𝑛,

1, 𝑑𝑙𝑎 𝑥 ≥ 𝑥(𝑛).

 

The theoretical distribution of a normal distribution is 

expressed by the formula: 

𝐹 (𝑥) = ∫
1

√2𝜋𝜎

𝑥

−∞

𝑒
−
(𝑠−𝜇)2

2𝜎2 𝑑𝑠, 

The value of the test statistic 𝐷𝑛 is determined as: 

𝐷𝑛 = max
1≤𝑖≤𝑛

 |𝐹𝑛(𝑥(𝑖)) − 𝐹(𝑥(𝑖))|.   

The 𝐷𝑛 test statistic has a Kolmogorov-Smirnov distribution. 

For a given significance level 𝛼, if the test probability value 𝑝 

satisfies the condition 𝑝 < 𝛼 , then the null hypothesis 𝐻0  is 

rejected in favor of the alternative hypothesis 𝐻1. 

The impact of individual causes of UAV failure on the non-

failure operation time was assessed using the non-parametric 

Kruskal–Wallis test [38]. In the Kruskal–Wallis test, for the 

studied variable 𝑋 , a sample is taken for 𝑘  groups. Let 𝑥𝑖 =

{𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖,𝑛𝑖} denote the realization for 𝑖-th group and 𝑖 =

1,2, … , 𝑘, while let 𝐹𝑖(𝑥) denote the distribution for 𝑖-th group. 

A working hypothesis is created at the significance level 0 <

𝛼 < 1: 

𝐻0: 𝐹1(𝑥) = 𝐹2(𝑥) = ⋯ = 𝐹𝑘(𝑥) – the distributions within 

the groups are identical or differ insignificantly (no differences 

between the effects), 

against the alternative hypothesis: 

𝐻1  – there are such 𝑖, 𝑗  that 𝐹𝑖(𝑥) ≠ 𝐹𝑗(𝑥)  – distributions 

within the groups differ significantly. 

To verify these hypotheses, we first perform rankings for the 

entire sample 

{𝑥11, 𝑥12, … , 𝑥1,𝑛1, 𝑥21, 𝑥22, … , 𝑥2,𝑛2, 𝑥31, 𝑥32, … , 𝑥𝑘,𝑛𝑘} 

𝑅𝑖𝑗 denotes the rank for the element 𝑥𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤

𝑛𝑖 . Each group 𝑋𝑖  corresponds to a sequence of ranks 𝑅𝑖 =

{𝑅𝑖1, 𝑅𝑖2, … , 𝑅𝑖,𝑛𝑖}, for which we determine the average rank for 

𝑖-th group: 

𝑅𝑖 =
1

𝑛𝑖
∑𝑅𝑖𝑗 .

𝑛𝑖

𝑗=1

 

The test statistic is given by the formula: 

𝐾𝑊 =
12

𝑛(𝑛 + 1)
∑𝑛𝑖 (𝑅𝑖 −

𝑛 + 1

2
)
2𝑘

𝑖=1

 

and it is a measure of the deviation of the sample mean ranks 

from 
𝑛+1

2
 . The test statistic 𝐾𝑊  follows 𝜒2  distribution with 

(𝑘 − 1) degrees of freedom. At a given significance level α, if 

𝑝 <  𝛼, there is sufficient evidence to reject the null hypothesis 

𝐻0 in favor of the alternative hypothesis, which means that at 

least one of the compared groups differs significantly from the 

others. A post-hoc analysis, aimed at examining the significance 

of differences between individual pairs of failure causes, was 

carried out using the Wilcoxon test with adjusted 𝑝 values. The 

test examines the difference between the paired values of the 

studied characteristic 𝑑𝑖 = 𝑥𝑖1 − 𝑥𝑖2  for 𝑖 = 1,2, … , 𝑛  tested 

objects. This difference is used to verify the hypothesis that the 

median of the differences is 0, 

𝐻0: 𝑀𝑒 = 0, 

against the alternative hypothesis that the median is different 

from zero: 

𝐻1: 𝑀𝑒 ≠ 0, 

The test statistic is calculated using the absolute values 

|𝑑𝑖|, 𝑖 = 1, … , 𝑛 and the sum of ranks for each group in the form: 

𝑇− = ∑ 𝑅𝑖
𝑑𝑖<0

, 𝑇+ = ∑ 𝑅𝑖
𝑑𝑖>0

. 

For 𝑛 → ∞ , the statistic 𝑇+  follows the distribution 

𝑁 (
𝑛(𝑛+1)

4
,
𝑛(𝑛+1)(2𝑛+1)

24
),, 

while the statistic:  

𝑍 =
𝑇+ −

𝑛(𝑛 + 1)
4

√𝑛(𝑛 + 1)(2𝑛 + 1)
24

, 

follows the distribution 𝑁(0,1). The critical area is of the 

form:  

𝑊= (−∞,−𝑢
1−
𝛼
2
] ∪ [−𝑢

1−
𝛼
2
, +∞). 

