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Highlights Abstract

=  There is a relationship between the type of This article focuses on the study of the reliability of unmanned aerial
vehicles (UAVs), whose role in various sectors, including the rescue
sector, is dynamically increasing. The aim of the study was to analyze
the key factors affecting UAV failure rate and determine their impact on
the time to failure. Statistical analysis and simulations were conducted
within the study, based on collected data, to investigate the relationship
between the type of failure and the system's time to failure.
The results of the analyses showed that the time to failure differs
significantly depending on the cause, particularly for battery-related
failures. It was also found that unfavorable atmospheric conditions, such
as strong wind, high temperature, and high humidity, significantly
shorten the system's time to failure compared to normal conditions, with
this effect being similar for different types of unfavorable weather.

failure and the time of its occurrence.

=  Bad weather conditions affect the time of UAV
failure.

=  Type of failure and the time of its occurrence is

information useful in operating the UAV.
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1. Introduction

Research on the failure rates of unmanned aerial vehicles aerial vehicles [1].

(UAVs) has gained particular significance with the rapid Technical factors primarily include design defects,

increase in their use across civil, commercial, and military
sectors [4, 5]. One of the key factors associated with the
development of this technology is ensuring the stability,
duration, and safety of operations, thus ensuring smooth
integration with airspace. The literature on the subject
highlights several factors that influence drone failure rates,
which can be categorized into three main groups: technical
factors [8, 9], environmental factors [11, 12], and those related
to human error [6, 7, 10]. Each of these categories represents
a different source of risks and potential malfunctions that may

lead to failure or directly to an accident involving unmanned
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component wear, software malfunctions, and power supply
issues [17, 18]. Examples of such issues include engine failures
[14], propeller problems [13], control system malfunctions,
battery failures, or communication system problems [23].
A frequent source of issues are also software errors, including
those resulting from incorrect coding as well as lack of updates
to operating systems or controlling applications [19, 20].
Furthermore, poor quality of materials used and improper
maintenance of the aircraft can significantly increase the risk of
technical failure [15, 16], especially in situations when

commercial UAVs are used in rescue and crisis operations.
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Another group consists of environmental factors, which
stem from the conditions in which unmanned aerial vehicles
conduct flights. These include, among others, adverse weather
and climatic conditions such as strong winds, rainfall, snowfall,
fog, or fluctuating temperatures, as well as lightning strikes [2,
21, 22]. The presence of terrain obstacles, such as trees, power
lines, or tall buildings, also increases the risk of collisions and
equipment damage [23, 24]. Additionally, GPS signal
interference or electromagnetic disturbances, occurring for
example near large industrial installations, may result in a loss
of control over the device [25, 26]. Another significant factor
posing a threat during UAV operations is hacking and
unauthorized pairing. Such activities may lead to the takeover
of control over the drone, data theft, or disruption of its mission.
Therefore, it is crucial to implement advanced cybersecurity
measures, such as strong encryption and access control, in order
to protect drones from unauthorized integration and ensure the
continuity of safe aerial operations [43].

Equally important are factors related to human error [6, 7,
10]. The literature emphasizes that insufficient operator training,
improper mission planning, misjudgment of the situation, or
non-compliance with operational procedures are among the
main causes of failures and accidents [27, 28]. It often occurs
that drone operators overestimate the capabilities of the
equipment or disregard limitations resulting from
environmental conditions, which leads to dangerous situations.
Additionally, errors in system configuration, improper control,
or failure to respond to warning signals from the system may
contribute to uncontrolled events. It should also be emphasized
that flying in crisis situations is characterized by a significant
psychophysical load. Pilots conducting flights during rescue
operations must deal with time pressure, fatigue, noise, light
flashes, and extremely risky flight maneuvers.

Thus, the failure rate of unmanned aerial vehicles is
a complex and multifactorial phenomenon. Understanding and
identifying the sources of potential threats — both technical,
environmental, and those arising from human error — is crucial
for improving the safety of operations involving unmanned
aerial vehicles. A proper analysis of these factors enables the
development of effective strategies for minimizing failure risks
and enhancing the overall reliability of drone systems.

Therefore, failure analysis is a frequently addressed topic in

scientific publications. Many studies utilize a statistical
approach. For instance, NTSB reports and the Aviation Safety
Reporting System (ASRS) database are often sources of
empirical data for regression analysis and hazard modeling,
which help determine the probability of failure depending on
flight time, weather conditions, or mission type [29, 30]. In
works such as those by Clothier et al. [31], probabilistic models
have been developed to predict the consequences of failures in
the context of threats to people and infrastructure. Another
commonly used research method is computer simulations [34]
and numerical analyses [35], particularly in assessing the
reliability of unmanned systems. Works by Ghazali et al. [32]
and lannace et al. [33] utilize artificial intelligence for fault
detection. These studies have shown that the integration of
diagnostic systems based on machine learning can significantly
enhance UAVs' ability to identify and compensate for
malfunctions in real-time. In [13], the authors proposed using
a clustering algorithm — k-means — to detect UAV failures
during flight, focusing particularly on propeller malfunctions
and failures. Field studies are also being conducted. Authors
such as Salazar et al. [36, 37] have analyzed real-world cases of
drone failures used in logistics and environmental monitoring.
They demonstrated that the most common causes of failures are
power issues (e.g., battery failures), communication disruptions,
and software errors. The significant impact of weather
conditions, especially wind and precipitation, on the reliability
of UAV systems is also highlighted [41, 42].