If 𝑍 ∈ 𝑊, then at the significance level 𝛼 =0.05, we reject 

the null hypothesis 𝐻0 in favor of the alternative hypothesis 𝐻1. 

To precisely examine and compare the impact of individual 

factors on the time to failure, the Kaplan-Meier survival 

analysis method was applied. This method is particularly useful 

in analyzing the time until an event occurs (in this case –  

a failure), allowing for the inclusion of censored observations, 
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meaning those cases where a failure did not occur during the 

observation period. Thanks to the use of the Kaplan-Meier 

analysis, it was also possible to determine the survival function 

separately for each of the analyzed groups of failure-causing 

factors. The Kaplan-Meier estimator describes the probability 

of survival (i.e., no failure) beyond a certain time 𝑡   and is 

expressed by the formula: 

𝑆̂(𝑡) =∏(1 −
𝑑𝑖
𝑛𝑖
)

 

𝑡𝑖≤𝑡

 

where 𝑡𝑖 - the moment the next failure occurs, 𝑑𝑖 - the number 

of failures over time, 𝑛𝑖 - the number of elements ‘surviving’ 

just before time.  

A visual comparison of the survival curves between groups 

was presented using survival plots, which enables quick 

identification of factors associated with a faster occurrence of 

failures. To additionally verify the statistical significance of 

differences between groups, the log-rank test was used. The test 

statistic is expressed by the formula: 

𝑄 =
(∑ (𝑂𝑖 − 𝐸𝑖)

𝑘
𝑖=1 )

2

∑ 𝑉𝑖
𝑘
𝑖=1

 

where: 𝑂𝑖   - the number of observed events (failures) in the 𝑖 

group, 𝐸𝑖  - the expected number of events in the 𝑖  group 

assuming equality of the survival function, 𝑉𝑖 - the variance for 

the 𝑖group, 𝑘 - the number of groups compared. The statistic 𝑄 

follows a chi-square distribution (𝜒2)  with 𝑘 − 1  degrees of 

freedom. If the value 𝑝 <  𝛼 , we reject the null hypothesis, 

which assumes identical survival functions across all groups. 

The next part of the study concerns the reliability assessment 

of the analyzed UAV. In the first stage, appropriate statistical 

distributions were fitted to the empirical data, which allowed for 

further reliability modeling. For this purpose, the Maximum 

Likelihood Estimation (MLE) method was used, and the 

following distributions were proposed: Weibull, exponential, 

log-normal, and gamma. After fitting the statistical distribution, 

a Monte Carlo simulation was conducted to estimate the 

predicted mean time to UAV failure.  

The study went on to calculate the basic reliability indicators 

of the analyzed facilities, such as Mean Time To Failure – 

MTTF, which is the expected value of the time after which the 

system will fail and also failure intensity 𝜆, which describes the 

number of failures per unit of time and is a key reliability 

indicator, as it informs about the frequency of failures in a given 

system. A Failure Rate was also calculated, which describes the 

probability of failure (𝑝) in a given unit of time (𝑡𝑝), usually 

expressed as: 

𝑡𝑝 = −
ln (𝑝)

𝜆
 

Finally, based on the obtained results, the reliability function 

for the analyzed unmanned aerial vehicles was determined. 

Reliability function  

𝑅(𝑡) = 𝑒−𝜆𝑡 , 

where: 𝑅(𝑡)  is the probability that the system will operate 

without failure until 𝑡. 

The reliability function 𝑅(𝑡)  is one of the basic 

characteristics used in reliability analysis. It allows you to 

determine the probability that the system will not fail within  

a certain period of time. With knowledge of the reliability 

function, it is possible, for example, to predict system durability, 

plan maintenance or preventive actions, and estimate the risk of 

inoperability.  

2.2. Analysis of identified causes of failures 

First, an investigation was made into the causes of the failures 

that were occurring. They were classified into 6 groups, 

presented in Table 1. 

Table 1. Failure groups of the unmanned aerial vehicle included in the study. 