In summary, the literature on drone failure rates covers
a broad range of research methods, from statistical analysis and
risk modeling, to computer simulations, empirical studies, and
applications in real-world flight conditions. The results of these
studies not only provide insights into the most frequent causes
of malfunctions but also suggest directions for further
development of technologies that enhance flight safety, such as
autonomous diagnostic systems, system redundancy, and
improved route planning algorithms that take risks into account.

Overall, it can be stated that research on drone failure rates
focuses on several key areas, including the identification of
factors affecting the reliability of these devices, the
development of methods for assessing their reliability, and the
evaluation of the effectiveness of different approaches in

minimizing failure risks.
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This article presents an analysis and evaluation of the causes
of battery failures in unmanned aerial vehicles used by the State
and Volunteer Fire Departments, as well as a study of the
distribution of time to failure using the Weibull distribution
model. The application of this approach allowed for a detailed
assessment of the characteristics and dynamics of damage under
specific conditions of intensive operation. The unique nature of
this work lies in the inclusion of real-world data from rescue
systems, which has been rarely studied so far. This analysis not
only allows for a better understanding of failure mechanisms
but also enables the forecasting of battery lifespan under high-
risk operational conditions. The results obtained may provide
a significant contribution to the development of reliability
management methods for equipment used in emergency

services.

Failure Causes Impact w,g -\

2. Material and methods
2.1. Algorithm for the Study

The study utilized data provided by pilots from the State and
Volunteer Fire Departments regarding the operation of
unmanned aerial vehicles (UAVs) collected during training and
operational flights conducted by fire protection units. The entire
aerial operation was carried out using an electrically powered
quadcopter with two LiPo batteries. Based on the reports,
databases were created containing information on the UAV's
non-failure operation time, which is the dependent variable in
this study, the cause of failure, and additionally describing the
existing weather conditions that may have influenced the
occurrence of the malfunction (high temperature, strong wind,
humidity). The study was conducted according to the algorithm

presented in Figure 1.

, "Eg-? Atmospheric Conditions

r - Kolmogorov-Smirnov Test
1

i—— Kruskal-Wallis Test

\
1
. 1 !
Kolmogorov-Smirnov Test -= : r - Wilcoxon Test
\ 1
At

Kruskal-Wallis Test --i N :EI: S '<- Kaplan-Meier Method
. 1
Wilcoxon Test - UAV -
Kaplan-Meier Method --' - SEGCEVITVAN - - - Reliability Indicators

Statistical Distribution Fitting & -7

Distribution Fitting -

I -
! Analysis
I

Mean Time to Failure

1
Lo
1
1
r- Mean Time Between Failures
1
1
i—— Failure Intensity

\

~- Failure Rate

ED Monte Carlo Simulations

1 Estimation of the predicted mean

time to failure

Figure 1. Research Procedure Algorithm

According to the presented scheme, the first step involved
characterizing and assessing the impact of selected factors on
the non-failure operation time of unmanned aerial vehicles
(UAVs). To verify the normality of the distribution, the

Kolmogorov-Smirnov test was used [39, 40]. The Kolmogorov-

Smirnov test utilizes the distance between the empirical
cumulative distribution function and the theoretical normal
distribution N (u, 62). It should be applied to a large number of
samples. If the parameters of the distribution are not known, the

estimators of the mean value y and standard deviation ¢ are
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determined on a sample basis. For an ordered realization of the
sample x(;) < x(3) <...< Xy we define an empirical

distribution of the form:
0, dla x < x(y),

i
, forxp S x<xgy,l<i<mn,

Fn(x) = ;
1

, dla x = xg).

The theoretical distribution of a normal distribution is
expressed by the formula:

* 1 _smw?
F(x) =f moe 202 (s,

The value of the test statistic D,, is determined as:

D, = max |Fn(x(i)) - F(x(i))|'

1<isn

The D,, test statistic has a Kolmogorov-Smirnov distribution.

For a given significance level a, if the test probability value p
satisfies the condition p < a, then the null hypothesis H, is
rejected in favor of the alternative hypothesis H;.

The impact of individual causes of UAV failure on the non-
failure operation time was assessed using the non-parametric
Kruskal-Wallis test [38]. In the Kruskal-Wallis test, for the

studied variable X, a sample is taken for k groups. Let x; =

{xil,xl-z, ...,xl-,ni} denote the realization for i-th group and i
1,2, ..., k, while let F;(x) denote the distribution for i-th group.
A working hypothesis is created at the significance level 0 <
a<l1:

Hy: Fy(x) = F,(x) = -+ = F;.(x) — the distributions within
the groups are identical or differ insignificantly (no differences
between the effects),

against the alternative hypothesis:

H; — there are such i,j that F;(x) # F;(x) — distributions
within the groups differ significantly.