Type of failure Cause 

Battery failure  Overload, wear and tear, extreme temperatures 

Engine / ESC failure  Overheating, mechanical wear and tear, moisture 

GPS / IMU system fault Electromagnetic interference, software errors 

Communication error  Radio interference, controller failure 

Frame / propellers failure Collision, material cracks 

Other failures  Software, unknown causes 

 

The main cause of unmanned aerial vehicle (UAV) failures 

is battery malfunction, as batteries serve as the ‘fuel’ powering 

these platforms. Key causes of battery failure include overload, 

wear, and exposure to extreme temperatures. Regarding the 
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database used in the study, it should be noted that it pertains 

exclusively to batteries from the LiPo (Lithium Polymer) group, 

which are currently the most commonly used power source for 

UAVs. LiPo battery overload is a phenomenon in which the 

current flowing through the circuit exceeds the rated voltage, 

and it may occur during the charging process. 

 

Figure 2. Battery voltage and temperature readings in the mobile application. 

Although advancements in technology have led to the 

development of batteries that automatically adjust the charging 

current, traditional solutions that have been used since the 

beginning of unmanned aviation are still widely in use. Wear 

and extreme temperatures as causes of battery failure share a 

common factor in the context of the database: non-standard 

usage conditions. When it comes to saving lives, every minute 

counts, which is why equipment, including UAVs and their 

batteries, used in rescue operations is operated at full capacity – 

often without breaks and in diverse environmental conditions. 

Extremely risky operating situations are frequent, but they are 

the price to be paid for someone’s life and health. When flying 

in temperature extremes for LiPo batteries – that is, beyond their 

operational temperature range – particular attention must be 

paid to continuously reading and analyzing data on the rate of 

voltage drop, the voltage distribution across the battery cells, 

and the recorded battery temperature. For the batteries selected 

in this study, the operating temperature range was either from –

20°C to 50°C or from –10°C to 40°C. In very low operating 

temperatures, batteries may discharge rapidly, leading to engine 

shutdowns. In high temperatures, the batteries may heat up 

quickly, and at around 70°C, may even explode. An example of 

the data recorded by the UAV during flight is presented in 

Figure 2. Another type of failure occurring during UAV flights 

is related to motor and ESC (Electronic Speed Controller) 

malfunctions. The key causes of these failures include 

overheating, mechanical wear, and moisture. The dataset 

provided by the State and Volunteer Fire Service includes 

information recorded by UAVs equipped with brushless three-

phase DC motors. These motors offer high efficiency and  

a longer lifespan compared to brushed motors, reaching up to 

90%, which results in significant energy savings and extends the 

operating time on a single charge [44]. Although more 

expensive than traditional motors, brushless motors are more 

cost-effective in the long term. Their design is structurally 

simpler than brushed motors, but they require a complex ESC 

control system, which manages the motor's rotational speed. 

Most controllers are programmable, allowing the user to set 

parameters directly such as motor acceleration characteristics, 

cutoff voltage, rotation direction, and active braking [45]. Due 

to the environment in which rescue operations are conducted – 

fire scenes and varying weather conditions – damage to both 

motors and ESC controllers occurs, primarily caused by 

exposure to fire-related conditions such as high temperatures, 

moisture, drizzle, as well as airborne particulates that act as heat 

carriers, and dust that clogs motors. An example of a message 
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indicating a motor shutdown during flight in Figure 3. 

 

Figure 3. Message in mobile app about ESC error just before  motor stop. 

The next analyzed group of UAV failures includes faults in 

the GPS system and the IMU (Inertial Measurement Unit) 

caused by electromagnetic interference and software errors. In 

the studied UAV, the piloting modes include: Positioning (P), 

Sport (S), Tripod (T), and ATTI (Attitude) [46]. In the P mode, 

GNSS (Global Navigation Satellite System) systems, 

specifically the American GPS (Global Positioning System), 

and a downward vision system for automatic stabilization are 

used, allowing active braking and obstacle avoidance. In the S 

mode, GPS and the downward vision system enable automatic 

stabilization and increase the flight speed to the maximum 

possible value, but it cannot actively brake or avoid obstacles. 

In the T mode, aerial operations are performed in open space 

with active GPS positioning and limited flight speed. The last 

mode, ATTI, is manually activated by highly qualified operators 

performing flights in confined spaces, during which automatic 

positioning systems must remain inactive to give the pilot full 

control over UAV maneuvering. The ATTI mode is also 

automatically triggered by the UAV in case of GPS system 

failure during flights in P, S, and T modes. The automatic 

activation of the ATTI mode by the flying platform’s software 

is most often caused by electromagnetic interference affecting 

the signal power transmitted by the controller's antenna and the 

signal power reaching the UAV’s receiving antenna. In a rescue 

operation environment, key objects generating electromagnetic 

interference include radios used by firefighters for 

communication, power poles, and BTS (base transceiver station) 

towers used for ensuring GSM (Global System for Mobile 

Communication) connectivity. In addition to navigational 

failures related to the GPS system, there are also failures related 

to the inertial navigation system provided by the IMU device, 

which measures and reports changes in the object’s motion and 

orientation in space using a three-axis gyroscope and a three-

axis accelerometer. Faulty IMU operations result in the UAV 

failing to maintain a constant altitude during an operation,  

a tilted horizon in the recorded images from the camera, and the 

UAV self-tilting. The above effects resulting from the lack of 

IMU calibration in the platform directly lead to hazardous 

situations, some of which end in equipment damage and pose 

safety threats to the surrounding area. An example of a presents 
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the IMU calibration process in the UAV is shown in Figure 4.  