To verify these hypotheses, we first perform rankings for the
entire sample

{xll' X125 w0y xl,nlﬁ X21)X22) )y x2,n21 X31)X32) ) xk,nk}
R;j denotes the rank for the element x;;, 1 < i <k, 1<

IA

n;. Each group X; corresponds to a sequence of ranks R;

{Ri1, Riz) -, Ry ;}, for which we determine the average rank for

i-th group:

The test statistic is given by the formula:

12 Zk: (E n+1>2
_n(n+1)_1ni ‘ 2
i=

and it is a measure of the deviation of the sample mean ranks
from nTH The test statistic KW follows y? distribution with

(k — 1) degrees of freedom. At a given significance level o, if
p < a,there is sufficient evidence to reject the null hypothesis
H, in favor of the alternative hypothesis, which means that at
least one of the compared groups differs significantly from the
others. A post-hoc analysis, aimed at examining the significance
of differences between individual pairs of failure causes, was
carried out using the Wilcoxon test with adjusted p values. The
test examines the difference between the paired values of the
studied characteristic d; = x;; — x;, for i = 1,2,...,n tested
objects. This difference is used to verify the hypothesis that the
median of the differences is 0,

Hy:M, =0,

against the alternative hypothesis that the median is different

from zero:

Hi:M, #0,

The test statistic is calculated using the absolute values
|d;l,i = 1, ...,n and the sum of ranks for each group in the form:
T_=2Ri, T+=ZRi'

d;<0 d;>0

For n - oo, the statistic T, follows the distribution

nn+1) n(n+1)(2n+1)
N( 4+’ 24 )”

while the statistic:

(n+1)
\/n(n +1)(2n+ 1)
24

follows the distribution N(0,1). The critical area is of the

form:
W = (—oo, —ul_g] u [—ul_g, +00).
2 2

If Z € W, then at the significance level @ =0.05, we reject
the null hypothesis H, in favor of the alternative hypothesis H;.
To precisely examine and compare the impact of individual
factors on the time to failure, the Kaplan-Meier survival
analysis method was applied. This method is particularly useful
in analyzing the time until an event occurs (in this case —

a failure), allowing for the inclusion of censored observations,
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meaning those cases where a failure did not occur during the
observation period. Thanks to the use of the Kaplan-Meier
analysis, it was also possible to determine the survival function
separately for each of the analyzed groups of failure-causing
factors. The Kaplan-Meier estimator describes the probability
of survival (i.e., no failure) beyond a certain time ¢t and is
expressed by the formula:
=
tist i

where t; - the moment the next failure occurs, d; - the number
of failures over time, n; - the number of elements ‘surviving’
just before time.

A visual comparison of the survival curves between groups
was presented using survival plots, which enables quick
identification of factors associated with a faster occurrence of
failures. To additionally verify the statistical significance of
differences between groups, the log-rank test was used. The test
statistic is expressed by the formula:

(B0, - ED)’

Y7
where: O; - the number of observed events (failures) in the i
group, E; - the expected number of events in the i group
assuming equality of the survival function, V; - the variance for
the igroup, k - the number of groups compared. The statistic Q
follows a chi-square distribution (¥2) with k — 1 degrees of
freedom. If the value p < a, we reject the null hypothesis,
which assumes identical survival functions across all groups.

The next part of the study concerns the reliability assessment
of the analyzed UAV. In the first stage, appropriate statistical
distributions were fitted to the empirical data, which allowed for
further reliability modeling. For this purpose, the Maximum
Likelihood Estimation (MLE) method was used, and the

following distributions were proposed: Weibull, exponential,

log-normal, and gamma. After fitting the statistical distribution,
a Monte Carlo simulation was conducted to estimate the
predicted mean time to UAV failure.

The study went on to calculate the basic reliability indicators
of the analyzed facilities, such as Mean Time To Failure —
MTTEF, which is the expected value of the time after which the
system will fail and also failure intensity 4, which describes the
number of failures per unit of time and is a key reliability
indicator, as it informs about the frequency of failures in a given
system. A Failure Rate was also calculated, which describes the
probability of failure (p) in a given unit of time (t,), usually

expressed as:

_ In(®m

P A

Finally, based on the obtained results, the reliability function

for the analyzed unmanned aerial vehicles was determined.
Reliability function

R(t) = e~ %,
where: R(t) is the probability that the system will operate
without failure until ¢.

The reliability function R(t) is one of the basic
characteristics used in reliability analysis. It allows you to
determine the probability that the system will not fail within
a certain period of time. With knowledge of the reliability
function, it is possible, for example, to predict system durability,
plan maintenance or preventive actions, and estimate the risk of

inoperability.
2.2. Analysis of identified causes of failures

First, an investigation was made into the causes of the failures
that were occurring. They were classified into 6 groups,

presented in Table 1.

Table 1. Failure groups of the unmanned aerial vehicle included in the study.

Type of failure Cause

Battery failure

Overload, wear and tear, extreme temperatures

Engine / ESC failure

Overheating, mechanical wear and tear, moisture

GPS / IMU system fault

Electromagnetic interference, software errors

Communication error

Radio interference, controller failure

Frame / propellers failure

Collision, material cracks

Other failures

Software, unknown causes

The main cause of unmanned aerial vehicle (UAV) failures

is battery malfunction, as batteries serve as the ‘fuel” powering

these platforms. Key causes of battery failure include overload,

wear, and exposure to extreme temperatures. Regarding the
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database used in the study, it should be noted that it pertains
exclusively to batteries from the LiPo (Lithium Polymer) group,

which are currently the most commonly used power source for

UAVs. LiPo battery overload is a phenomenon in which the
current flowing through the circuit exceeds the rated voltage,

and it may occur during the charging process.

Aircraft Battery

Figure 2. Battery voltage and temperature readings in the mobile application.

Although advancements in technology have led to the
development of batteries that automatically adjust the charging
current, traditional solutions that have been used since the
beginning of unmanned aviation are still widely in use. Wear
and extreme temperatures as causes of battery failure share a
common factor in the context of the database: non-standard
usage conditions. When it comes to saving lives, every minute
counts, which is why equipment, including UAVs and their
batteries, used in rescue operations is operated at full capacity —
often without breaks and in diverse environmental conditions.
Extremely risky operating situations are frequent, but they are
the price to be paid for someone’s life and health. When flying
in temperature extremes for LiPo batteries — that is, beyond their
operational temperature range — particular attention must be
paid to continuously reading and analyzing data on the rate of
voltage drop, the voltage distribution across the battery cells,
and the recorded battery temperature. For the batteries selected
in this study, the operating temperature range was either from —
20°C to 50°C or from —10°C to 40°C. In very low operating
temperatures, batteries may discharge rapidly, leading to engine
shutdowns. In high temperatures, the batteries may heat up
quickly, and at around 70°C, may even explode. An example of

the data recorded by the UAV during flight is presented in

Figure 2. Another type of failure occurring during UAV flights
is related to motor and ESC (Electronic Speed Controller)
malfunctions. The key causes of these failures include
overheating, mechanical wear, and moisture. The dataset
provided by the State and Volunteer Fire Service includes
information recorded by UAVs equipped with brushless three-
phase DC motors. These motors offer high efficiency and
a longer lifespan compared to brushed motors, reaching up to
90%, which results in significant energy savings and extends the
operating time on a single charge [44]. Although more
expensive than traditional motors, brushless motors are more
cost-effective in the long term. Their design is structurally
simpler than brushed motors, but they require a complex ESC
control system, which manages the motor's rotational speed.
Most controllers are programmable, allowing the user to set
parameters directly such as motor acceleration characteristics,
cutoff voltage, rotation direction, and active braking [45]. Due
to the environment in which rescue operations are conducted —
fire scenes and varying weather conditions — damage to both
motors and ESC controllers occurs, primarily caused by
exposure to fire-related conditions such as high temperatures,
moisture, drizzle, as well as airborne particulates that act as heat

carriers, and dust that clogs motors. An example of a message
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indicating a motor shutdown during flight in Figure 3.
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Figure 3. Message in mobile app about ESC error just before motor stop.

The next analyzed group of UAV failures includes faults in
the GPS system and the IMU (Inertial Measurement Unit)
caused by electromagnetic interference and software errors. In
the studied UAV, the piloting modes include: Positioning (P),
Sport (S), Tripod (T), and ATTI (Attitude) [46]. In the P mode,
GNSS (Global Navigation Satellite System) systems,
specifically the American GPS (Global Positioning System),
and a downward vision system for automatic stabilization are
used, allowing active braking and obstacle avoidance. In the S
mode, GPS and the downward vision system enable automatic
stabilization and increase the flight speed to the maximum
possible value, but it cannot actively brake or avoid obstacles.
In the T mode, aerial operations are performed in open space
with active GPS positioning and limited flight speed. The last
mode, ATTI, is manually activated by highly qualified operators
performing flights in confined spaces, during which automatic
positioning systems must remain inactive to give the pilot full
control over UAV maneuvering. The ATTI mode is also
automatically triggered by the UAV in case of GPS system

failure during flights in P, S, and T modes. The automatic

activation of the ATTI mode by the flying platform’s software
is most often caused by electromagnetic interference affecting
the signal power transmitted by the controller's antenna and the
signal power reaching the UAV’s receiving antenna. In a rescue
operation environment, key objects generating electromagnetic
interference include radios used by firefighters for
communication, power poles, and BTS (base transceiver station)
towers used for ensuring GSM (Global System for Mobile
Communication) connectivity. In addition to navigational
failures related to the GPS system, there are also failures related
to the inertial navigation system provided by the IMU device,
which measures and reports changes in the object’s motion and
orientation in space using a three-axis gyroscope and a three-
axis accelerometer. Faulty IMU operations result in the UAV
failing to maintain a constant altitude during an operation,
a tilted horizon in the recorded images from the camera, and the
UAV self-tilting. The above effects resulting from the lack of
IMU calibration in the platform directly lead to hazardous
situations, some of which end in equipment damage and pose

safety threats to the surrounding area. An example of a presents

Eksploatacja i Niezawodno$¢ — Maintenance and Reliability Vol. 28, No. 1, 2026




the IMU calibration process in the UAV is shown in Figure 4.

Figure 4. IMU calibration algorithm.

During aerial operations carried out in the context of rescue
missions, failures and damage to the UAV also occur as a result
of physical radio interference and/or controller malfunction.
The most common source of radio interference is the fire
environment. Smoke generated during a fire, as a byproduct of
combustion, creates a medium that distorts the propagation of
radio waves. It can also, similarly to low-level clouds, be
interpreted by the optical sensor as ground, causing the platform
to initiate a landing procedure, ending with the shutdown of the

motors. In the event of a fire, there have also been recorded
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cases of UAV controller damage caused by fine dust particles
penetrating the interior of the equipment.