 

Figure 4. IMU calibration algorithm.  

During aerial operations carried out in the context of rescue 

missions, failures and damage to the UAV also occur as a result 

of physical radio interference and/or controller malfunction. 

The most common source of radio interference is the fire 

environment. Smoke generated during a fire, as a byproduct of 

combustion, creates a medium that distorts the propagation of 

radio waves. It can also, similarly to low-level clouds, be 

interpreted by the optical sensor as ground, causing the platform 

to initiate a landing procedure, ending with the shutdown of the 

motors. In the event of a fire, there have also been recorded 

cases of UAV controller damage caused by fine dust particles 

penetrating the interior of the equipment.  

Due to the high-risk nature of operational flights, UAV 

collisions with other objects also occur, resulting in frame and 

propeller damage. Propellers are most commonly damaged. The 

operational documentation concerning flight operations also 

describes partial damage to the platform – failures resulting 

from collisions with birds, obstacles in the terrain such as trees 

and overhead power lines, as well as with other civilian 

unmanned aerial vehicles, which, by violating the ban on flying 

near rescue operations, caused collisions.  

Flight logs maintained by Fire Protection Units, which 

record all aerial operations, also note other failures resulting 

from the malfunctioning of the mobile application installed in 

the controller, used to operate the UAV and the camera, display 

live data, and manage flights. The causes of the mobile 

application malfunction are often ultimately unknown, even to 

service technicians, as they occur cyclically, regardless of the 

location, time, or environment of the aerial operation, and the 

application itself does not log these errors. Therefore, some of 

these failures form a group of failures of unknown origin.  

The time-to-failure distribution for the above-mentioned 

groups is shown in Figure 5.

 

Figure 5. Time to failure distribution chart for the studied UAV depending on the cause of failure. 

Next, the assumption of normality was verified, which 

allows for the application of tests dedicated to this type of 

distribution or the exclusion of such a possibility. Normality 

tests were performed using the Kolmogorov-Smirnov test, and 

the results are presented in Table 2. 
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Table 2. Kolmogorov-Smirnov test results for time-to-failure in individual failure cause groups. 

Cause Value of test statistic  𝑫 p-value 

Transport 0.11904 0.1321 

Battery 0.10189 0.00295 

Frame / Propellers 0.1044 0.2981 

GPS / IMU 0.063074 0.5517 

Motor / ESC 0.10665 0.009758 

Other 0.11298 0.1035 

 

For most distributions, the assumption of normality was not 

confirmed. Therefore, to verify whether the cause of the 

malfunction significantly affects the time to failure, the non-

parametric Kruskal-Wallis test was used. The test statistic was 

chi-squared = 26.545 and p-value = 6.993*10−5, hence there is 

no basis to reject the null hypothesis, and in further analysis, it 

is assumed that at least two distributions differ significantly 

from each other. To determine which distributions differ 

significantly, a series of Wilcoxon tests was performed between 

all possible pairs of groups, using the 𝑝-value correction method 

to account for multiple comparisons (Table 3).

Table 3. Wilcoxon test results for individual group pairs. 

 Battery GPS / IMU Other Communication Frame / Propellers 

GPS / IMU      0.024     

Other 0.025 0.865    

Communication    0.053 0.926 0.926   

Frame /Propellers 7.8 ∗ 10−5 0.026 0.105 0.102  

Motor / ESC 0.024 0.941 0.853 0.913 0.024 

 

A significant difference in time to failure was observed for 

most comparisons involving the failure cause classified as 

Battery. Differences were noted for the following pairings: GPS 

/ IMU (p = 0.024), Other (p = 0.025), Frame / Propellers (p = 

0.000078),  and Motor / ESC (p = 0.024). Additionally, 

significant differences were found between Frame / Propellers 

and GPS / IMU (p = 0.026), as well as between Motor / ESC 

and Frame / Propellers (p = 0.024). This indicates that these 

types of malfunctions significantly differ in terms of time to 

failure. In the remaining groups, the cause of failure does not 

significantly affect UAV operating time. 

The relationship between battery failures and other failure 

types may result from the platform and its subsystems being 

directly dependent on the power source. Moreover, the battery 

is the only platform component whose lifespan and failure rate 

are influenced not only by flight operation time but also by 

maintenance practices – such as charging method (charging 

voltage), discharging, storage procedures, and storage 

temperature.  