Due to the high-risk nature of operational flights, UAV
collisions with other objects also occur, resulting in frame and
propeller damage. Propellers are most commonly damaged. The
operational documentation concerning flight operations also
describes partial damage to the platform — failures resulting
from collisions with birds, obstacles in the terrain such as trees
and overhead power lines, as well as with other civilian
unmanned aerial vehicles, which, by violating the ban on flying
near rescue operations, caused collisions.

Flight logs maintained by Fire Protection Units, which
record all aerial operations, also note other failures resulting
from the malfunctioning of the mobile application installed in
the controller, used to operate the UAV and the camera, display
live data, and manage flights. The causes of the mobile
application malfunction are often ultimately unknown, even to
service technicians, as they occur cyclically, regardless of the
location, time, or environment of the aerial operation, and the
application itself does not log these errors. Therefore, some of
these failures form a group of failures of unknown origin.

The time-to-failure distribution for the above-mentioned

groups is shown in Figure 5.
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Figure 5. Time to failure distribution chart for the studied UAV depending on the cause of failure.

Next, the assumption of normality was verified, which
allows for the application of tests dedicated to this type of

distribution or the exclusion of such a possibility. Normality

tests were performed using the Kolmogorov-Smirnov test, and

the results are presented in Table 2.
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Table 2. Kolmogorov-Smirnov test results for time-to-failure in individual failure cause groups.

Cause Value of test statistic D p-value
Transport 0.11904 0.1321
Battery 0.10189 0.00295
Frame / Propellers 0.1044 0.2981
GPS /IMU 0.063074 0.5517
Motor / ESC 0.10665 0.009758
Other 0.11298 0.1035

For most distributions, the assumption of normality was not
confirmed. Therefore, to verify whether the cause of the
malfunction significantly affects the time to failure, the non-
parametric Kruskal-Wallis test was used. The test statistic was
chi-squared = 26.545 and p-value = 6.993*107>, hence there is

no basis to reject the null hypothesis, and in further analysis, it

Table 3. Wilcoxon test results for individual group pairs.

is assumed that at least two distributions differ significantly
from each other. To determine which distributions differ
significantly, a series of Wilcoxon tests was performed between
all possible pairs of groups, using the p-value correction method

to account for multiple comparisons (Table 3).

Battery GPS /IMU Other Communication Frame / Propellers
GPS / IMU 0.024
Other 0.025 0.865
Communication 0.053 0.926 0.926
Frame /Propellers 7.8 *107° 0.026 0.105 0.102
Motor / ESC 0.024 0.941 0.853 0.913 0.024

A significant difference in time to failure was observed for
most comparisons involving the failure cause classified as
Battery. Differences were noted for the following pairings: GPS
/ IMU (p = 0.024), Other (p = 0.025), Frame / Propellers (p =
0.000078), and Motor / ESC (p = 0.024). Additionally,
significant differences were found between Frame / Propellers
and GPS / IMU (p = 0.026), as well as between Motor / ESC
and Frame / Propellers (p = 0.024). This indicates that these
types of malfunctions significantly differ in terms of time to
failure. In the remaining groups, the cause of failure does not
significantly affect UAV operating time.

The relationship between battery failures and other failure
types may result from the platform and its subsystems being
directly dependent on the power source. Moreover, the battery
is the only platform component whose lifespan and failure rate
are influenced not only by flight operation time but also by
maintenance practices — such as charging method (charging
voltage), discharging, storage procedures, and storage
temperature.

To further investigate and compare the impact of individual

factors on time to failure, the Kaplan-Meier survival analysis

method was applied. For each analyzed group of failure-causing
factors, a survival function was estimated, and the course of this
function was visually compared across the groups. Survival
curves enable quick identification of factors associated with the

occurrence of failures, as shown in Figure 6.

1.00

_\._\ Cause of failure
.
0.75 Battery
GPS/IMU

0.50 —— Other

—— Communication

Survival probability

Frame / Propellers

Motor / ESC

500 1000 1500
Time to failure

Figure 6. Kaplan-Meier survival analyses for each of the

analyzed groups of failure-causing factors.

The group defined by failure causes related to the Battery
shows the greatest deviation, although no drastic differences are
visible on the graph. Nevertheless, in the Battery group, failures
occur significantly faster than in the others (a higher number of
failures, shorter survival time), which is also confirmed by the

log-rank test conducted to provide a detailed comparison of the
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survival curves (Table 4).

Table 4. Log-rank test results.

Failure Cause N Observed Expected (0 —E)?/E (0—-E)?/v
Battery 314 314 254 14.24283 19.2935
GPS / IMU 159 159 151 0.41932 0.4984
Other 116 116 133 2.20967 2.5788
Transport 93 93 104 1.17026 1.3152
Frame / Propellers 84 84 123 12.10361 14.1008
Motor / ESC 234 234 235 0.00828 0.0109

Where (0 — E)?/E is an indicator of how much the actual
number deviates from the expected — the larger the value, the
greater the contribution to the test statistic while (0 — E)?/V
takes into account the variance in addition.

The test statistic Q = 31.1, and the value p = 9 * 107,
so the result is statistically significant. The failure rate for the
Battery turned out to be higher than expected (314 observed vs
254 expected), while a slight difference in favor of the observed
value was noted for GPS / IMU. In the case of Communication,

Frame / Propellers, and Other, there were fewer failures than
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expected, whereas for Motor / ESC the values are nearly

consistent.

2.3. Analysis of Identified Failures in the Context of
Weather Conditions

Subsequently, a study was conducted on failures depending on
the weather conditions, as presented in Table 5 and the
distribution of time to failure for each group, as shown in Figure
7.
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Figure 7. The distribution of time to failure for the studied aircraft based on weather conditions.
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Table 5. Failure groups of the unmanned aerial vehicle included in the study.

Weather factor Characteristic

Normal

Wind speeds < 8 m/s; ambient temperature of 15°C, no precipitation

Strong wind

Wind speeds of around 15 m/s during flight and about 12 m/s during takeoff and landing

High temperature

Extreme operating conditions for the platform and battery: —20°C and 50°C

High humidity

High humidity for the platform used in the study is indicated by the presence of water particles
on the housing and propellers after landing

The characteristic values of selected weather factors used in
the study are based on the values specified by the manufacturer
in the user manual of the UAV used for data collection.
According to the manufacturer's data, normal weather
conditions can be considered as wind speeds up to
approximately 8 m/s, ambient temperature of 15°C, and no
precipitation. Strong winds for the selected UAV model refer to
wind speeds of around 15 m/s during flight and about 12 m/s

during takeoff and landing. Values indicating high temperatures

are extreme operating conditions for the platform and battery: —
20°C and 50°C. High humidity for the platform used in the
study is indicated by the presence of water particles on the
housing and propellers after landing, which are equivalent to
water droplets generated by a 12.5 dm®/min water spray
impacting the platform.

Similarly, an analysis of the normality of the distributions
separated by the weather factor was conducted using the

Kolmogorov-Smirnov test (Table 6).

Table 6. Kolmogorov-Smirnov test results for time-to-failure in individual weather factor groups.

Weather factor Value of test statistic D p-value
Normal 0.082703 0.00146
Strong wind 0.08996 0.1034

High temperature 0.12677 0.003443
High humidity 0.099264 0.3105

At the significance level « = 0.05, normality was
confirmed only for the factors Strong Wind and High Humidity.
The lack of normality in the remaining groups led to the re-

examination of differences using the Kruskal-Wallis test. The

Table 7. Wilcoxon test results for individual group pairs.

test statistic KW = 43.097, and the p-value = 2.347 10~°. To
identify which pairs of groups differ significantly, the Wilcoxon
test with p -value correction was used, and its results are

presented in Table 7.

Normal Strong wind High temperature
Strong wind 0.00024
High temperature 3.4%1078 0.12285
High humidity 0.00411 0.82449 0.34037
The time to failure was significantly shorter in all adverse oy
weather conditions compared to normal conditions, while no
E 075 \L\\ Weather Condition
significant differences were observed between the various E \ Normal
adverse conditions (wind, temperature, humidity). Tg o H — ::;ni:::rwe
To visualize and compare the influence of each weather @025 \ Fiigh humidy

factor on the time to failure, a Kaplan-Meier survival analysis
was conducted again, and the survival function was plotted, as

shown in Figure 8 with the results presented in table 8.

0 500 1000 1500
Time to failure

Figure 8. Kaplan-Meier survival analyses for each of the

analyzed groups of weather factors.
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Table 8. Log-rank test results in each group of causes.

Failure Cause N Observed Expected (O-E)*2/E (0-E)*2/V
Normal 528 528 633 17.49 49.41
Strong wind 183 183 147 9.07 10.81
High temperature 198 198 146 18.34 21.67
High humidity 91 91 74 3.90 4.24

The log-rank test showed statistically significant differences
in the time to failure between weather conditions (y> = 50.5,p =
6 * 1078). Fewer failures than expected, and thus better survival,
were recorded under normal conditions, while in the case of
strong winds, high temperature, and high humidity, there were
more failures than expected, indicating worse survival. The
largest difference from expectations — the greatest deviations
from the ‘norm’ — concerned high temperatures (18.34) and

normal conditions (17.49).
3. Analysis of non-failure operating time

Next, the non-failure operating time was analyzed by first
selecting an appropriate probabilistic model to describe this
distribution. In literature and engineering practice, one of the
most commonly used distributions is the Weibull distribution,
often applied in the analysis of durability, reliability, and failure
risk assessment of devices, although other distributions are also

used [3]. The Weibull distribution is highly flexible — depending

on the shape parameter (k), it allows modeling different failure
mechanisms:

k < 1 —random failures, e.g., manufacturing defects,

k=1 — constant failure risk (corresponding to an
exponential distribution),

k > 1 — wear and aging of devices (failure risk increases
with time).

For this reason, the Weibull distribution is a universal initial
model, allowing the examination of both random failure
characteristics and their dependence on operating time.
However, the consistency with other distributions, commonly
used in reliability analysis, was also checked. To determine
which distribution best describes the non-failure operating time
of drones, a comparison of four models was made: Weibull,
exponential (exp), log-normal (Inorm), and gamma (Table 9).
The goodness-of-fit evaluation was performed based on fit
statistics and information criteria (AIC and BIC) (Goodness-of-

fit criteria).