To further investigate and compare the impact of individual 

factors on time to failure, the Kaplan-Meier survival analysis 

method was applied. For each analyzed group of failure-causing 

factors, a survival function was estimated, and the course of this 

function was visually compared across the groups. Survival 

curves enable quick identification of factors associated with the 

occurrence of failures, as shown in Figure 6. 

 

Figure 6. Kaplan-Meier survival analyses for each of the 

analyzed groups of failure-causing factors. 

The group defined by failure causes related to the Battery 

shows the greatest deviation, although no drastic differences are 

visible on the graph. Nevertheless, in the Battery group, failures 

occur significantly faster than in the others (a higher number of 

failures, shorter survival time), which is also confirmed by the 

log-rank test conducted to provide a detailed comparison of the 
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survival curves (Table 4).

Table 4. Log-rank test results. 

Failure Cause N Observed Expected (𝑶 − 𝑬)𝟐/𝑬 (𝑶 − 𝑬)𝟐/𝑽 

Battery 314 314 254 14.24283 19.2935 

GPS / IMU 159 159 151 0.41932 0.4984 

Other 116 116 133 2.20967 2.5788 

Transport 93 93 104 1.17026 1.3152 

Frame / Propellers 84 84 123 12.10361 14.1008 

Motor / ESC 234 234 235 0.00828 0.0109 

 

Where (𝑂 − 𝐸)²/𝐸 is an indicator of how much the actual 

number deviates from the expected – the larger the value, the 

greater the contribution to the test statistic while (𝑂 − 𝐸)²/𝑉 

takes into account the variance in addition. 

The test statistic 𝑄 =  31.1 , and the value 𝑝 =  9 ∗ 10−6 , 

so the result is statistically significant. The failure rate for the 

Battery turned out to be higher than expected (314 observed vs 

254 expected), while a slight difference in favor of the observed 

value was noted for GPS / IMU. In the case of Communication, 

Frame / Propellers, and Other, there were fewer failures than 

expected, whereas for Motor / ESC the values are nearly 

consistent. 

2.3. Analysis of Identified Failures in the Context of 

Weather Conditions 

Subsequently, a study was conducted on failures depending on 

the weather conditions, as presented in Table 5 and the 

distribution of time to failure for each group, as shown in Figure 

7.

 

Figure 7. The distribution of time to failure for the studied aircraft based on weather conditions.  
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Table 5. Failure groups of the unmanned aerial vehicle included in the study. 

Weather factor Characteristic 

Normal Wind speeds < 8 m/s; ambient temperature of 15°C, no precipitation 

Strong wind Wind speeds of around 15 m/s during flight and about 12 m/s during takeoff and landing  

High temperature Extreme operating conditions for the platform and battery: –20°C and 50°C 

High humidity 
High humidity for the platform used in the study is indicated by the presence of water particles 

on the housing and propellers after landing 

 

The characteristic values of selected weather factors used in 

the study are based on the values specified by the manufacturer 

in the user manual of the UAV used for data collection. 

According to the manufacturer's data, normal weather 

conditions can be considered as wind speeds up to 

approximately 8 m/s, ambient temperature of 15°C, and no 

precipitation. Strong winds for the selected UAV model refer to 

wind speeds of around 15 m/s during flight and about 12 m/s 

during takeoff and landing. Values indicating high temperatures 

are extreme operating conditions for the platform and battery: –

20°C and 50°C. High humidity for the platform used in the 

study is indicated by the presence of water particles on the 

housing and propellers after landing, which are equivalent to 

water droplets generated by a 12.5 dm3/min water spray 

impacting the platform.  

Similarly, an analysis of the normality of the distributions 

separated by the weather factor was conducted using the 

Kolmogorov-Smirnov test (Table 6).

Table 6. Kolmogorov-Smirnov test results for time-to-failure in individual weather factor groups. 

Weather factor Value of test statistic  𝑫 p-value 

Normal 0.082703 0.00146 

Strong wind 0.08996 0.1034 

High temperature 0.12677 0.003443 

High humidity 0.099264 0.3105 

 

At the significance level 𝛼 = 0.05,  normality was 

confirmed only for the factors Strong Wind and High Humidity. 

The lack of normality in the remaining groups led to the re-

examination of differences using the Kruskal-Wallis test. The 

test statistic KW = 43.097, and the p-value = 2.347∗ 10−9. To 

identify which pairs of groups differ significantly, the Wilcoxon 

test with 𝑝 -value correction was used, and its results are 

presented in Table 7.

Table 7. Wilcoxon test results for individual group pairs. 