Table 9. Compliance statistics and information criteria for proposed distributions.

exp ‘

Model weibull Inorm gamma
Goodness-of-fit statistics
Kolmogorov-Smirnov statistic 0.019 0.141 0.084 0.035
Cramer-von Mises statistic 0.060 6.940 2.672 0.337
IAnderson-Darling statistic 0.409 38.002 16.146 2.037
Goodness-of-fit criteria
Akaike's Information Criterion 13672.65 13862.81 13890.21 13689.28
Bayesian Information Criterion 13682.47 13867.72 13900.03 13699.10

The Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling statistics allow for assessing how well

a theoretical distribution fits the empirical data. The smaller the values of these statistics, the better the fit. Analyzing the results in

, it can be concluded that the exponential distribution poorly
fits the data — especially the sensitive tests (Cramér-von Mises
and Anderson-Darling), which show very large values. The
results for the Weibull and Gamma distributions are similar (and
the best). Akaike's Information Criterion (AIC) and the

Bayesian Information Criterion (BIC) are used to assess the

quality and compare competing models. Both criteria are based
on the principle of balancing the goodness-of-fit of the model to
the empirical data with its structural complexity. The lowest
values for AIC and BIC are associated with the Weibull
distribution (slightly better than Gamma). Ultimately,

considering both the fit statistics and the information criteria,
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the most adequate model can be considered to be the Weibull

distribution. The fit of this distribution to the empirical data is
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presented the Figure 9.:

1000 1500

Time to failure [hours]

Figure 9. Empirical data and fitted Weibull distribution.

The parameters of the fitted distribution are shape k =
1.455 and scale 4 = 414.888.

In the next step, failure behavior modeling was performed
using Monte Carlo simulation to estimate the predicted mean
time to failure of the studied type of UAV, based on the
previously fitted Weibull distribution. Monte Carlo simulation

allows for incorporating randomness and uncertainty in

600 =

400-

Count

200-
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340 360

forecasting failure time. This enables a better understanding of
risk and a more realistic approach to service planning,
inspections, and equipment replacement.

A total of 10* independent Monte Carlo simulation
replications were performed. In each iteration, a random sample
of size n = 103 observations was generated from the Weibull
distribution. These realizations modeled the failure times of

UAVs. The simulation results are presented the Figure 10.

380 400

Mean time to failure

Figure 10. Mean time to failure based on Monte Carlo simulation

Based on the conducted simulations, basic reliability
indicators for the studied objects were calculated. The MTTF
(Mean Time To Failure) was 376.3 hours. This is the average

time after which the UAV will fail. Therefore, the UAV will

operate without failure for about 376.3 hours, and after this time,
a failure occurs on average. The MTBF (Mean Time Between
Failures) also equaled 376.3 hours, as the average time between

subsequent failures in a system consisting of only one
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component is equal to the MTTF. This is because after each
failure, the system is restored to its initial state and operates
again until the next failure. The failure intensity (A) represents
the average number of failures occurring per unit of time — the
lower the value of A, the more reliable the system. In the
analyzed case A = 0.00266, thus there is approximately
a 0.00266 chance of failure occurring per time unit.

Next, the reliability function was determined, which
describes the probability that the examined UAV will operate
without failure for a specified time ¢,

R(t) = e,

where R(t) is the probability that the system will function
without failure until time ¢, and A is the previously determined
failure intensity (in this case, 0.00266 per hour).

The reliability function R(t) is one of the fundamental

characteristics used in reliability analysis. It allows you to

1.00 -

0.75-

& 0.50-

0.25-

0.00-

determine the probability that the system will not fail within
a certain period of time. A characteristic feature of this function
is that its curve is decreasing — as time t increases, the
probability of failure-free operation of the system gradually
decreases. At the beginning of the operation R(0) = 1, which
means that right after the system is started, it will certainly
operate without failure. As time passes, the value of the
reliability function approaches zero, reflecting the increasing
risk of failure. With knowledge of the reliability function, it is
possible, for example, to predict system durability, plan
maintenance or preventive actions, and estimate the risk of
inoperability. The function graphs shown in Figure 11 represent
the probabilities of failure-free operation in the free time range.
Based on it, one can determine how long the system maintains
a high probability of reliability and at what point the risk of

failure becomes significant.

500 750 1000

Time to failure [hours]

Figure 11. Reliability function of the tested UAV.