 Normal Strong wind High temperature 

Strong wind 0.00024   

High temperature 3.4 *10−8 0.12285  

High humidity 0.00411 0.82449 0.34037 

 

The time to failure was significantly shorter in all adverse 

weather conditions compared to normal conditions, while no 

significant differences were observed between the various 

adverse conditions (wind, temperature, humidity). 

To visualize and compare the influence of each weather 

factor on the time to failure, a Kaplan-Meier survival analysis 

was conducted again, and the survival function was plotted, as 

shown in Figure 8 with the results presented in table 8. 
 

Figure 8. Kaplan-Meier survival analyses for each of the 

analyzed groups of weather factors.
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Table 8. Log-rank test results in each group of causes. 

Failure Cause N Observed Expected (O-E)^2/E (O-E)^2/V 

Normal 528 528 633 17.49 49.41 

Strong wind 183 183 147 9.07 10.81 

High temperature 198 198 146 18.34 21.67 

High humidity 91 91 74 3.90 4.24 

 

The log-rank test showed statistically significant differences 

in the time to failure between weather conditions (χ² = 50.5, p = 

6 ∗ 10−8). Fewer failures than expected, and thus better survival, 

were recorded under normal conditions, while in the case of 

strong winds, high temperature, and high humidity, there were 

more failures than expected, indicating worse survival. The 

largest difference from expectations – the greatest deviations 

from the ‘norm’ – concerned high temperatures (18.34) and 

normal conditions (17.49). 

3. Analysis of non-failure operating time  

Next, the non-failure operating time was analyzed by first 

selecting an appropriate probabilistic model to describe this 

distribution. In literature and engineering practice, one of the 

most commonly used distributions is the Weibull distribution, 

often applied in the analysis of durability, reliability, and failure 

risk assessment of devices, although other distributions are also 

used [3]. The Weibull distribution is highly flexible – depending 

on the shape parameter (𝑘), it allows modeling different failure 

mechanisms: 

𝑘 < 1 – random failures, e.g., manufacturing defects, 

𝑘 = 1  – constant failure risk (corresponding to an 

exponential distribution), 

𝑘 > 1  – wear and aging of devices (failure risk increases 

with time). 

For this reason, the Weibull distribution is a universal initial 

model, allowing the examination of both random failure 

characteristics and their dependence on operating time. 

However, the consistency with other distributions, commonly 

used in reliability analysis, was also checked. To determine 

which distribution best describes the non-failure operating time 

of drones, a comparison of four models was made: Weibull, 

exponential (exp), log-normal (lnorm), and gamma (Table 9). 

The goodness-of-fit evaluation was performed based on fit 

statistics and information criteria (AIC and BIC) (Goodness-of-

fit criteria). 

Table 9. Compliance statistics and information criteria for proposed distributions. 

Model weibull exp lnorm gamma 

Goodness-of-fit statistics 

Kolmogorov-Smirnov statistic 0.019 0.141 0.084 0.035 

Cramer-von Mises statistic       0.060 6.940 2.672 0.337 

Anderson-Darling statistic  0.409 38.002 16.146 2.037 

Goodness-of-fit criteria 

Akaike's Information Criterion       13672.65 13862.81 13890.21 13689.28 

Bayesian Information Criterion 13682.47 13867.72 13900.03 13699.10 

 

The Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling statistics allow for assessing how well  

a theoretical distribution fits the empirical data. The smaller the values of these statistics, the better the fit. Analyzing the results in 

, it can be concluded that the exponential distribution poorly 

fits the data – especially the sensitive tests (Cramér-von Mises 

and Anderson-Darling), which show very large values. The 

results for the Weibull and Gamma distributions are similar (and 

the best). Akaike's Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC) are used to assess the 

quality and compare competing models. Both criteria are based 

on the principle of balancing the goodness-of-fit of the model to 

the empirical data with its structural complexity. The lowest 

values for AIC and BIC are associated with the Weibull 

distribution (slightly better than Gamma). Ultimately, 

considering both the fit statistics and the information criteria, 
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the most adequate model can be considered to be the Weibull 

distribution. The fit of this distribution to the empirical data is 

presented the Figure 9.:

 

Figure 9. Empirical data and fitted Weibull distribution. 

 

 

The parameters of the fitted distribution are shape 𝑘 =

1.455 and scale 𝜆 = 414.888. 

In the next step, failure behavior modeling was performed 

using Monte Carlo simulation to estimate the predicted mean 

time to failure of the studied type of UAV, based on the 

previously fitted Weibull distribution. Monte Carlo simulation 

allows for incorporating randomness and uncertainty in 

forecasting failure time. This enables a better understanding of 

risk and a more realistic approach to service planning, 

inspections, and equipment replacement. 

A total of 104  independent Monte Carlo simulation 

replications were performed. In each iteration, a random sample 

of size n = 103  observations was generated from the Weibull 

distribution. These realizations modeled the failure times of 

UAVs. The simulation results are presented the Figure 10.

 

Figure 10. Mean time to failure based on Monte Carlo simulation 

Based on the conducted simulations, basic reliability 

indicators for the studied objects were calculated. The MTTF 

(Mean Time To Failure) was 376.3 hours. This is the average 

time after which the UAV will fail. Therefore, the UAV will 

operate without failure for about 376.3 hours, and after this time, 

a failure occurs on average. The MTBF (Mean Time Between 

Failures) also equaled 376.3 hours, as the average time between 

subsequent failures in a system consisting of only one 
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component is equal to the MTTF. This is because after each 

failure, the system is restored to its initial state and operates 

again until the next failure. The failure intensity (λ) represents 

the average number of failures occurring per unit of time – the 

lower the value of λ, the more reliable the system. In the 

analyzed case 𝜆 = 0.00266, thus there is approximately  

a 0.00266 chance of failure occurring per time unit.  

Next, the reliability function was determined, which 

describes the probability that the examined UAV will operate 

without failure for a specified time 𝑡, 

𝑅(𝑡) = 𝑒−𝜆𝑡 ,  

where R(t) is the probability that the system will function 

without failure until time 𝑡, and λ is the previously determined 

failure intensity (in this case, 0.00266 per hour). 

The reliability function R(t) is one of the fundamental 

characteristics used in reliability analysis. It allows you to 

determine the probability that the system will not fail within  

a certain period of time. A characteristic feature of this function 

is that its curve is decreasing – as time 𝑡  increases, the 

probability of failure-free operation of the system gradually 

decreases. At the beginning of the operation 𝑅(0) = 1, which 

means that right after the system is started, it will certainly 

operate without failure. As time passes, the value of the 

reliability function approaches zero, reflecting the increasing 

risk of failure. With knowledge of the reliability function, it is 

possible, for example, to predict system durability, plan 

maintenance or preventive actions, and estimate the risk of 

inoperability. The function graphs shown in Figure 11 represent 

the probabilities of failure-free operation in the free time range. 

Based on it, one can determine how long the system maintains 

a high probability of reliability and at what point the risk of 

failure becomes significant.

 

Figure 11. Reliability function of the tested UAV. 

The Failure Rate indicator was computed – the time to reach 

a certain reliability level, which informs how long the system 

operates before the probability of failure exceeds a specified 

threshold. In this case, a 50% probability was assumed, and 

calculations were made according to the formula: 

𝑅(𝑡 = 0.5) =
−log (0.5)

𝜆
 

The value 𝑅(𝑡 = 0.5)  was 260.8364, meaning that on 

average, the UAV will operate for over 260 hours before the 

probability of failure exceeds 50%. 

4. Discussion of the results 

The results of the statistical analysis conducted in this study 

showed that in most comparisons between pairs of failure 

causes, there are significant differences in the time to failure. 

These differences were most often observed in failures related 

to the battery, and the results suggest that the way and 

mechanism of these particular failures could significantly 

influence the UAV's operational time until failure. In contrast, 

no statistically significant differences in time to failure were 

observed in other comparisons, including those related to 

GPS/IMU, Communication, or the ‘Other’ category. This may 

suggest that, regardless of the type of failure in these groups, the 

UAV's operating time until failure is similar. These results may 

imply that the cause of failure in these cases is less related to the 

operational time and more associated with random factors or 

external conditions. 
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An analysis of the impact of general weather conditions on 

time to failure was also conducted. The variable describing 

weather conditions was categorical and included four main 

groups: normal weather conditions, strong wind, high 

temperature and high humidity. It should be emphasized that 

during this stage of the research, the weather data were 

simplified and qualitative – they were collected in a general 

manner without precise numerical values, such as specific wind 

speeds, temperature levels, or humidity levels. 

The statistical tests performed showed that the time to 

failure under conditions considered unfavorable (strong wind, 

high temperature, high humidity) was significantly shorter 

compared to normal conditions. At the same time, no 

statistically significant differences in time to failure were found 

between the different unfavorable weather conditions. This 

result suggests that regardless of the type of adverse weather 

factor, each of them similarly contributed to an increase in the 

system's failure rate. 