The Failure Rate indicator was computed — the time to reach
a certain reliability level, which informs how long the system
operates before the probability of failure exceeds a specified
threshold. In this case, a 50% probability was assumed, and
calculations were made according to the formula:
—log (0.5)

A

The value R(t = 0.5) was 260.8364, meaning that on

R(t=0.5) =

average, the UAV will operate for over 260 hours before the

probability of failure exceeds 50%.
4. Discussion of the results

The results of the statistical analysis conducted in this study

showed that in most comparisons between pairs of failure

causes, there are significant differences in the time to failure.
These differences were most often observed in failures related
to the battery, and the results suggest that the way and
mechanism of these particular failures could significantly
influence the UAV's operational time until failure. In contrast,
no statistically significant differences in time to failure were
observed in other comparisons, including those related to
GPS/IMU, Communication, or the ‘Other’ category. This may
suggest that, regardless of the type of failure in these groups, the
UAV's operating time until failure is similar. These results may
imply that the cause of failure in these cases is less related to the
operational time and more associated with random factors or

external conditions.
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An analysis of the impact of general weather conditions on
time to failure was also conducted. The variable describing
weather conditions was categorical and included four main
groups: normal weather conditions, strong wind, high
temperature and high humidity. It should be emphasized that
during this stage of the research, the weather data were
simplified and qualitative — they were collected in a general
manner without precise numerical values, such as specific wind
speeds, temperature levels, or humidity levels.

The statistical tests performed showed that the time to
failure under conditions considered unfavorable (strong wind,
high temperature, high humidity) was significantly shorter
compared to normal conditions. At the same time, no
statistically significant differences in time to failure were found
between the different unfavorable weather conditions. This
result suggests that regardless of the type of adverse weather
factor, each of them similarly contributed to an increase in the
system's failure rate.

Based on the simulations conducted, it can be concluded that
the studied UAV demonstrates relatively high reliability during
the initial period of operation. The MTTF and MTBF values of
approximately 376.3 hours indicate that the average time of
failure-free operation of the system is relatively long. This is
also confirmed by the low failure rate intensity value of A =
0.00266, which means that the probability of a failure occurring
within a given time unit is small. Such parameters are
particularly important in systems where reliability plays a key
role, such as in the case of the studied rescue services. The
computed values provide valuable information for planning
maintenance and managing the system's lifecycle, as well as in
the context of the readiness and reliability of the structures of
the State and Volunteer Fire Departments.

The analysis of the reliability function R(t) provides
additional insight into the dynamics of the decline in the
probability of failure-free operation of the UAV over time. It
indicates that the system maintains high reliability during the
first few hundred hours of operation, while a significant
decrease in reliability occurs only after about 260 hours, when
the probability of failure exceeds 50%. In practice, this means
that service or preventive actions should be planned based on
this time frame to minimize the risk of unexpected downtime or

system failures. Therefore, the results of the simulations not

only characterize the reliability of the studied object but also
serve as a practical tool to support the management of its

operation.
5. Conclusion

The conducted research allowed for the preliminary
determination of the relationship between the type of failure and
the time to its occurrence in the unmanned aerial vehicle, as well
as the weather conditions, which were considered at a high level
of generalization. It was shown that for some types of failures,
such as battery or frame/propeller damage, the time to failure
differs significantly from other types of failures. On the other
hand, for other failures, such as GPS/IMU, communication
issues, or elements classified as ‘Other’, the time to failure
remains at a similar level. Additionally, adverse weather
conditions, regardless of their type, had a significant impact on
shortening the failure-free operating time. However,
considering the limitations arising from the qualitative nature of
the weather data, the obtained results should be regarded as
preliminary and exploratory. Therefore, future research will
expand data collection to include detailed and quantitative
meteorological information. In particular, it is planned to collect
precise measurements of air temperature, wind speed and
direction, relative humidity, and other relevant environmental
parameters. This will allow for more advanced statistical
analyses and modeling of the relationship between weather
conditions and system reliability. Moreover, it will be possible
to identify critical thresholds for individual atmospheric
parameters, above which the risk of failure increases
significantly.

Nonetheless, the obtained results, in combination with the
calculated system reliability indicators, provide valuable
information for planning technical maintenance and managing
the operational readiness of UAVs used in rescue services.

It is also worth mentioning that in order to minimize the risk
of aircraft failures in emergency services, it is crucial to
implement comprehensive maintenance procedures, systematic
staff training and constant monitoring of flight parameters.
Maintenance should go beyond standard periodic inspections
and include extended non-destructive testing of key structural
elements, especially in units operated in difficult conditions. It

is recommended to keep digital records of faults, analyze failure
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trends and apply preventive maintenance - replacing elements
before reaching the wear limit. It is equally important to provide
UAV pilots with access to manufacturer training and regular
training courses, which increases the effectiveness and quality
of technical service.

UAV pilots should regularly participate in simulator training,
including in the field of response to failures and crisis
management. Joint exercises of pilots and rescuers increase the
effectiveness of rescue operations in the field. At the same time,
flight parameter monitoring systems should be implemented,
which allow for ongoing analysis of the technical condition of
the UAV and detect potential faults before they lead to failure.
These activities should be complemented by a safety culture
based on open incident reporting and a thorough analysis of
weather and operational conditions before each mission.

Integrating these elements into the daily operational practice of
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Key Acronyms
UAV Unmanned aerial vehicle
ASRS Aviation Safety Reporting System
MLE Maximum Likelihood Estimation
LiPo Lithium Polymer
ESC Electronic Speed Controller
IMU Inertial Measurement Unit
P Positioning
S Sport
T Tripod
ATTI Attitude
GNSS Global Navigation Satellite System
GPS Global Positioning System
BTS Base transceiver station
GSM Global System for Mobile Communication
AIC Akaike Information Criterion
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BIC Bayesian Information Criterion
MTTF Mean Time To Failure
MTBF Mean Time Between Failures
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