Based on the simulations conducted, it can be concluded that 

the studied UAV demonstrates relatively high reliability during 

the initial period of operation. The MTTF and MTBF values of 

approximately 376.3 hours indicate that the average time of 

failure-free operation of the system is relatively long. This is 

also confirmed by the low failure rate intensity value of λ = 

0.00266, which means that the probability of a failure occurring 

within a given time unit is small. Such parameters are 

particularly important in systems where reliability plays a key 

role, such as in the case of the studied rescue services. The 

computed values provide valuable information for planning 

maintenance and managing the system's lifecycle, as well as in 

the context of the readiness and reliability of the structures of 

the State and Volunteer Fire Departments.  

The analysis of the reliability function R(t) provides 

additional insight into the dynamics of the decline in the 

probability of failure-free operation of the UAV over time. It 

indicates that the system maintains high reliability during the 

first few hundred hours of operation, while a significant 

decrease in reliability occurs only after about 260 hours, when 

the probability of failure exceeds 50%. In practice, this means 

that service or preventive actions should be planned based on 

this time frame to minimize the risk of unexpected downtime or 

system failures. Therefore, the results of the simulations not 

only characterize the reliability of the studied object but also 

serve as a practical tool to support the management of its 

operation. 

5. Conclusion  

The conducted research allowed for the preliminary 

determination of the relationship between the type of failure and 

the time to its occurrence in the unmanned aerial vehicle, as well 

as the weather conditions, which were considered at a high level 

of generalization. It was shown that for some types of failures, 

such as battery or frame/propeller damage, the time to failure 

differs significantly from other types of failures. On the other 

hand, for other failures, such as GPS/IMU, communication 

issues, or elements classified as ‘Other’, the time to failure 

remains at a similar level. Additionally, adverse weather 

conditions, regardless of their type, had a significant impact on 

shortening the failure-free operating time. However, 

considering the limitations arising from the qualitative nature of 

the weather data, the obtained results should be regarded as 

preliminary and exploratory. Therefore, future research will 

expand data collection to include detailed and quantitative 

meteorological information. In particular, it is planned to collect 

precise measurements of air temperature, wind speed and 

direction, relative humidity, and other relevant environmental 

parameters. This will allow for more advanced statistical 

analyses and modeling of the relationship between weather 

conditions and system reliability. Moreover, it will be possible 

to identify critical thresholds for individual atmospheric 

parameters, above which the risk of failure increases 

significantly. 

Nonetheless, the obtained results, in combination with the 

calculated system reliability indicators, provide valuable 

information for planning technical maintenance and managing 

the operational readiness of UAVs used in rescue services.  

It is also worth mentioning that in order to minimize the risk 

of aircraft failures in emergency services, it is crucial to 

implement comprehensive maintenance procedures, systematic 

staff training and constant monitoring of flight parameters. 

Maintenance should go beyond standard periodic inspections 

and include extended non-destructive testing of key structural 

elements, especially in units operated in difficult conditions. It 

is recommended to keep digital records of faults, analyze failure 
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trends and apply preventive maintenance - replacing elements 

before reaching the wear limit. It is equally important to provide 

UAV pilots with access to manufacturer training and regular 

training courses, which increases the effectiveness and quality 

of technical service. 

UAV pilots should regularly participate in simulator training, 

including in the field of response to failures and crisis 

management. Joint exercises of pilots and rescuers increase the 

effectiveness of rescue operations in the field. At the same time, 

flight parameter monitoring systems should be implemented, 

which allow for ongoing analysis of the technical condition of 

the UAV and detect potential faults before they lead to failure. 

These activities should be complemented by a safety culture 

based on open incident reporting and a thorough analysis of 

weather and operational conditions before each mission. 

Integrating these elements into the daily operational practice of 

emergency services significantly increases the level of flight 

safety and reduces the risk of serious failures. 

It should be emphasized that the presented results are just 

the starting point for further, more detailed studies. In the future, 

it is recommended to expand the analyses with a larger number 

of variables describing both the technical state of the system and 

environmental conditions in the form of precise numerical data 

rather than categories. A significant direction for the 

development of research is also the detailed analysis of 

individual types of failures, considering their specificity and 

potential causes. Additionally, the application of more advanced 

analytical methods, including machine learning models, could 

enable the identification of hidden dependencies and the 

development of effective failure prediction algorithms, 

supporting preventive maintenance actions and increasing the 

reliability of UAV systems.
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Key Acronyms 

UAV Unmanned aerial vehicle 

ASRS Aviation Safety Reporting System 

MLE Maximum Likelihood Estimation 

LiPo Lithium Polymer 

ESC Electronic Speed Controller 

IMU Inertial Measurement Unit 

P Positioning 

S Sport 

T Tripod 

ATTI Attitude 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

BTS Base transceiver station 

GSM Global System for Mobile Communication 

AIC Akaike Information Criterion 
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BIC Bayesian Information Criterion 

MTTF Mean Time To Failure 

MTBF Mean Time Between Failures 

 


